/* Atomic operations used inside libc. Linux/SH version. Copyright (C) 2003 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include typedef int8_t atomic8_t; typedef uint8_t uatomic8_t; typedef int_fast8_t atomic_fast8_t; typedef uint_fast8_t uatomic_fast8_t; typedef int16_t atomic16_t; typedef uint16_t uatomic16_t; typedef int_fast16_t atomic_fast16_t; typedef uint_fast16_t uatomic_fast16_t; typedef int32_t atomic32_t; typedef uint32_t uatomic32_t; typedef int_fast32_t atomic_fast32_t; typedef uint_fast32_t uatomic_fast32_t; typedef int64_t atomic64_t; typedef uint64_t uatomic64_t; typedef int_fast64_t atomic_fast64_t; typedef uint_fast64_t uatomic_fast64_t; typedef intptr_t atomicptr_t; typedef uintptr_t uatomicptr_t; typedef intmax_t atomic_max_t; typedef uintmax_t uatomic_max_t; /* SH kernel has implemented a gUSA ("g" User Space Atomicity) support for the user space atomicity. The atomicity macros use this scheme. Reference: Niibe Yutaka, "gUSA: Simple and Efficient User Space Atomicity Emulation with Little Kernel Modification", Linux Conference 2002, Japan. http://lc.linux.or.jp/lc2002/papers/niibe0919h.pdf (in Japanese). Niibe Yutaka, "gUSA: User Space Atomicity with Little Kernel Modification", LinuxTag 2003, Rome. http://www.semmel.ch/Linuxtag-DVD/talks/170/paper.html (in English). B.N. Bershad, D. Redell, and J. Ellis, "Fast Mutual Exclusion for Uniprocessors", Proceedings of the Fifth Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 223-233, October 1992. http://www.cs.washington.edu/homes/bershad/Papers/Rcs.ps SuperH ABI: r15: -(size of atomic instruction sequence) < 0 r0: end point r1: saved stack pointer */ #if __GNUC_PREREQ (4, 7) # define rNOSP "u" #else # define rNOSP "r" #endif /* Avoid having lots of different versions of compare and exchange, by having this one complicated version. Parameters: bwl: b, w or l for 8, 16 and 32 bit versions. version: val or bool, depending on whether the result is the previous value or a bool indicating whether the transfer did happen (note this needs inverting before being returned in atomic_compare_and_exchange_bool). */ #define __arch_compare_and_exchange_n(mem, newval, oldval, bwl, version) \ ({ signed long __arch_result; \ __asm__ __volatile__ ("\ .align 2\n\ mova 1f,r0\n\ nop\n\ mov r15,r1\n\ mov #-8,r15\n\ 0: mov." #bwl " @%1,%0\n\ cmp/eq %0,%3\n\ bf 1f\n\ mov." #bwl " %2,@%1\n\ 1: mov r1,r15\n\ .ifeqs \"bool\",\"" #version "\"\n\ movt %0\n\ .endif\n" \ : "=&r" (__arch_result) \ : rNOSP (mem), rNOSP (newval), rNOSP (oldval) \ : "r0", "r1", "t", "memory"); \ __arch_result; }) #define __arch_compare_and_exchange_val_8_acq(mem, newval, oldval) \ __arch_compare_and_exchange_n(mem, newval, (int8_t)(oldval), b, val) #define __arch_compare_and_exchange_val_16_acq(mem, newval, oldval) \ __arch_compare_and_exchange_n(mem, newval, (int16_t)(oldval), w, val) #define __arch_compare_and_exchange_val_32_acq(mem, newval, oldval) \ __arch_compare_and_exchange_n(mem, newval, (int32_t)(oldval), l, val) /* XXX We do not really need 64-bit compare-and-exchange. At least not in the moment. Using it would mean causing portability problems since not many other 32-bit architectures have support for such an operation. So don't define any code for now. */ # define __arch_compare_and_exchange_val_64_acq(mem, newval, oldval) \ (abort (), 0) /* For "bool" routines, return if the exchange did NOT occur */ #define __arch_compare_and_exchange_bool_8_acq(mem, newval, oldval) \ (! __arch_compare_and_exchange_n(mem, newval, (int8_t)(oldval), b, bool)) #define __arch_compare_and_exchange_bool_16_acq(mem, newval, oldval) \ (! __arch_compare_and_exchange_n(mem, newval, (int16_t)(oldval), w, bool)) #define __arch_compare_and_exchange_bool_32_acq(mem, newval, oldval) \ (! __arch_compare_and_exchange_n(mem, newval, (int32_t)(oldval), l, bool)) # define __arch_compare_and_exchange_bool_64_acq(mem, newval, oldval) \ (abort (), 0) /* Similar to the above, have one template which can be used in a number of places. This version returns both the old and the new values of the location. Parameters: bwl: b, w or l for 8, 16 and 32 bit versions. oper: The instruction to perform on the old value. Note old is not sign extended, so should be an unsigned long. */ #define __arch_operate_old_new_n(mem, value, old, new, bwl, oper) \ (void) ({ __asm__ __volatile__ ("\ .align 2\n\ mova 1f,r0\n\ mov r15,r1\n\ nop\n\ mov #-8,r15\n\ 0: mov." #bwl " @%2,%0\n\ mov %0,%1\n\ " #oper " %3,%1\n\ mov." #bwl " %1,@%2\n\ 1: mov r1,r15" \ : "=&r" (old), "=&r"(new) \ : rNOSP (mem), rNOSP (value) \ : "r0", "r1", "memory"); \ }) #define __arch_exchange_and_add_8_int(mem, value) \ ({ int32_t __value = (value), __new, __old; \ __arch_operate_old_new_n((mem), __value, __old, __new, b, add); \ __old; }) #define __arch_exchange_and_add_16_int(mem, value) \ ({ int32_t __value = (value), __new, __old; \ __arch_operate_old_new_n((mem), __value, __old, __new, w, add); \ __old; }) #define __arch_exchange_and_add_32_int(mem, value) \ ({ int32_t __value = (value), __new, __old; \ __arch_operate_old_new_n((mem), __value, __old, __new, l, add); \ __old; }) #define __arch_exchange_and_add_64_int(mem, value) \ (abort (), 0) #define atomic_exchange_and_add(mem, value) \ __atomic_val_bysize (__arch_exchange_and_add, int, mem, value) /* Again, another template. We get a slight optimisation when the old value does not need to be returned. Parameters: bwl: b, w or l for 8, 16 and 32 bit versions. oper: The instruction to perform on the old value. */ #define __arch_operate_new_n(mem, value, bwl, oper) \ ({ int32_t __value = (value), __new; \ __asm__ __volatile__ ("\ .align 2\n\ mova 1f,r0\n\ mov r15,r1\n\ mov #-6,r15\n\ 0: mov." #bwl " @%1,%0\n\ " #oper " %2,%0\n\ mov." #bwl " %0,@%1\n\ 1: mov r1,r15" \ : "=&r" (__new) \ : rNOSP (mem), rNOSP (__value) \ : "r0", "r1", "memory"); \ __new; \ }) #define __arch_add_8_int(mem, value) \ __arch_operate_new_n(mem, value, b, add) #define __arch_add_16_int(mem, value) \ __arch_operate_new_n(mem, value, w, add) #define __arch_add_32_int(mem, value) \ __arch_operate_new_n(mem, value, l, add) #define __arch_add_64_int(mem, value) \ (abort (), 0) #define atomic_add(mem, value) \ ((void) __atomic_val_bysize (__arch_add, int, mem, value)) #define __arch_add_negative_8_int(mem, value) \ (__arch_operate_new_n(mem, value, b, add) < 0) #define __arch_add_negative_16_int(mem, value) \ (__arch_operate_new_n(mem, value, w, add) < 0) #define __arch_add_negative_32_int(mem, value) \ (__arch_operate_new_n(mem, value, l, add) < 0) #define __arch_add_negative_64_int(mem, value) \ (abort (), 0) #define atomic_add_negative(mem, value) \ __atomic_bool_bysize (__arch_add_negative, int, mem, value) #define __arch_add_zero_8_int(mem, value) \ (__arch_operate_new_n(mem, value, b, add) == 0) #define __arch_add_zero_16_int(mem, value) \ (__arch_operate_new_n(mem, value, w, add) == 0) #define __arch_add_zero_32_int(mem, value) \ (__arch_operate_new_n(mem, value, l, add) == 0) #define __arch_add_zero_64_int(mem, value) \ (abort (), 0) #define atomic_add_zero(mem, value) \ __atomic_bool_bysize (__arch_add_zero, int, mem, value) #define atomic_increment_and_test(mem) atomic_add_zero((mem), 1) #define atomic_decrement_and_test(mem) atomic_add_zero((mem), -1) #define __arch_bit_set_8_int(mem, value) \ __arch_operate_new_n(mem, 1<<(value), b, or) #define __arch_bit_set_16_int(mem, value) \ __arch_operate_new_n(mem, 1<<(value), w, or) #define __arch_bit_set_32_int(mem, value) \ __arch_operate_new_n(mem, 1<<(value), l, or) #define __arch_bit_set_64_int(mem, value) \ (abort (), 0) #define __arch_add_64_int(mem, value) \ (abort (), 0) #define atomic_bit_set(mem, value) \ ((void) __atomic_val_bysize (__arch_bit_set, int, mem, value)) #define __arch_bit_test_set_8_int(mem, value) \ ({ int32_t __value = 1<<(value), __new, __old; \ __arch_operate_old_new_n((mem), __value, __old, __new, b, or); \ __old & __value; }) #define __arch_bit_test_set_16_int(mem, value) \ ({ int32_t __value = 1<<(value), __new, __old; \ __arch_operate_old_new_n((mem), __value, __old, __new, w, or); \ __old & __value; }) #define __arch_bit_test_set_32_int(mem, value) \ ({ int32_t __value = 1<<(value), __new, __old; \ __arch_operate_old_new_n((mem), __value, __old, __new, l, or); \ __old & __value; }) #define __arch_bit_test_set_64_int(mem, value) \ (abort (), 0) #define atomic_bit_test_set(mem, value) \ __atomic_val_bysize (__arch_bit_test_set, int, mem, value)