summaryrefslogtreecommitdiff
path: root/libm/e_exp.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2005-03-06 07:11:53 +0000
committerEric Andersen <andersen@codepoet.org>2005-03-06 07:11:53 +0000
commitc4e44e97f8562254d9da898f6ed7e6cb4d8a3ce4 (patch)
tree6c61f83ac5b94085222b3eda8d731309d61be99b /libm/e_exp.c
parentd4fad9c64ee518be51ecb40662af69b405a49556 (diff)
Trim off whitespace
Diffstat (limited to 'libm/e_exp.c')
-rw-r--r--libm/e_exp.c30
1 files changed, 15 insertions, 15 deletions
diff --git a/libm/e_exp.c b/libm/e_exp.c
index f92910e85..f4d832bbb 100644
--- a/libm/e_exp.c
+++ b/libm/e_exp.c
@@ -5,7 +5,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -22,36 +22,36 @@ static char rcsid[] = "$NetBSD: e_exp.c,v 1.8 1995/05/10 20:45:03 jtc Exp $";
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
- * x = k*ln2 + r, |r| <= 0.5*ln2.
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
*
- * Here r will be represented as r = hi-lo for better
+ * Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
- * We use a special Reme algorithm on [0,0.34658] to generate
- * a polynomial of degree 5 to approximate R. The maximum error
+ * We use a special Reme algorithm on [0,0.34658] to generate
+ * a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
- * | 2.0+P1*z+...+P5*z - R(z) | <= 2
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
- * r*R1(r)
+ * r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
- *
+ *
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
@@ -66,13 +66,13 @@ static char rcsid[] = "$NetBSD: e_exp.c,v 1.8 1995/05/10 20:45:03 jtc Exp $";
* 1 ulp (unit in the last place).
*
* Misc. info.
- * For IEEE double
+ * For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
@@ -128,7 +128,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
if(hx>=0x7ff00000) {
u_int32_t lx;
GET_LOW_WORD(lx,x);
- if(((hx&0xfffff)|lx)!=0)
+ if(((hx&0xfffff)|lx)!=0)
return x+x; /* NaN */
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
}
@@ -137,7 +137,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
}
/* argument reduction */
- if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
@@ -147,7 +147,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
lo = t*ln2LO[0];
}
x = hi - lo;
- }
+ }
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
if(huge+x>one) return one+x;/* trigger inexact */
}
@@ -156,7 +156,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
- if(k==0) return one-((x*c)/(c-2.0)-x);
+ if(k==0) return one-((x*c)/(c-2.0)-x);
else y = one-((lo-(x*c)/(2.0-c))-hi);
if(k >= -1021) {
u_int32_t hy;