/*- * Copyright (c) 1983, 1992, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <features.h> #include <sys/param.h> #include <sys/time.h> #include <sys/gmon.h> #include <sys/gmon_out.h> #include <sys/uio.h> #include <errno.h> #include <stdio.h> #include <fcntl.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <signal.h> #include <sys/time.h> #include <sys/types.h> #ifdef __UCLIBC_PROFILING__ /* Head of basic-block list or NULL. */ struct __bb *__bb_head; struct gmonparam _gmonparam = { state: GMON_PROF_OFF }; /* * See profil(2) where this is described: */ static int s_scale; #define SCALE_1_TO_1 0x10000L #define ERR(s) write (STDERR_FILENO, s, sizeof (s) - 1) void moncontrol __P ((int mode)); static void write_hist __P ((int fd)); static void write_call_graph __P ((int fd)); static void write_bb_counts __P ((int fd)); /* * Control profiling * profiling is what mcount checks to see if * all the data structures are ready. */ void moncontrol (int mode) { struct gmonparam *p = &_gmonparam; /* Don't change the state if we ran into an error. */ if (p->state == GMON_PROF_ERROR) return; if (mode) { /* start */ profil((void *) p->kcount, p->kcountsize, p->lowpc, s_scale); p->state = GMON_PROF_ON; } else { /* stop */ profil(NULL, 0, 0, 0); p->state = GMON_PROF_OFF; } } void monstartup (u_long lowpc, u_long highpc) { register int o; char *cp; struct gmonparam *p = &_gmonparam; /* * round lowpc and highpc to multiples of the density we're using * so the rest of the scaling (here and in gprof) stays in ints. */ p->lowpc = ROUNDDOWN(lowpc, HISTFRACTION * sizeof(HISTCOUNTER)); p->highpc = ROUNDUP(highpc, HISTFRACTION * sizeof(HISTCOUNTER)); p->textsize = p->highpc - p->lowpc; p->kcountsize = p->textsize / HISTFRACTION; p->hashfraction = HASHFRACTION; p->log_hashfraction = -1; /* The following test must be kept in sync with the corresponding test in mcount.c. */ if ((HASHFRACTION & (HASHFRACTION - 1)) == 0) { /* if HASHFRACTION is a power of two, mcount can use shifting instead of integer division. Precompute shift amount. */ p->log_hashfraction = ffs(p->hashfraction * sizeof(*p->froms)) - 1; } p->fromssize = p->textsize / HASHFRACTION; p->tolimit = p->textsize * ARCDENSITY / 100; if (p->tolimit < MINARCS) p->tolimit = MINARCS; else if (p->tolimit > MAXARCS) p->tolimit = MAXARCS; p->tossize = p->tolimit * sizeof(struct tostruct); cp = calloc (p->kcountsize + p->fromssize + p->tossize, 1); if (! cp) { ERR("monstartup: out of memory\n"); p->tos = NULL; p->state = GMON_PROF_ERROR; return; } p->tos = (struct tostruct *)cp; cp += p->tossize; p->kcount = (HISTCOUNTER *)cp; cp += p->kcountsize; p->froms = (ARCINDEX *)cp; p->tos[0].link = 0; o = p->highpc - p->lowpc; if (p->kcountsize < (u_long) o) { #ifndef hp300 s_scale = ((float)p->kcountsize / o ) * SCALE_1_TO_1; #else /* avoid floating point operations */ int quot = o / p->kcountsize; if (quot >= 0x10000) s_scale = 1; else if (quot >= 0x100) s_scale = 0x10000 / quot; else if (o >= 0x800000) s_scale = 0x1000000 / (o / (p->kcountsize >> 8)); else s_scale = 0x1000000 / ((o << 8) / p->kcountsize); #endif } else s_scale = SCALE_1_TO_1; moncontrol(1); } /* Return frequency of ticks reported by profil. */ static int profile_frequency (void) { /* * Discover the tick frequency of the machine if something goes wrong, * we return 0, an impossible hertz. */ struct itimerval tim; tim.it_interval.tv_sec = 0; tim.it_interval.tv_usec = 1; tim.it_value.tv_sec = 0; tim.it_value.tv_usec = 0; setitimer(ITIMER_REAL, &tim, 0); setitimer(ITIMER_REAL, 0, &tim); if (tim.it_interval.tv_usec < 2) return 0; return (1000000 / tim.it_interval.tv_usec); } static void write_hist (int fd) { u_char tag = GMON_TAG_TIME_HIST; struct gmon_hist_hdr thdr __attribute__ ((aligned (__alignof__ (char *)))); if (_gmonparam.kcountsize > 0) { struct iovec iov[3] = { { &tag, sizeof (tag) }, { &thdr, sizeof (struct gmon_hist_hdr) }, { _gmonparam.kcount, _gmonparam.kcountsize } }; *(char **) thdr.low_pc = (char *) _gmonparam.lowpc; *(char **) thdr.high_pc = (char *) _gmonparam.highpc; *(int32_t *) thdr.hist_size = (_gmonparam.kcountsize / sizeof (HISTCOUNTER)); *(int32_t *) thdr.prof_rate = profile_frequency (); strncpy (thdr.dimen, "seconds", sizeof (thdr.dimen)); thdr.dimen_abbrev = 's'; writev (fd, iov, 3); } } static void write_call_graph (int fd) { #define NARCS_PER_WRITEV 32 u_char tag = GMON_TAG_CG_ARC; struct gmon_cg_arc_record raw_arc[NARCS_PER_WRITEV] __attribute__ ((aligned (__alignof__ (char*)))); ARCINDEX from_index, to_index, from_len; u_long frompc; struct iovec iov[2 * NARCS_PER_WRITEV]; int nfilled; for (nfilled = 0; nfilled < NARCS_PER_WRITEV; ++nfilled) { iov[2 * nfilled].iov_base = &tag; iov[2 * nfilled].iov_len = sizeof (tag); iov[2 * nfilled + 1].iov_base = &raw_arc[nfilled]; iov[2 * nfilled + 1].iov_len = sizeof (struct gmon_cg_arc_record); } nfilled = 0; from_len = _gmonparam.fromssize / sizeof (*_gmonparam.froms); for (from_index = 0; from_index < from_len; ++from_index) { if (_gmonparam.froms[from_index] == 0) continue; frompc = _gmonparam.lowpc; frompc += (from_index * _gmonparam.hashfraction * sizeof (*_gmonparam.froms)); for (to_index = _gmonparam.froms[from_index]; to_index != 0; to_index = _gmonparam.tos[to_index].link) { struct arc { char *frompc; char *selfpc; int32_t count; } arc; arc.frompc = (char *) frompc; arc.selfpc = (char *) _gmonparam.tos[to_index].selfpc; arc.count = _gmonparam.tos[to_index].count; memcpy (raw_arc + nfilled, &arc, sizeof (raw_arc [0])); if (++nfilled == NARCS_PER_WRITEV) { writev (fd, iov, 2 * nfilled); nfilled = 0; } } } if (nfilled > 0) writev (fd, iov, 2 * nfilled); } static void write_bb_counts (int fd) { struct __bb *grp; u_char tag = GMON_TAG_BB_COUNT; size_t ncounts; size_t i; struct iovec bbhead[2] = { { &tag, sizeof (tag) }, { &ncounts, sizeof (ncounts) } }; struct iovec bbbody[8]; size_t nfilled; for (i = 0; i < (sizeof (bbbody) / sizeof (bbbody[0])); i += 2) { bbbody[i].iov_len = sizeof (grp->addresses[0]); bbbody[i + 1].iov_len = sizeof (grp->counts[0]); } /* Write each group of basic-block info (all basic-blocks in a compilation unit form a single group). */ for (grp = __bb_head; grp; grp = grp->next) { ncounts = grp->ncounts; writev (fd, bbhead, 2); for (nfilled = i = 0; i < ncounts; ++i) { if (nfilled > (sizeof (bbbody) / sizeof (bbbody[0])) - 2) { writev (fd, bbbody, nfilled); nfilled = 0; } bbbody[nfilled++].iov_base = (char *) &grp->addresses[i]; bbbody[nfilled++].iov_base = &grp->counts[i]; } if (nfilled > 0) writev (fd, bbbody, nfilled); } } static void write_gmon (void) { struct gmon_hdr ghdr __attribute__ ((aligned (__alignof__ (int)))); int fd = -1; char *env; #ifndef O_NOFOLLOW # define O_NOFOLLOW 0 #endif env = getenv ("GMON_OUT_PREFIX"); if (env != NULL #if 0 && !__libc_enable_secure #endif ) { size_t len = strlen (env); char buf[len + 20]; sprintf (buf, "%s.%u", env, getpid ()); fd = open (buf, O_CREAT|O_TRUNC|O_WRONLY|O_NOFOLLOW, 0666); } if (fd == -1) { fd = open ("gmon.out", O_CREAT|O_TRUNC|O_WRONLY|O_NOFOLLOW, 0666); if (fd < 0) { char buf[300]; int errnum = errno; fprintf (stderr, "_mcleanup: gmon.out: %s\n", strerror_r (errnum, buf, sizeof buf)); return; } } /* write gmon.out header: */ memset (&ghdr, '\0', sizeof (struct gmon_hdr)); memcpy (&ghdr.cookie[0], GMON_MAGIC, sizeof (ghdr.cookie)); *(int32_t *) ghdr.version = GMON_VERSION; write (fd, &ghdr, sizeof (struct gmon_hdr)); /* write PC histogram: */ write_hist (fd); /* write call-graph: */ write_call_graph (fd); /* write basic-block execution counts: */ write_bb_counts (fd); close (fd); } void write_profiling (void) { int save = _gmonparam.state; _gmonparam.state = GMON_PROF_OFF; if (save == GMON_PROF_ON) write_gmon (); _gmonparam.state = save; } void _mcleanup (void) { moncontrol (0); if (_gmonparam.state != GMON_PROF_ERROR) write_gmon (); /* free the memory. */ if (_gmonparam.tos != NULL) free (_gmonparam.tos); } #ifndef SIGPROF /* Enable statistical profiling, writing samples of the PC into at most SIZE bytes of SAMPLE_BUFFER; every processor clock tick while profiling is enabled, the system examines the user PC and increments SAMPLE_BUFFER[((PC - OFFSET) / 2) * SCALE / 65536]. If SCALE is zero, disable profiling. Returns zero on success, -1 on error. */ int profil (u_short *sample_buffer, size_t size, size_t offset, u_int scale) { if (scale == 0) /* Disable profiling. */ return 0; __set_errno (ENOSYS); return -1; } #else static u_short *samples; static size_t nsamples; static size_t pc_offset; static u_int pc_scale; static inline void profil_count (void *pc) { size_t i = (pc - pc_offset - (void *) 0) / 2; if (sizeof (unsigned long long int) > sizeof (size_t)) i = (unsigned long long int) i * pc_scale / 65536; else i = i / 65536 * pc_scale + i % 65536 * pc_scale / 65536; if (i < nsamples) ++samples[i]; } /* Get the machine-dependent definition of `profil_counter', the signal handler for SIGPROF. It calls `profil_count' (above) with the PC of the interrupted code. */ #include <bits/profil-counter.h> /* Enable statistical profiling, writing samples of the PC into at most SIZE bytes of SAMPLE_BUFFER; every processor clock tick while profiling is enabled, the system examines the user PC and increments SAMPLE_BUFFER[((PC - OFFSET) / 2) * SCALE / 65536]. If SCALE is zero, disable profiling. Returns zero on success, -1 on error. */ int profil (u_short *sample_buffer, size_t size, size_t offset, u_int scale) { static struct sigaction oact; static struct itimerval otimer; struct sigaction act; struct itimerval timer; if (sample_buffer == NULL) { /* Disable profiling. */ if (samples == NULL) /* Wasn't turned on. */ return 0; if (setitimer (ITIMER_PROF, &otimer, NULL) < 0) return -1; samples = NULL; return sigaction (SIGPROF, &oact, NULL); } if (samples) { /* Was already turned on. Restore old timer and signal handler first. */ if (setitimer (ITIMER_PROF, &otimer, NULL) < 0 || sigaction (SIGPROF, &oact, NULL) < 0) return -1; } samples = sample_buffer; nsamples = size / sizeof *samples; pc_offset = offset; pc_scale = scale; act.sa_handler = (__sighandler_t) &profil_counter; act.sa_flags = SA_RESTART; __sigfillset (&act.sa_mask); if (sigaction (SIGPROF, &act, &oact) < 0) return -1; timer.it_value.tv_sec = 0; timer.it_value.tv_usec = 1; timer.it_interval = timer.it_value; return setitimer (ITIMER_PROF, &timer, &otimer); } #endif /* This file provides the machine-dependent definitions of the _MCOUNT_DECL and MCOUNT macros. */ #include <bits/machine-gmon.h> #include <bits/atomicity.h> /* * mcount is called on entry to each function compiled with the profiling * switch set. _mcount(), which is declared in a machine-dependent way * with _MCOUNT_DECL, does the actual work and is either inlined into a * C routine or called by an assembly stub. In any case, this magic is * taken care of by the MCOUNT definition in <machine/profile.h>. * * _mcount updates data structures that represent traversals of the * program's call graph edges. frompc and selfpc are the return * address and function address that represents the given call graph edge. * * Note: the original BSD code used the same variable (frompcindex) for * both frompcindex and frompc. Any reasonable, modern compiler will * perform this optimization. */ _MCOUNT_DECL(frompc, selfpc) /* _mcount; may be static, inline, etc */ { register ARCINDEX *frompcindex; register struct tostruct *top, *prevtop; register struct gmonparam *p; register ARCINDEX toindex; int i; p = &_gmonparam; /* * check that we are profiling * and that we aren't recursively invoked. */ if (! compare_and_swap (&p->state, GMON_PROF_ON, GMON_PROF_BUSY)) return; /* * check that frompcindex is a reasonable pc value. * for example: signal catchers get called from the stack, * not from text space. too bad. */ frompc -= p->lowpc; if (frompc > p->textsize) goto done; /* The following test used to be if (p->log_hashfraction >= 0) But we can simplify this if we assume the profiling data is always initialized by the functions in gmon.c. But then it is possible to avoid a runtime check and use the smae `if' as in gmon.c. So keep these tests in sync. */ if ((HASHFRACTION & (HASHFRACTION - 1)) == 0) { /* avoid integer divide if possible: */ i = frompc >> p->log_hashfraction; } else { i = frompc / (p->hashfraction * sizeof(*p->froms)); } frompcindex = &p->froms[i]; toindex = *frompcindex; if (toindex == 0) { /* * first time traversing this arc */ toindex = ++p->tos[0].link; if (toindex >= p->tolimit) /* halt further profiling */ goto overflow; *frompcindex = toindex; top = &p->tos[toindex]; top->selfpc = selfpc; top->count = 1; top->link = 0; goto done; } top = &p->tos[toindex]; if (top->selfpc == selfpc) { /* * arc at front of chain; usual case. */ top->count++; goto done; } /* * have to go looking down chain for it. * top points to what we are looking at, * prevtop points to previous top. * we know it is not at the head of the chain. */ for (; /* goto done */; ) { if (top->link == 0) { /* * top is end of the chain and none of the chain * had top->selfpc == selfpc. * so we allocate a new tostruct * and link it to the head of the chain. */ toindex = ++p->tos[0].link; if (toindex >= p->tolimit) goto overflow; top = &p->tos[toindex]; top->selfpc = selfpc; top->count = 1; top->link = *frompcindex; *frompcindex = toindex; goto done; } /* * otherwise, check the next arc on the chain. */ prevtop = top; top = &p->tos[top->link]; if (top->selfpc == selfpc) { /* * there it is. * increment its count * move it to the head of the chain. */ top->count++; toindex = prevtop->link; prevtop->link = top->link; top->link = *frompcindex; *frompcindex = toindex; goto done; } } done: p->state = GMON_PROF_ON; return; overflow: p->state = GMON_PROF_ERROR; return; } /* * Actual definition of mcount function. Defined in <machine/profile.h>, * which is included by <sys/gmon.h>. */ MCOUNT #endif