diff options
author | Eric Andersen <andersen@codepoet.org> | 2005-03-06 07:11:53 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2005-03-06 07:11:53 +0000 |
commit | c4e44e97f8562254d9da898f6ed7e6cb4d8a3ce4 (patch) | |
tree | 6c61f83ac5b94085222b3eda8d731309d61be99b /libm/e_exp.c | |
parent | d4fad9c64ee518be51ecb40662af69b405a49556 (diff) |
Trim off whitespace
Diffstat (limited to 'libm/e_exp.c')
-rw-r--r-- | libm/e_exp.c | 30 |
1 files changed, 15 insertions, 15 deletions
diff --git a/libm/e_exp.c b/libm/e_exp.c index f92910e85..f4d832bbb 100644 --- a/libm/e_exp.c +++ b/libm/e_exp.c @@ -5,7 +5,7 @@ * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice + * software is freely granted, provided that this notice * is preserved. * ==================================================== */ @@ -22,36 +22,36 @@ static char rcsid[] = "$NetBSD: e_exp.c,v 1.8 1995/05/10 20:45:03 jtc Exp $"; * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * - * x = k*ln2 + r, |r| <= 0.5*ln2. + * x = k*ln2 + r, |r| <= 0.5*ln2. * - * Here r will be represented as r = hi-lo for better + * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... - * We use a special Reme algorithm on [0,0.34658] to generate - * a polynomial of degree 5 to approximate R. The maximum error + * We use a special Reme algorithm on [0,0.34658] to generate + * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 - * | 2.0+P1*z+...+P5*z - R(z) | <= 2 + * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ------- * R - r - * r*R1(r) + * r*R1(r) * = 1 + r + ----------- (for better accuracy) * 2 - R1(r) * where * 2 4 10 * R1(r) = r - (P1*r + P2*r + ... + P5*r ). - * + * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) @@ -66,13 +66,13 @@ static char rcsid[] = "$NetBSD: e_exp.c,v 1.8 1995/05/10 20:45:03 jtc Exp $"; * 1 ulp (unit in the last place). * * Misc. info. - * For IEEE double + * For IEEE double * if x > 7.09782712893383973096e+02 then exp(x) overflow * if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ @@ -128,7 +128,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ if(hx>=0x7ff00000) { u_int32_t lx; GET_LOW_WORD(lx,x); - if(((hx&0xfffff)|lx)!=0) + if(((hx&0xfffff)|lx)!=0) return x+x; /* NaN */ else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ } @@ -137,7 +137,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ } /* argument reduction */ - if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ + if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; } else { @@ -147,7 +147,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ lo = t*ln2LO[0]; } x = hi - lo; - } + } else if(hx < 0x3e300000) { /* when |x|<2**-28 */ if(huge+x>one) return one+x;/* trigger inexact */ } @@ -156,7 +156,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ /* x is now in primary range */ t = x*x; c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); - if(k==0) return one-((x*c)/(c-2.0)-x); + if(k==0) return one-((x*c)/(c-2.0)-x); else y = one-((lo-(x*c)/(2.0-c))-hi); if(k >= -1021) { u_int32_t hy; |