From a8428de05cd6ad86dba8444de78a64294d4ddb5e Mon Sep 17 00:00:00 2001 From: Waldemar Brodkorb Date: Sat, 2 May 2015 15:24:16 -0500 Subject: update kernel versions, add separate modules-.mk files to abstract patch name changes --- target/linux/patches/3.18.12/realtime.patch | 36330 ++++++++++++++++++++++++++ 1 file changed, 36330 insertions(+) create mode 100644 target/linux/patches/3.18.12/realtime.patch (limited to 'target/linux/patches/3.18.12/realtime.patch') diff --git a/target/linux/patches/3.18.12/realtime.patch b/target/linux/patches/3.18.12/realtime.patch new file mode 100644 index 000000000..e91381e07 --- /dev/null +++ b/target/linux/patches/3.18.12/realtime.patch @@ -0,0 +1,36330 @@ +diff -Nur linux-3.18.12.orig/arch/alpha/mm/fault.c linux-3.18.12/arch/alpha/mm/fault.c +--- linux-3.18.12.orig/arch/alpha/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/alpha/mm/fault.c 2015-04-26 13:32:22.351684003 -0500 +@@ -107,7 +107,7 @@ + + /* If we're in an interrupt context, or have no user context, + we must not take the fault. */ +- if (!mm || in_atomic()) ++ if (!mm || pagefault_disabled()) + goto no_context; + + #ifdef CONFIG_ALPHA_LARGE_VMALLOC +diff -Nur linux-3.18.12.orig/arch/arm/include/asm/cmpxchg.h linux-3.18.12/arch/arm/include/asm/cmpxchg.h +--- linux-3.18.12.orig/arch/arm/include/asm/cmpxchg.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/include/asm/cmpxchg.h 2015-04-26 13:32:22.351684003 -0500 +@@ -129,6 +129,8 @@ + + #else /* min ARCH >= ARMv6 */ + ++#define __HAVE_ARCH_CMPXCHG 1 ++ + extern void __bad_cmpxchg(volatile void *ptr, int size); + + /* +diff -Nur linux-3.18.12.orig/arch/arm/include/asm/futex.h linux-3.18.12/arch/arm/include/asm/futex.h +--- linux-3.18.12.orig/arch/arm/include/asm/futex.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/include/asm/futex.h 2015-04-26 13:32:22.351684003 -0500 +@@ -93,6 +93,8 @@ + if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))) + return -EFAULT; + ++ preempt_disable_rt(); ++ + __asm__ __volatile__("@futex_atomic_cmpxchg_inatomic\n" + "1: " TUSER(ldr) " %1, [%4]\n" + " teq %1, %2\n" +@@ -104,6 +106,8 @@ + : "cc", "memory"); + + *uval = val; ++ ++ preempt_enable_rt(); + return ret; + } + +diff -Nur linux-3.18.12.orig/arch/arm/include/asm/switch_to.h linux-3.18.12/arch/arm/include/asm/switch_to.h +--- linux-3.18.12.orig/arch/arm/include/asm/switch_to.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/include/asm/switch_to.h 2015-04-26 13:32:22.355684003 -0500 +@@ -3,6 +3,13 @@ + + #include + ++#if defined CONFIG_PREEMPT_RT_FULL && defined CONFIG_HIGHMEM ++void switch_kmaps(struct task_struct *prev_p, struct task_struct *next_p); ++#else ++static inline void ++switch_kmaps(struct task_struct *prev_p, struct task_struct *next_p) { } ++#endif ++ + /* + * For v7 SMP cores running a preemptible kernel we may be pre-empted + * during a TLB maintenance operation, so execute an inner-shareable dsb +@@ -22,6 +29,7 @@ + + #define switch_to(prev,next,last) \ + do { \ ++ switch_kmaps(prev, next); \ + last = __switch_to(prev,task_thread_info(prev), task_thread_info(next)); \ + } while (0) + +diff -Nur linux-3.18.12.orig/arch/arm/include/asm/thread_info.h linux-3.18.12/arch/arm/include/asm/thread_info.h +--- linux-3.18.12.orig/arch/arm/include/asm/thread_info.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/include/asm/thread_info.h 2015-04-26 13:32:22.355684003 -0500 +@@ -51,6 +51,7 @@ + struct thread_info { + unsigned long flags; /* low level flags */ + int preempt_count; /* 0 => preemptable, <0 => bug */ ++ int preempt_lazy_count; /* 0 => preemptable, <0 => bug */ + mm_segment_t addr_limit; /* address limit */ + struct task_struct *task; /* main task structure */ + struct exec_domain *exec_domain; /* execution domain */ +@@ -149,6 +150,7 @@ + #define TIF_SIGPENDING 0 + #define TIF_NEED_RESCHED 1 + #define TIF_NOTIFY_RESUME 2 /* callback before returning to user */ ++#define TIF_NEED_RESCHED_LAZY 3 + #define TIF_UPROBE 7 + #define TIF_SYSCALL_TRACE 8 + #define TIF_SYSCALL_AUDIT 9 +@@ -162,6 +164,7 @@ + #define _TIF_SIGPENDING (1 << TIF_SIGPENDING) + #define _TIF_NEED_RESCHED (1 << TIF_NEED_RESCHED) + #define _TIF_NOTIFY_RESUME (1 << TIF_NOTIFY_RESUME) ++#define _TIF_NEED_RESCHED_LAZY (1 << TIF_NEED_RESCHED_LAZY) + #define _TIF_UPROBE (1 << TIF_UPROBE) + #define _TIF_SYSCALL_TRACE (1 << TIF_SYSCALL_TRACE) + #define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT) +diff -Nur linux-3.18.12.orig/arch/arm/Kconfig linux-3.18.12/arch/arm/Kconfig +--- linux-3.18.12.orig/arch/arm/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/Kconfig 2015-04-26 13:32:22.351684003 -0500 +@@ -62,6 +62,7 @@ + select HAVE_PERF_EVENTS + select HAVE_PERF_REGS + select HAVE_PERF_USER_STACK_DUMP ++ select HAVE_PREEMPT_LAZY + select HAVE_RCU_TABLE_FREE if (SMP && ARM_LPAE) + select HAVE_REGS_AND_STACK_ACCESS_API + select HAVE_SYSCALL_TRACEPOINTS +diff -Nur linux-3.18.12.orig/arch/arm/kernel/asm-offsets.c linux-3.18.12/arch/arm/kernel/asm-offsets.c +--- linux-3.18.12.orig/arch/arm/kernel/asm-offsets.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/kernel/asm-offsets.c 2015-04-26 13:32:22.355684003 -0500 +@@ -64,6 +64,7 @@ + BLANK(); + DEFINE(TI_FLAGS, offsetof(struct thread_info, flags)); + DEFINE(TI_PREEMPT, offsetof(struct thread_info, preempt_count)); ++ DEFINE(TI_PREEMPT_LAZY, offsetof(struct thread_info, preempt_lazy_count)); + DEFINE(TI_ADDR_LIMIT, offsetof(struct thread_info, addr_limit)); + DEFINE(TI_TASK, offsetof(struct thread_info, task)); + DEFINE(TI_EXEC_DOMAIN, offsetof(struct thread_info, exec_domain)); +diff -Nur linux-3.18.12.orig/arch/arm/kernel/entry-armv.S linux-3.18.12/arch/arm/kernel/entry-armv.S +--- linux-3.18.12.orig/arch/arm/kernel/entry-armv.S 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/kernel/entry-armv.S 2015-04-26 13:32:22.355684003 -0500 +@@ -207,11 +207,18 @@ + #ifdef CONFIG_PREEMPT + get_thread_info tsk + ldr r8, [tsk, #TI_PREEMPT] @ get preempt count +- ldr r0, [tsk, #TI_FLAGS] @ get flags + teq r8, #0 @ if preempt count != 0 ++ bne 1f @ return from exeption ++ ldr r0, [tsk, #TI_FLAGS] @ get flags ++ tst r0, #_TIF_NEED_RESCHED @ if NEED_RESCHED is set ++ blne svc_preempt @ preempt! ++ ++ ldr r8, [tsk, #TI_PREEMPT_LAZY] @ get preempt lazy count ++ teq r8, #0 @ if preempt lazy count != 0 + movne r0, #0 @ force flags to 0 +- tst r0, #_TIF_NEED_RESCHED ++ tst r0, #_TIF_NEED_RESCHED_LAZY + blne svc_preempt ++1: + #endif + + svc_exit r5, irq = 1 @ return from exception +@@ -226,6 +233,8 @@ + 1: bl preempt_schedule_irq @ irq en/disable is done inside + ldr r0, [tsk, #TI_FLAGS] @ get new tasks TI_FLAGS + tst r0, #_TIF_NEED_RESCHED ++ bne 1b ++ tst r0, #_TIF_NEED_RESCHED_LAZY + reteq r8 @ go again + b 1b + #endif +diff -Nur linux-3.18.12.orig/arch/arm/kernel/process.c linux-3.18.12/arch/arm/kernel/process.c +--- linux-3.18.12.orig/arch/arm/kernel/process.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/kernel/process.c 2015-04-26 13:32:22.355684003 -0500 +@@ -431,6 +431,30 @@ + } + + #ifdef CONFIG_MMU ++/* ++ * CONFIG_SPLIT_PTLOCK_CPUS results in a page->ptl lock. If the lock is not ++ * initialized by pgtable_page_ctor() then a coredump of the vector page will ++ * fail. ++ */ ++static int __init vectors_user_mapping_init_page(void) ++{ ++ struct page *page; ++ unsigned long addr = 0xffff0000; ++ pgd_t *pgd; ++ pud_t *pud; ++ pmd_t *pmd; ++ ++ pgd = pgd_offset_k(addr); ++ pud = pud_offset(pgd, addr); ++ pmd = pmd_offset(pud, addr); ++ page = pmd_page(*(pmd)); ++ ++ pgtable_page_ctor(page); ++ ++ return 0; ++} ++late_initcall(vectors_user_mapping_init_page); ++ + #ifdef CONFIG_KUSER_HELPERS + /* + * The vectors page is always readable from user space for the +diff -Nur linux-3.18.12.orig/arch/arm/kernel/signal.c linux-3.18.12/arch/arm/kernel/signal.c +--- linux-3.18.12.orig/arch/arm/kernel/signal.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/kernel/signal.c 2015-04-26 13:32:22.359684003 -0500 +@@ -574,7 +574,8 @@ + do_work_pending(struct pt_regs *regs, unsigned int thread_flags, int syscall) + { + do { +- if (likely(thread_flags & _TIF_NEED_RESCHED)) { ++ if (likely(thread_flags & (_TIF_NEED_RESCHED | ++ _TIF_NEED_RESCHED_LAZY))) { + schedule(); + } else { + if (unlikely(!user_mode(regs))) +diff -Nur linux-3.18.12.orig/arch/arm/kernel/unwind.c linux-3.18.12/arch/arm/kernel/unwind.c +--- linux-3.18.12.orig/arch/arm/kernel/unwind.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/kernel/unwind.c 2015-04-26 13:32:22.359684003 -0500 +@@ -93,7 +93,7 @@ + static const struct unwind_idx *__origin_unwind_idx; + extern const struct unwind_idx __stop_unwind_idx[]; + +-static DEFINE_SPINLOCK(unwind_lock); ++static DEFINE_RAW_SPINLOCK(unwind_lock); + static LIST_HEAD(unwind_tables); + + /* Convert a prel31 symbol to an absolute address */ +@@ -201,7 +201,7 @@ + /* module unwind tables */ + struct unwind_table *table; + +- spin_lock_irqsave(&unwind_lock, flags); ++ raw_spin_lock_irqsave(&unwind_lock, flags); + list_for_each_entry(table, &unwind_tables, list) { + if (addr >= table->begin_addr && + addr < table->end_addr) { +@@ -213,7 +213,7 @@ + break; + } + } +- spin_unlock_irqrestore(&unwind_lock, flags); ++ raw_spin_unlock_irqrestore(&unwind_lock, flags); + } + + pr_debug("%s: idx = %p\n", __func__, idx); +@@ -530,9 +530,9 @@ + tab->begin_addr = text_addr; + tab->end_addr = text_addr + text_size; + +- spin_lock_irqsave(&unwind_lock, flags); ++ raw_spin_lock_irqsave(&unwind_lock, flags); + list_add_tail(&tab->list, &unwind_tables); +- spin_unlock_irqrestore(&unwind_lock, flags); ++ raw_spin_unlock_irqrestore(&unwind_lock, flags); + + return tab; + } +@@ -544,9 +544,9 @@ + if (!tab) + return; + +- spin_lock_irqsave(&unwind_lock, flags); ++ raw_spin_lock_irqsave(&unwind_lock, flags); + list_del(&tab->list); +- spin_unlock_irqrestore(&unwind_lock, flags); ++ raw_spin_unlock_irqrestore(&unwind_lock, flags); + + kfree(tab); + } +diff -Nur linux-3.18.12.orig/arch/arm/kvm/arm.c linux-3.18.12/arch/arm/kvm/arm.c +--- linux-3.18.12.orig/arch/arm/kvm/arm.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/kvm/arm.c 2015-04-26 13:32:22.359684003 -0500 +@@ -441,9 +441,9 @@ + + static void vcpu_pause(struct kvm_vcpu *vcpu) + { +- wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu); ++ struct swait_head *wq = kvm_arch_vcpu_wq(vcpu); + +- wait_event_interruptible(*wq, !vcpu->arch.pause); ++ swait_event_interruptible(*wq, !vcpu->arch.pause); + } + + static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) +diff -Nur linux-3.18.12.orig/arch/arm/kvm/psci.c linux-3.18.12/arch/arm/kvm/psci.c +--- linux-3.18.12.orig/arch/arm/kvm/psci.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/kvm/psci.c 2015-04-26 13:32:22.359684003 -0500 +@@ -66,7 +66,7 @@ + { + struct kvm *kvm = source_vcpu->kvm; + struct kvm_vcpu *vcpu = NULL, *tmp; +- wait_queue_head_t *wq; ++ struct swait_head *wq; + unsigned long cpu_id; + unsigned long context_id; + unsigned long mpidr; +@@ -123,7 +123,7 @@ + smp_mb(); /* Make sure the above is visible */ + + wq = kvm_arch_vcpu_wq(vcpu); +- wake_up_interruptible(wq); ++ swait_wake_interruptible(wq); + + return PSCI_RET_SUCCESS; + } +diff -Nur linux-3.18.12.orig/arch/arm/mach-at91/at91rm9200_time.c linux-3.18.12/arch/arm/mach-at91/at91rm9200_time.c +--- linux-3.18.12.orig/arch/arm/mach-at91/at91rm9200_time.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mach-at91/at91rm9200_time.c 2015-04-26 13:32:22.359684003 -0500 +@@ -135,6 +135,7 @@ + break; + case CLOCK_EVT_MODE_SHUTDOWN: + case CLOCK_EVT_MODE_UNUSED: ++ remove_irq(NR_IRQS_LEGACY + AT91_ID_SYS, &at91rm9200_timer_irq); + case CLOCK_EVT_MODE_RESUME: + irqmask = 0; + break; +diff -Nur linux-3.18.12.orig/arch/arm/mach-exynos/platsmp.c linux-3.18.12/arch/arm/mach-exynos/platsmp.c +--- linux-3.18.12.orig/arch/arm/mach-exynos/platsmp.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mach-exynos/platsmp.c 2015-04-26 13:32:22.359684003 -0500 +@@ -137,7 +137,7 @@ + return (void __iomem *)(S5P_VA_SCU); + } + +-static DEFINE_SPINLOCK(boot_lock); ++static DEFINE_RAW_SPINLOCK(boot_lock); + + static void exynos_secondary_init(unsigned int cpu) + { +@@ -150,8 +150,8 @@ + /* + * Synchronise with the boot thread. + */ +- spin_lock(&boot_lock); +- spin_unlock(&boot_lock); ++ raw_spin_lock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + } + + static int exynos_boot_secondary(unsigned int cpu, struct task_struct *idle) +@@ -165,7 +165,7 @@ + * Set synchronisation state between this boot processor + * and the secondary one + */ +- spin_lock(&boot_lock); ++ raw_spin_lock(&boot_lock); + + /* + * The secondary processor is waiting to be released from +@@ -192,7 +192,7 @@ + + if (timeout == 0) { + printk(KERN_ERR "cpu1 power enable failed"); +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + return -ETIMEDOUT; + } + } +@@ -242,7 +242,7 @@ + * calibrations, then wait for it to finish + */ + fail: +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + + return pen_release != -1 ? ret : 0; + } +diff -Nur linux-3.18.12.orig/arch/arm/mach-hisi/platmcpm.c linux-3.18.12/arch/arm/mach-hisi/platmcpm.c +--- linux-3.18.12.orig/arch/arm/mach-hisi/platmcpm.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mach-hisi/platmcpm.c 2015-04-26 13:32:22.363684003 -0500 +@@ -57,7 +57,7 @@ + + static void __iomem *sysctrl, *fabric; + static int hip04_cpu_table[HIP04_MAX_CLUSTERS][HIP04_MAX_CPUS_PER_CLUSTER]; +-static DEFINE_SPINLOCK(boot_lock); ++static DEFINE_RAW_SPINLOCK(boot_lock); + static u32 fabric_phys_addr; + /* + * [0]: bootwrapper physical address +@@ -104,7 +104,7 @@ + if (cluster >= HIP04_MAX_CLUSTERS || cpu >= HIP04_MAX_CPUS_PER_CLUSTER) + return -EINVAL; + +- spin_lock_irq(&boot_lock); ++ raw_spin_lock_irq(&boot_lock); + + if (hip04_cpu_table[cluster][cpu]) + goto out; +@@ -133,7 +133,7 @@ + udelay(20); + out: + hip04_cpu_table[cluster][cpu]++; +- spin_unlock_irq(&boot_lock); ++ raw_spin_unlock_irq(&boot_lock); + + return 0; + } +@@ -149,7 +149,7 @@ + + __mcpm_cpu_going_down(cpu, cluster); + +- spin_lock(&boot_lock); ++ raw_spin_lock(&boot_lock); + BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP); + hip04_cpu_table[cluster][cpu]--; + if (hip04_cpu_table[cluster][cpu] == 1) { +@@ -162,7 +162,7 @@ + + last_man = hip04_cluster_is_down(cluster); + if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) { +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + /* Since it's Cortex A15, disable L2 prefetching. */ + asm volatile( + "mcr p15, 1, %0, c15, c0, 3 \n\t" +@@ -173,7 +173,7 @@ + hip04_set_snoop_filter(cluster, 0); + __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); + } else { +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + v7_exit_coherency_flush(louis); + } + +@@ -192,7 +192,7 @@ + cpu >= HIP04_MAX_CPUS_PER_CLUSTER); + + count = TIMEOUT_MSEC / POLL_MSEC; +- spin_lock_irq(&boot_lock); ++ raw_spin_lock_irq(&boot_lock); + for (tries = 0; tries < count; tries++) { + if (hip04_cpu_table[cluster][cpu]) { + ret = -EBUSY; +@@ -202,10 +202,10 @@ + data = readl_relaxed(sysctrl + SC_CPU_RESET_STATUS(cluster)); + if (data & CORE_WFI_STATUS(cpu)) + break; +- spin_unlock_irq(&boot_lock); ++ raw_spin_unlock_irq(&boot_lock); + /* Wait for clean L2 when the whole cluster is down. */ + msleep(POLL_MSEC); +- spin_lock_irq(&boot_lock); ++ raw_spin_lock_irq(&boot_lock); + } + if (tries >= count) + goto err; +@@ -220,10 +220,10 @@ + } + if (tries >= count) + goto err; +- spin_unlock_irq(&boot_lock); ++ raw_spin_unlock_irq(&boot_lock); + return 0; + err: +- spin_unlock_irq(&boot_lock); ++ raw_spin_unlock_irq(&boot_lock); + return ret; + } + +@@ -235,10 +235,10 @@ + cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); + cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); + +- spin_lock(&boot_lock); ++ raw_spin_lock(&boot_lock); + if (!hip04_cpu_table[cluster][cpu]) + hip04_cpu_table[cluster][cpu] = 1; +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + } + + static void __naked hip04_mcpm_power_up_setup(unsigned int affinity_level) +diff -Nur linux-3.18.12.orig/arch/arm/mach-omap2/omap-smp.c linux-3.18.12/arch/arm/mach-omap2/omap-smp.c +--- linux-3.18.12.orig/arch/arm/mach-omap2/omap-smp.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mach-omap2/omap-smp.c 2015-04-26 13:32:22.363684003 -0500 +@@ -43,7 +43,7 @@ + /* SCU base address */ + static void __iomem *scu_base; + +-static DEFINE_SPINLOCK(boot_lock); ++static DEFINE_RAW_SPINLOCK(boot_lock); + + void __iomem *omap4_get_scu_base(void) + { +@@ -74,8 +74,8 @@ + /* + * Synchronise with the boot thread. + */ +- spin_lock(&boot_lock); +- spin_unlock(&boot_lock); ++ raw_spin_lock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + } + + static int omap4_boot_secondary(unsigned int cpu, struct task_struct *idle) +@@ -89,7 +89,7 @@ + * Set synchronisation state between this boot processor + * and the secondary one + */ +- spin_lock(&boot_lock); ++ raw_spin_lock(&boot_lock); + + /* + * Update the AuxCoreBoot0 with boot state for secondary core. +@@ -166,7 +166,7 @@ + * Now the secondary core is starting up let it run its + * calibrations, then wait for it to finish + */ +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + + return 0; + } +diff -Nur linux-3.18.12.orig/arch/arm/mach-prima2/platsmp.c linux-3.18.12/arch/arm/mach-prima2/platsmp.c +--- linux-3.18.12.orig/arch/arm/mach-prima2/platsmp.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mach-prima2/platsmp.c 2015-04-26 13:32:22.363684003 -0500 +@@ -23,7 +23,7 @@ + static void __iomem *scu_base; + static void __iomem *rsc_base; + +-static DEFINE_SPINLOCK(boot_lock); ++static DEFINE_RAW_SPINLOCK(boot_lock); + + static struct map_desc scu_io_desc __initdata = { + .length = SZ_4K, +@@ -56,8 +56,8 @@ + /* + * Synchronise with the boot thread. + */ +- spin_lock(&boot_lock); +- spin_unlock(&boot_lock); ++ raw_spin_lock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + } + + static struct of_device_id rsc_ids[] = { +@@ -95,7 +95,7 @@ + /* make sure write buffer is drained */ + mb(); + +- spin_lock(&boot_lock); ++ raw_spin_lock(&boot_lock); + + /* + * The secondary processor is waiting to be released from +@@ -127,7 +127,7 @@ + * now the secondary core is starting up let it run its + * calibrations, then wait for it to finish + */ +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + + return pen_release != -1 ? -ENOSYS : 0; + } +diff -Nur linux-3.18.12.orig/arch/arm/mach-qcom/platsmp.c linux-3.18.12/arch/arm/mach-qcom/platsmp.c +--- linux-3.18.12.orig/arch/arm/mach-qcom/platsmp.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mach-qcom/platsmp.c 2015-04-26 13:32:22.363684003 -0500 +@@ -46,7 +46,7 @@ + + extern void secondary_startup(void); + +-static DEFINE_SPINLOCK(boot_lock); ++static DEFINE_RAW_SPINLOCK(boot_lock); + + #ifdef CONFIG_HOTPLUG_CPU + static void __ref qcom_cpu_die(unsigned int cpu) +@@ -60,8 +60,8 @@ + /* + * Synchronise with the boot thread. + */ +- spin_lock(&boot_lock); +- spin_unlock(&boot_lock); ++ raw_spin_lock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + } + + static int scss_release_secondary(unsigned int cpu) +@@ -284,7 +284,7 @@ + * set synchronisation state between this boot processor + * and the secondary one + */ +- spin_lock(&boot_lock); ++ raw_spin_lock(&boot_lock); + + /* + * Send the secondary CPU a soft interrupt, thereby causing +@@ -297,7 +297,7 @@ + * now the secondary core is starting up let it run its + * calibrations, then wait for it to finish + */ +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + + return ret; + } +diff -Nur linux-3.18.12.orig/arch/arm/mach-spear/platsmp.c linux-3.18.12/arch/arm/mach-spear/platsmp.c +--- linux-3.18.12.orig/arch/arm/mach-spear/platsmp.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mach-spear/platsmp.c 2015-04-26 13:32:22.363684003 -0500 +@@ -32,7 +32,7 @@ + sync_cache_w(&pen_release); + } + +-static DEFINE_SPINLOCK(boot_lock); ++static DEFINE_RAW_SPINLOCK(boot_lock); + + static void __iomem *scu_base = IOMEM(VA_SCU_BASE); + +@@ -47,8 +47,8 @@ + /* + * Synchronise with the boot thread. + */ +- spin_lock(&boot_lock); +- spin_unlock(&boot_lock); ++ raw_spin_lock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + } + + static int spear13xx_boot_secondary(unsigned int cpu, struct task_struct *idle) +@@ -59,7 +59,7 @@ + * set synchronisation state between this boot processor + * and the secondary one + */ +- spin_lock(&boot_lock); ++ raw_spin_lock(&boot_lock); + + /* + * The secondary processor is waiting to be released from +@@ -84,7 +84,7 @@ + * now the secondary core is starting up let it run its + * calibrations, then wait for it to finish + */ +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + + return pen_release != -1 ? -ENOSYS : 0; + } +diff -Nur linux-3.18.12.orig/arch/arm/mach-sti/platsmp.c linux-3.18.12/arch/arm/mach-sti/platsmp.c +--- linux-3.18.12.orig/arch/arm/mach-sti/platsmp.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mach-sti/platsmp.c 2015-04-26 13:32:22.363684003 -0500 +@@ -34,7 +34,7 @@ + sync_cache_w(&pen_release); + } + +-static DEFINE_SPINLOCK(boot_lock); ++static DEFINE_RAW_SPINLOCK(boot_lock); + + static void sti_secondary_init(unsigned int cpu) + { +@@ -49,8 +49,8 @@ + /* + * Synchronise with the boot thread. + */ +- spin_lock(&boot_lock); +- spin_unlock(&boot_lock); ++ raw_spin_lock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + } + + static int sti_boot_secondary(unsigned int cpu, struct task_struct *idle) +@@ -61,7 +61,7 @@ + * set synchronisation state between this boot processor + * and the secondary one + */ +- spin_lock(&boot_lock); ++ raw_spin_lock(&boot_lock); + + /* + * The secondary processor is waiting to be released from +@@ -92,7 +92,7 @@ + * now the secondary core is starting up let it run its + * calibrations, then wait for it to finish + */ +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + + return pen_release != -1 ? -ENOSYS : 0; + } +diff -Nur linux-3.18.12.orig/arch/arm/mach-ux500/platsmp.c linux-3.18.12/arch/arm/mach-ux500/platsmp.c +--- linux-3.18.12.orig/arch/arm/mach-ux500/platsmp.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mach-ux500/platsmp.c 2015-04-26 13:32:22.363684003 -0500 +@@ -51,7 +51,7 @@ + return NULL; + } + +-static DEFINE_SPINLOCK(boot_lock); ++static DEFINE_RAW_SPINLOCK(boot_lock); + + static void ux500_secondary_init(unsigned int cpu) + { +@@ -64,8 +64,8 @@ + /* + * Synchronise with the boot thread. + */ +- spin_lock(&boot_lock); +- spin_unlock(&boot_lock); ++ raw_spin_lock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + } + + static int ux500_boot_secondary(unsigned int cpu, struct task_struct *idle) +@@ -76,7 +76,7 @@ + * set synchronisation state between this boot processor + * and the secondary one + */ +- spin_lock(&boot_lock); ++ raw_spin_lock(&boot_lock); + + /* + * The secondary processor is waiting to be released from +@@ -97,7 +97,7 @@ + * now the secondary core is starting up let it run its + * calibrations, then wait for it to finish + */ +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + + return pen_release != -1 ? -ENOSYS : 0; + } +diff -Nur linux-3.18.12.orig/arch/arm/mm/fault.c linux-3.18.12/arch/arm/mm/fault.c +--- linux-3.18.12.orig/arch/arm/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -277,7 +277,7 @@ + * If we're in an interrupt or have no user + * context, we must not take the fault.. + */ +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto no_context; + + if (user_mode(regs)) +@@ -431,6 +431,9 @@ + if (addr < TASK_SIZE) + return do_page_fault(addr, fsr, regs); + ++ if (interrupts_enabled(regs)) ++ local_irq_enable(); ++ + if (user_mode(regs)) + goto bad_area; + +@@ -498,6 +501,9 @@ + static int + do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) + { ++ if (interrupts_enabled(regs)) ++ local_irq_enable(); ++ + do_bad_area(addr, fsr, regs); + return 0; + } +diff -Nur linux-3.18.12.orig/arch/arm/mm/highmem.c linux-3.18.12/arch/arm/mm/highmem.c +--- linux-3.18.12.orig/arch/arm/mm/highmem.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/mm/highmem.c 2015-04-26 13:32:22.367684003 -0500 +@@ -53,6 +53,7 @@ + + void *kmap_atomic(struct page *page) + { ++ pte_t pte = mk_pte(page, kmap_prot); + unsigned int idx; + unsigned long vaddr; + void *kmap; +@@ -91,7 +92,10 @@ + * in place, so the contained TLB flush ensures the TLB is updated + * with the new mapping. + */ +- set_fixmap_pte(idx, mk_pte(page, kmap_prot)); ++#ifdef CONFIG_PREEMPT_RT_FULL ++ current->kmap_pte[type] = pte; ++#endif ++ set_fixmap_pte(idx, pte); + + return (void *)vaddr; + } +@@ -108,12 +112,15 @@ + + if (cache_is_vivt()) + __cpuc_flush_dcache_area((void *)vaddr, PAGE_SIZE); ++#ifdef CONFIG_PREEMPT_RT_FULL ++ current->kmap_pte[type] = __pte(0); ++#endif + #ifdef CONFIG_DEBUG_HIGHMEM + BUG_ON(vaddr != __fix_to_virt(idx)); +- set_fixmap_pte(idx, __pte(0)); + #else + (void) idx; /* to kill a warning */ + #endif ++ set_fixmap_pte(idx, __pte(0)); + kmap_atomic_idx_pop(); + } else if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) { + /* this address was obtained through kmap_high_get() */ +@@ -125,6 +132,7 @@ + + void *kmap_atomic_pfn(unsigned long pfn) + { ++ pte_t pte = pfn_pte(pfn, kmap_prot); + unsigned long vaddr; + int idx, type; + struct page *page = pfn_to_page(pfn); +@@ -139,7 +147,10 @@ + #ifdef CONFIG_DEBUG_HIGHMEM + BUG_ON(!pte_none(*(fixmap_page_table + idx))); + #endif +- set_fixmap_pte(idx, pfn_pte(pfn, kmap_prot)); ++#ifdef CONFIG_PREEMPT_RT_FULL ++ current->kmap_pte[type] = pte; ++#endif ++ set_fixmap_pte(idx, pte); + + return (void *)vaddr; + } +@@ -153,3 +164,28 @@ + + return pte_page(get_fixmap_pte(vaddr)); + } ++ ++#if defined CONFIG_PREEMPT_RT_FULL ++void switch_kmaps(struct task_struct *prev_p, struct task_struct *next_p) ++{ ++ int i; ++ ++ /* ++ * Clear @prev's kmap_atomic mappings ++ */ ++ for (i = 0; i < prev_p->kmap_idx; i++) { ++ int idx = i + KM_TYPE_NR * smp_processor_id(); ++ ++ set_fixmap_pte(idx, __pte(0)); ++ } ++ /* ++ * Restore @next_p's kmap_atomic mappings ++ */ ++ for (i = 0; i < next_p->kmap_idx; i++) { ++ int idx = i + KM_TYPE_NR * smp_processor_id(); ++ ++ if (!pte_none(next_p->kmap_pte[i])) ++ set_fixmap_pte(idx, next_p->kmap_pte[i]); ++ } ++} ++#endif +diff -Nur linux-3.18.12.orig/arch/arm/plat-versatile/platsmp.c linux-3.18.12/arch/arm/plat-versatile/platsmp.c +--- linux-3.18.12.orig/arch/arm/plat-versatile/platsmp.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/arm/plat-versatile/platsmp.c 2015-04-26 13:32:22.367684003 -0500 +@@ -30,7 +30,7 @@ + sync_cache_w(&pen_release); + } + +-static DEFINE_SPINLOCK(boot_lock); ++static DEFINE_RAW_SPINLOCK(boot_lock); + + void versatile_secondary_init(unsigned int cpu) + { +@@ -43,8 +43,8 @@ + /* + * Synchronise with the boot thread. + */ +- spin_lock(&boot_lock); +- spin_unlock(&boot_lock); ++ raw_spin_lock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + } + + int versatile_boot_secondary(unsigned int cpu, struct task_struct *idle) +@@ -55,7 +55,7 @@ + * Set synchronisation state between this boot processor + * and the secondary one + */ +- spin_lock(&boot_lock); ++ raw_spin_lock(&boot_lock); + + /* + * This is really belt and braces; we hold unintended secondary +@@ -85,7 +85,7 @@ + * now the secondary core is starting up let it run its + * calibrations, then wait for it to finish + */ +- spin_unlock(&boot_lock); ++ raw_spin_unlock(&boot_lock); + + return pen_release != -1 ? -ENOSYS : 0; + } +diff -Nur linux-3.18.12.orig/arch/avr32/mm/fault.c linux-3.18.12/arch/avr32/mm/fault.c +--- linux-3.18.12.orig/arch/avr32/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/avr32/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -81,7 +81,7 @@ + * If we're in an interrupt or have no user context, we must + * not take the fault... + */ +- if (in_atomic() || !mm || regs->sr & SYSREG_BIT(GM)) ++ if (!mm || regs->sr & SYSREG_BIT(GM) || pagefault_disabled()) + goto no_context; + + local_irq_enable(); +diff -Nur linux-3.18.12.orig/arch/cris/mm/fault.c linux-3.18.12/arch/cris/mm/fault.c +--- linux-3.18.12.orig/arch/cris/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/cris/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -113,7 +113,7 @@ + * user context, we must not take the fault. + */ + +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto no_context; + + if (user_mode(regs)) +diff -Nur linux-3.18.12.orig/arch/frv/mm/fault.c linux-3.18.12/arch/frv/mm/fault.c +--- linux-3.18.12.orig/arch/frv/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/frv/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -78,7 +78,7 @@ + * If we're in an interrupt or have no user + * context, we must not take the fault.. + */ +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto no_context; + + if (user_mode(__frame)) +diff -Nur linux-3.18.12.orig/arch/ia64/mm/fault.c linux-3.18.12/arch/ia64/mm/fault.c +--- linux-3.18.12.orig/arch/ia64/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/ia64/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -96,7 +96,7 @@ + /* + * If we're in an interrupt or have no user context, we must not take the fault.. + */ +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto no_context; + + #ifdef CONFIG_VIRTUAL_MEM_MAP +diff -Nur linux-3.18.12.orig/arch/Kconfig linux-3.18.12/arch/Kconfig +--- linux-3.18.12.orig/arch/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/Kconfig 2015-04-26 13:32:22.351684003 -0500 +@@ -6,6 +6,7 @@ + tristate "OProfile system profiling" + depends on PROFILING + depends on HAVE_OPROFILE ++ depends on !PREEMPT_RT_FULL + select RING_BUFFER + select RING_BUFFER_ALLOW_SWAP + help +diff -Nur linux-3.18.12.orig/arch/m32r/mm/fault.c linux-3.18.12/arch/m32r/mm/fault.c +--- linux-3.18.12.orig/arch/m32r/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/m32r/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -114,7 +114,7 @@ + * If we're in an interrupt or have no user context or are running in an + * atomic region then we must not take the fault.. + */ +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto bad_area_nosemaphore; + + if (error_code & ACE_USERMODE) +diff -Nur linux-3.18.12.orig/arch/m68k/mm/fault.c linux-3.18.12/arch/m68k/mm/fault.c +--- linux-3.18.12.orig/arch/m68k/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/m68k/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -81,7 +81,7 @@ + * If we're in an interrupt or have no user + * context, we must not take the fault.. + */ +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto no_context; + + if (user_mode(regs)) +diff -Nur linux-3.18.12.orig/arch/microblaze/mm/fault.c linux-3.18.12/arch/microblaze/mm/fault.c +--- linux-3.18.12.orig/arch/microblaze/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/microblaze/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -107,7 +107,7 @@ + if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11) + is_write = 0; + +- if (unlikely(in_atomic() || !mm)) { ++ if (unlikely(!mm || pagefault_disabled())) { + if (kernel_mode(regs)) + goto bad_area_nosemaphore; + +diff -Nur linux-3.18.12.orig/arch/mips/Kconfig linux-3.18.12/arch/mips/Kconfig +--- linux-3.18.12.orig/arch/mips/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/mips/Kconfig 2015-04-26 13:32:22.367684003 -0500 +@@ -2196,7 +2196,7 @@ + # + config HIGHMEM + bool "High Memory Support" +- depends on 32BIT && CPU_SUPPORTS_HIGHMEM && SYS_SUPPORTS_HIGHMEM && !CPU_MIPS32_3_5_EVA ++ depends on 32BIT && CPU_SUPPORTS_HIGHMEM && SYS_SUPPORTS_HIGHMEM && !CPU_MIPS32_3_5_EVA && !PREEMPT_RT_FULL + + config CPU_SUPPORTS_HIGHMEM + bool +diff -Nur linux-3.18.12.orig/arch/mips/kernel/signal.c linux-3.18.12/arch/mips/kernel/signal.c +--- linux-3.18.12.orig/arch/mips/kernel/signal.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/mips/kernel/signal.c 2015-04-26 13:32:22.367684003 -0500 +@@ -613,6 +613,7 @@ + __u32 thread_info_flags) + { + local_irq_enable(); ++ preempt_check_resched(); + + user_exit(); + +diff -Nur linux-3.18.12.orig/arch/mips/mm/fault.c linux-3.18.12/arch/mips/mm/fault.c +--- linux-3.18.12.orig/arch/mips/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/mips/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -89,7 +89,7 @@ + * If we're in an interrupt or have no user + * context, we must not take the fault.. + */ +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto bad_area_nosemaphore; + + if (user_mode(regs)) +diff -Nur linux-3.18.12.orig/arch/mips/mm/init.c linux-3.18.12/arch/mips/mm/init.c +--- linux-3.18.12.orig/arch/mips/mm/init.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/mips/mm/init.c 2015-04-26 13:32:22.367684003 -0500 +@@ -90,7 +90,7 @@ + + BUG_ON(Page_dcache_dirty(page)); + +- pagefault_disable(); ++ raw_pagefault_disable(); + idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1); + idx += in_interrupt() ? FIX_N_COLOURS : 0; + vaddr = __fix_to_virt(FIX_CMAP_END - idx); +@@ -146,7 +146,7 @@ + tlbw_use_hazard(); + write_c0_entryhi(old_ctx); + local_irq_restore(flags); +- pagefault_enable(); ++ raw_pagefault_enable(); + } + + void copy_user_highpage(struct page *to, struct page *from, +diff -Nur linux-3.18.12.orig/arch/mn10300/mm/fault.c linux-3.18.12/arch/mn10300/mm/fault.c +--- linux-3.18.12.orig/arch/mn10300/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/mn10300/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -168,7 +168,7 @@ + * If we're in an interrupt or have no user + * context, we must not take the fault.. + */ +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto no_context; + + if ((fault_code & MMUFCR_xFC_ACCESS) == MMUFCR_xFC_ACCESS_USR) +diff -Nur linux-3.18.12.orig/arch/parisc/mm/fault.c linux-3.18.12/arch/parisc/mm/fault.c +--- linux-3.18.12.orig/arch/parisc/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/parisc/mm/fault.c 2015-04-26 13:32:22.367684003 -0500 +@@ -207,7 +207,7 @@ + int fault; + unsigned int flags; + +- if (in_atomic()) ++ if (pagefault_disabled()) + goto no_context; + + tsk = current; +diff -Nur linux-3.18.12.orig/arch/powerpc/include/asm/kvm_host.h linux-3.18.12/arch/powerpc/include/asm/kvm_host.h +--- linux-3.18.12.orig/arch/powerpc/include/asm/kvm_host.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/powerpc/include/asm/kvm_host.h 2015-04-26 13:32:22.367684003 -0500 +@@ -296,7 +296,7 @@ + u8 in_guest; + struct list_head runnable_threads; + spinlock_t lock; +- wait_queue_head_t wq; ++ struct swait_head wq; + u64 stolen_tb; + u64 preempt_tb; + struct kvm_vcpu *runner; +@@ -618,7 +618,7 @@ + u8 prodded; + u32 last_inst; + +- wait_queue_head_t *wqp; ++ struct swait_head *wqp; + struct kvmppc_vcore *vcore; + int ret; + int trap; +diff -Nur linux-3.18.12.orig/arch/powerpc/include/asm/thread_info.h linux-3.18.12/arch/powerpc/include/asm/thread_info.h +--- linux-3.18.12.orig/arch/powerpc/include/asm/thread_info.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/powerpc/include/asm/thread_info.h 2015-04-26 13:32:22.367684003 -0500 +@@ -43,6 +43,8 @@ + int cpu; /* cpu we're on */ + int preempt_count; /* 0 => preemptable, + <0 => BUG */ ++ int preempt_lazy_count; /* 0 => preemptable, ++ <0 => BUG */ + struct restart_block restart_block; + unsigned long local_flags; /* private flags for thread */ + +@@ -88,8 +90,7 @@ + #define TIF_SYSCALL_TRACE 0 /* syscall trace active */ + #define TIF_SIGPENDING 1 /* signal pending */ + #define TIF_NEED_RESCHED 2 /* rescheduling necessary */ +-#define TIF_POLLING_NRFLAG 3 /* true if poll_idle() is polling +- TIF_NEED_RESCHED */ ++#define TIF_NEED_RESCHED_LAZY 3 /* lazy rescheduling necessary */ + #define TIF_32BIT 4 /* 32 bit binary */ + #define TIF_RESTORE_TM 5 /* need to restore TM FP/VEC/VSX */ + #define TIF_SYSCALL_AUDIT 7 /* syscall auditing active */ +@@ -107,6 +108,8 @@ + #if defined(CONFIG_PPC64) + #define TIF_ELF2ABI 18 /* function descriptors must die! */ + #endif ++#define TIF_POLLING_NRFLAG 19 /* true if poll_idle() is polling ++ TIF_NEED_RESCHED */ + + /* as above, but as bit values */ + #define _TIF_SYSCALL_TRACE (1<flags) + set_bits(irqtp->flags, &curtp->flags); + } ++#endif + + irq_hw_number_t virq_to_hw(unsigned int virq) + { +diff -Nur linux-3.18.12.orig/arch/powerpc/kernel/misc_32.S linux-3.18.12/arch/powerpc/kernel/misc_32.S +--- linux-3.18.12.orig/arch/powerpc/kernel/misc_32.S 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/powerpc/kernel/misc_32.S 2015-04-26 13:32:22.371684003 -0500 +@@ -40,6 +40,7 @@ + * We store the saved ksp_limit in the unused part + * of the STACK_FRAME_OVERHEAD + */ ++#ifndef CONFIG_PREEMPT_RT_FULL + _GLOBAL(call_do_softirq) + mflr r0 + stw r0,4(r1) +@@ -56,6 +57,7 @@ + stw r10,THREAD+KSP_LIMIT(r2) + mtlr r0 + blr ++#endif + + /* + * void call_do_irq(struct pt_regs *regs, struct thread_info *irqtp); +diff -Nur linux-3.18.12.orig/arch/powerpc/kernel/misc_64.S linux-3.18.12/arch/powerpc/kernel/misc_64.S +--- linux-3.18.12.orig/arch/powerpc/kernel/misc_64.S 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/powerpc/kernel/misc_64.S 2015-04-26 13:32:22.371684003 -0500 +@@ -29,6 +29,7 @@ + + .text + ++#ifndef CONFIG_PREEMPT_RT_FULL + _GLOBAL(call_do_softirq) + mflr r0 + std r0,16(r1) +@@ -39,6 +40,7 @@ + ld r0,16(r1) + mtlr r0 + blr ++#endif + + _GLOBAL(call_do_irq) + mflr r0 +diff -Nur linux-3.18.12.orig/arch/powerpc/kernel/time.c linux-3.18.12/arch/powerpc/kernel/time.c +--- linux-3.18.12.orig/arch/powerpc/kernel/time.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/powerpc/kernel/time.c 2015-04-26 13:32:22.371684003 -0500 +@@ -424,7 +424,7 @@ + EXPORT_SYMBOL(profile_pc); + #endif + +-#ifdef CONFIG_IRQ_WORK ++#if defined(CONFIG_IRQ_WORK) + + /* + * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... +diff -Nur linux-3.18.12.orig/arch/powerpc/kvm/book3s_hv.c linux-3.18.12/arch/powerpc/kvm/book3s_hv.c +--- linux-3.18.12.orig/arch/powerpc/kvm/book3s_hv.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/powerpc/kvm/book3s_hv.c 2015-04-26 13:32:22.371684003 -0500 +@@ -84,11 +84,11 @@ + { + int me; + int cpu = vcpu->cpu; +- wait_queue_head_t *wqp; ++ struct swait_head *wqp; + + wqp = kvm_arch_vcpu_wq(vcpu); +- if (waitqueue_active(wqp)) { +- wake_up_interruptible(wqp); ++ if (swaitqueue_active(wqp)) { ++ swait_wake_interruptible(wqp); + ++vcpu->stat.halt_wakeup; + } + +@@ -639,8 +639,8 @@ + tvcpu->arch.prodded = 1; + smp_mb(); + if (vcpu->arch.ceded) { +- if (waitqueue_active(&vcpu->wq)) { +- wake_up_interruptible(&vcpu->wq); ++ if (swaitqueue_active(&vcpu->wq)) { ++ swait_wake_interruptible(&vcpu->wq); + vcpu->stat.halt_wakeup++; + } + } +@@ -1357,7 +1357,7 @@ + + INIT_LIST_HEAD(&vcore->runnable_threads); + spin_lock_init(&vcore->lock); +- init_waitqueue_head(&vcore->wq); ++ init_swait_head(&vcore->wq); + vcore->preempt_tb = TB_NIL; + vcore->lpcr = kvm->arch.lpcr; + vcore->first_vcpuid = core * threads_per_subcore; +@@ -1826,13 +1826,13 @@ + */ + static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) + { +- DEFINE_WAIT(wait); ++ DEFINE_SWAITER(wait); + +- prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); ++ swait_prepare(&vc->wq, &wait, TASK_INTERRUPTIBLE); + vc->vcore_state = VCORE_SLEEPING; + spin_unlock(&vc->lock); + schedule(); +- finish_wait(&vc->wq, &wait); ++ swait_finish(&vc->wq, &wait); + spin_lock(&vc->lock); + vc->vcore_state = VCORE_INACTIVE; + } +@@ -1873,7 +1873,7 @@ + kvmppc_create_dtl_entry(vcpu, vc); + kvmppc_start_thread(vcpu); + } else if (vc->vcore_state == VCORE_SLEEPING) { +- wake_up(&vc->wq); ++ swait_wake(&vc->wq); + } + + } +diff -Nur linux-3.18.12.orig/arch/powerpc/mm/fault.c linux-3.18.12/arch/powerpc/mm/fault.c +--- linux-3.18.12.orig/arch/powerpc/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/powerpc/mm/fault.c 2015-04-26 13:32:22.371684003 -0500 +@@ -273,7 +273,7 @@ + if (!arch_irq_disabled_regs(regs)) + local_irq_enable(); + +- if (in_atomic() || mm == NULL) { ++ if (in_atomic() || mm == NULL || pagefault_disabled()) { + if (!user_mode(regs)) { + rc = SIGSEGV; + goto bail; +diff -Nur linux-3.18.12.orig/arch/s390/include/asm/kvm_host.h linux-3.18.12/arch/s390/include/asm/kvm_host.h +--- linux-3.18.12.orig/arch/s390/include/asm/kvm_host.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/s390/include/asm/kvm_host.h 2015-04-26 13:32:22.371684003 -0500 +@@ -311,7 +311,7 @@ + struct list_head list; + atomic_t active; + struct kvm_s390_float_interrupt *float_int; +- wait_queue_head_t *wq; ++ struct swait_head *wq; + atomic_t *cpuflags; + unsigned int action_bits; + }; +diff -Nur linux-3.18.12.orig/arch/s390/kvm/interrupt.c linux-3.18.12/arch/s390/kvm/interrupt.c +--- linux-3.18.12.orig/arch/s390/kvm/interrupt.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/s390/kvm/interrupt.c 2015-04-26 13:32:22.371684003 -0500 +@@ -619,13 +619,13 @@ + + void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) + { +- if (waitqueue_active(&vcpu->wq)) { ++ if (swaitqueue_active(&vcpu->wq)) { + /* + * The vcpu gave up the cpu voluntarily, mark it as a good + * yield-candidate. + */ + vcpu->preempted = true; +- wake_up_interruptible(&vcpu->wq); ++ swait_wake_interruptible(&vcpu->wq); + vcpu->stat.halt_wakeup++; + } + } +@@ -746,7 +746,7 @@ + spin_lock(&li->lock); + list_add(&inti->list, &li->list); + atomic_set(&li->active, 1); +- BUG_ON(waitqueue_active(li->wq)); ++ BUG_ON(swaitqueue_active(li->wq)); + spin_unlock(&li->lock); + return 0; + } +@@ -771,7 +771,7 @@ + spin_lock(&li->lock); + list_add(&inti->list, &li->list); + atomic_set(&li->active, 1); +- BUG_ON(waitqueue_active(li->wq)); ++ BUG_ON(swaitqueue_active(li->wq)); + spin_unlock(&li->lock); + return 0; + } +diff -Nur linux-3.18.12.orig/arch/s390/mm/fault.c linux-3.18.12/arch/s390/mm/fault.c +--- linux-3.18.12.orig/arch/s390/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/s390/mm/fault.c 2015-04-26 13:32:22.371684003 -0500 +@@ -435,7 +435,8 @@ + * user context. + */ + fault = VM_FAULT_BADCONTEXT; +- if (unlikely(!user_space_fault(regs) || in_atomic() || !mm)) ++ if (unlikely(!user_space_fault(regs) || !mm || ++ tsk->pagefault_disabled)) + goto out; + + address = trans_exc_code & __FAIL_ADDR_MASK; +diff -Nur linux-3.18.12.orig/arch/score/mm/fault.c linux-3.18.12/arch/score/mm/fault.c +--- linux-3.18.12.orig/arch/score/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/score/mm/fault.c 2015-04-26 13:32:22.371684003 -0500 +@@ -73,7 +73,7 @@ + * If we're in an interrupt or have no user + * context, we must not take the fault.. + */ +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto bad_area_nosemaphore; + + if (user_mode(regs)) +diff -Nur linux-3.18.12.orig/arch/sh/kernel/irq.c linux-3.18.12/arch/sh/kernel/irq.c +--- linux-3.18.12.orig/arch/sh/kernel/irq.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/sh/kernel/irq.c 2015-04-26 13:32:22.371684003 -0500 +@@ -149,6 +149,7 @@ + hardirq_ctx[cpu] = NULL; + } + ++#ifndef CONFIG_PREEMPT_RT_FULL + void do_softirq_own_stack(void) + { + struct thread_info *curctx; +@@ -176,6 +177,7 @@ + "r5", "r6", "r7", "r8", "r9", "r15", "t", "pr" + ); + } ++#endif + #else + static inline void handle_one_irq(unsigned int irq) + { +diff -Nur linux-3.18.12.orig/arch/sh/mm/fault.c linux-3.18.12/arch/sh/mm/fault.c +--- linux-3.18.12.orig/arch/sh/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/sh/mm/fault.c 2015-04-26 13:32:22.371684003 -0500 +@@ -440,7 +440,7 @@ + * If we're in an interrupt, have no user context or are running + * in an atomic region then we must not take the fault: + */ +- if (unlikely(in_atomic() || !mm)) { ++ if (unlikely(!mm || pagefault_disabled())) { + bad_area_nosemaphore(regs, error_code, address); + return; + } +diff -Nur linux-3.18.12.orig/arch/sparc/Kconfig linux-3.18.12/arch/sparc/Kconfig +--- linux-3.18.12.orig/arch/sparc/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/sparc/Kconfig 2015-04-26 13:32:22.371684003 -0500 +@@ -182,12 +182,10 @@ + source kernel/Kconfig.hz + + config RWSEM_GENERIC_SPINLOCK +- bool +- default y if SPARC32 ++ def_bool PREEMPT_RT_FULL + + config RWSEM_XCHGADD_ALGORITHM +- bool +- default y if SPARC64 ++ def_bool !RWSEM_GENERIC_SPINLOCK && !PREEMPT_RT_FULL + + config GENERIC_HWEIGHT + bool +@@ -528,6 +526,10 @@ + + source "fs/Kconfig.binfmt" + ++config EARLY_PRINTK ++ bool ++ default y ++ + config COMPAT + bool + depends on SPARC64 +diff -Nur linux-3.18.12.orig/arch/sparc/kernel/irq_64.c linux-3.18.12/arch/sparc/kernel/irq_64.c +--- linux-3.18.12.orig/arch/sparc/kernel/irq_64.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/sparc/kernel/irq_64.c 2015-04-26 13:32:22.375684003 -0500 +@@ -849,6 +849,7 @@ + set_irq_regs(old_regs); + } + ++#ifndef CONFIG_PREEMPT_RT_FULL + void do_softirq_own_stack(void) + { + void *orig_sp, *sp = softirq_stack[smp_processor_id()]; +@@ -863,6 +864,7 @@ + __asm__ __volatile__("mov %0, %%sp" + : : "r" (orig_sp)); + } ++#endif + + #ifdef CONFIG_HOTPLUG_CPU + void fixup_irqs(void) +diff -Nur linux-3.18.12.orig/arch/sparc/kernel/setup_32.c linux-3.18.12/arch/sparc/kernel/setup_32.c +--- linux-3.18.12.orig/arch/sparc/kernel/setup_32.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/sparc/kernel/setup_32.c 2015-04-26 13:32:22.375684003 -0500 +@@ -309,6 +309,7 @@ + + boot_flags_init(*cmdline_p); + ++ early_console = &prom_early_console; + register_console(&prom_early_console); + + printk("ARCH: "); +diff -Nur linux-3.18.12.orig/arch/sparc/kernel/setup_64.c linux-3.18.12/arch/sparc/kernel/setup_64.c +--- linux-3.18.12.orig/arch/sparc/kernel/setup_64.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/sparc/kernel/setup_64.c 2015-04-26 13:32:22.375684003 -0500 +@@ -563,6 +563,12 @@ + pause_patch(); + } + ++static inline void register_prom_console(void) ++{ ++ early_console = &prom_early_console; ++ register_console(&prom_early_console); ++} ++ + void __init setup_arch(char **cmdline_p) + { + /* Initialize PROM console and command line. */ +@@ -574,7 +580,7 @@ + #ifdef CONFIG_EARLYFB + if (btext_find_display()) + #endif +- register_console(&prom_early_console); ++ register_prom_console(); + + if (tlb_type == hypervisor) + printk("ARCH: SUN4V\n"); +diff -Nur linux-3.18.12.orig/arch/sparc/mm/fault_32.c linux-3.18.12/arch/sparc/mm/fault_32.c +--- linux-3.18.12.orig/arch/sparc/mm/fault_32.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/sparc/mm/fault_32.c 2015-04-26 13:32:22.375684003 -0500 +@@ -196,7 +196,7 @@ + * If we're in an interrupt or have no user + * context, we must not take the fault.. + */ +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto no_context; + + perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); +diff -Nur linux-3.18.12.orig/arch/sparc/mm/fault_64.c linux-3.18.12/arch/sparc/mm/fault_64.c +--- linux-3.18.12.orig/arch/sparc/mm/fault_64.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/sparc/mm/fault_64.c 2015-04-26 13:32:22.375684003 -0500 +@@ -330,7 +330,7 @@ + * If we're in an interrupt or have no user + * context, we must not take the fault.. + */ +- if (in_atomic() || !mm) ++ if (!mm || pagefault_disabled()) + goto intr_or_no_mm; + + perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); +diff -Nur linux-3.18.12.orig/arch/tile/mm/fault.c linux-3.18.12/arch/tile/mm/fault.c +--- linux-3.18.12.orig/arch/tile/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/tile/mm/fault.c 2015-04-26 13:32:22.375684003 -0500 +@@ -357,7 +357,7 @@ + * If we're in an interrupt, have no user context or are running in an + * atomic region then we must not take the fault. + */ +- if (in_atomic() || !mm) { ++ if (!mm || pagefault_disabled()) { + vma = NULL; /* happy compiler */ + goto bad_area_nosemaphore; + } +diff -Nur linux-3.18.12.orig/arch/um/kernel/trap.c linux-3.18.12/arch/um/kernel/trap.c +--- linux-3.18.12.orig/arch/um/kernel/trap.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/um/kernel/trap.c 2015-04-26 13:32:22.375684003 -0500 +@@ -38,7 +38,7 @@ + * If the fault was during atomic operation, don't take the fault, just + * fail. + */ +- if (in_atomic()) ++ if (pagefault_disabled()) + goto out_nosemaphore; + + if (is_user) +diff -Nur linux-3.18.12.orig/arch/x86/crypto/aesni-intel_glue.c linux-3.18.12/arch/x86/crypto/aesni-intel_glue.c +--- linux-3.18.12.orig/arch/x86/crypto/aesni-intel_glue.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/crypto/aesni-intel_glue.c 2015-04-26 13:32:22.375684003 -0500 +@@ -381,14 +381,14 @@ + err = blkcipher_walk_virt(desc, &walk); + desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; + +- kernel_fpu_begin(); + while ((nbytes = walk.nbytes)) { ++ kernel_fpu_begin(); + aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, +- nbytes & AES_BLOCK_MASK); ++ nbytes & AES_BLOCK_MASK); ++ kernel_fpu_end(); + nbytes &= AES_BLOCK_SIZE - 1; + err = blkcipher_walk_done(desc, &walk, nbytes); + } +- kernel_fpu_end(); + + return err; + } +@@ -405,14 +405,14 @@ + err = blkcipher_walk_virt(desc, &walk); + desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; + +- kernel_fpu_begin(); + while ((nbytes = walk.nbytes)) { ++ kernel_fpu_begin(); + aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, + nbytes & AES_BLOCK_MASK); ++ kernel_fpu_end(); + nbytes &= AES_BLOCK_SIZE - 1; + err = blkcipher_walk_done(desc, &walk, nbytes); + } +- kernel_fpu_end(); + + return err; + } +@@ -429,14 +429,14 @@ + err = blkcipher_walk_virt(desc, &walk); + desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; + +- kernel_fpu_begin(); + while ((nbytes = walk.nbytes)) { ++ kernel_fpu_begin(); + aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, + nbytes & AES_BLOCK_MASK, walk.iv); ++ kernel_fpu_end(); + nbytes &= AES_BLOCK_SIZE - 1; + err = blkcipher_walk_done(desc, &walk, nbytes); + } +- kernel_fpu_end(); + + return err; + } +@@ -453,14 +453,14 @@ + err = blkcipher_walk_virt(desc, &walk); + desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; + +- kernel_fpu_begin(); + while ((nbytes = walk.nbytes)) { ++ kernel_fpu_begin(); + aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, + nbytes & AES_BLOCK_MASK, walk.iv); ++ kernel_fpu_end(); + nbytes &= AES_BLOCK_SIZE - 1; + err = blkcipher_walk_done(desc, &walk, nbytes); + } +- kernel_fpu_end(); + + return err; + } +@@ -512,18 +512,20 @@ + err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE); + desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; + +- kernel_fpu_begin(); + while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { ++ kernel_fpu_begin(); + aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr, + nbytes & AES_BLOCK_MASK, walk.iv); ++ kernel_fpu_end(); + nbytes &= AES_BLOCK_SIZE - 1; + err = blkcipher_walk_done(desc, &walk, nbytes); + } + if (walk.nbytes) { ++ kernel_fpu_begin(); + ctr_crypt_final(ctx, &walk); ++ kernel_fpu_end(); + err = blkcipher_walk_done(desc, &walk, 0); + } +- kernel_fpu_end(); + + return err; + } +diff -Nur linux-3.18.12.orig/arch/x86/crypto/cast5_avx_glue.c linux-3.18.12/arch/x86/crypto/cast5_avx_glue.c +--- linux-3.18.12.orig/arch/x86/crypto/cast5_avx_glue.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/crypto/cast5_avx_glue.c 2015-04-26 13:32:22.375684003 -0500 +@@ -60,7 +60,7 @@ + static int ecb_crypt(struct blkcipher_desc *desc, struct blkcipher_walk *walk, + bool enc) + { +- bool fpu_enabled = false; ++ bool fpu_enabled; + struct cast5_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); + const unsigned int bsize = CAST5_BLOCK_SIZE; + unsigned int nbytes; +@@ -76,7 +76,7 @@ + u8 *wsrc = walk->src.virt.addr; + u8 *wdst = walk->dst.virt.addr; + +- fpu_enabled = cast5_fpu_begin(fpu_enabled, nbytes); ++ fpu_enabled = cast5_fpu_begin(false, nbytes); + + /* Process multi-block batch */ + if (nbytes >= bsize * CAST5_PARALLEL_BLOCKS) { +@@ -104,10 +104,9 @@ + } while (nbytes >= bsize); + + done: ++ cast5_fpu_end(fpu_enabled); + err = blkcipher_walk_done(desc, walk, nbytes); + } +- +- cast5_fpu_end(fpu_enabled); + return err; + } + +@@ -228,7 +227,7 @@ + static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, + struct scatterlist *src, unsigned int nbytes) + { +- bool fpu_enabled = false; ++ bool fpu_enabled; + struct blkcipher_walk walk; + int err; + +@@ -237,12 +236,11 @@ + desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; + + while ((nbytes = walk.nbytes)) { +- fpu_enabled = cast5_fpu_begin(fpu_enabled, nbytes); ++ fpu_enabled = cast5_fpu_begin(false, nbytes); + nbytes = __cbc_decrypt(desc, &walk); ++ cast5_fpu_end(fpu_enabled); + err = blkcipher_walk_done(desc, &walk, nbytes); + } +- +- cast5_fpu_end(fpu_enabled); + return err; + } + +@@ -312,7 +310,7 @@ + static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst, + struct scatterlist *src, unsigned int nbytes) + { +- bool fpu_enabled = false; ++ bool fpu_enabled; + struct blkcipher_walk walk; + int err; + +@@ -321,13 +319,12 @@ + desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; + + while ((nbytes = walk.nbytes) >= CAST5_BLOCK_SIZE) { +- fpu_enabled = cast5_fpu_begin(fpu_enabled, nbytes); ++ fpu_enabled = cast5_fpu_begin(false, nbytes); + nbytes = __ctr_crypt(desc, &walk); ++ cast5_fpu_end(fpu_enabled); + err = blkcipher_walk_done(desc, &walk, nbytes); + } + +- cast5_fpu_end(fpu_enabled); +- + if (walk.nbytes) { + ctr_crypt_final(desc, &walk); + err = blkcipher_walk_done(desc, &walk, 0); +diff -Nur linux-3.18.12.orig/arch/x86/crypto/glue_helper.c linux-3.18.12/arch/x86/crypto/glue_helper.c +--- linux-3.18.12.orig/arch/x86/crypto/glue_helper.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/crypto/glue_helper.c 2015-04-26 13:32:22.375684003 -0500 +@@ -39,7 +39,7 @@ + void *ctx = crypto_blkcipher_ctx(desc->tfm); + const unsigned int bsize = 128 / 8; + unsigned int nbytes, i, func_bytes; +- bool fpu_enabled = false; ++ bool fpu_enabled; + int err; + + err = blkcipher_walk_virt(desc, walk); +@@ -49,7 +49,7 @@ + u8 *wdst = walk->dst.virt.addr; + + fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit, +- desc, fpu_enabled, nbytes); ++ desc, false, nbytes); + + for (i = 0; i < gctx->num_funcs; i++) { + func_bytes = bsize * gctx->funcs[i].num_blocks; +@@ -71,10 +71,10 @@ + } + + done: ++ glue_fpu_end(fpu_enabled); + err = blkcipher_walk_done(desc, walk, nbytes); + } + +- glue_fpu_end(fpu_enabled); + return err; + } + +@@ -194,7 +194,7 @@ + struct scatterlist *src, unsigned int nbytes) + { + const unsigned int bsize = 128 / 8; +- bool fpu_enabled = false; ++ bool fpu_enabled; + struct blkcipher_walk walk; + int err; + +@@ -203,12 +203,12 @@ + + while ((nbytes = walk.nbytes)) { + fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit, +- desc, fpu_enabled, nbytes); ++ desc, false, nbytes); + nbytes = __glue_cbc_decrypt_128bit(gctx, desc, &walk); ++ glue_fpu_end(fpu_enabled); + err = blkcipher_walk_done(desc, &walk, nbytes); + } + +- glue_fpu_end(fpu_enabled); + return err; + } + EXPORT_SYMBOL_GPL(glue_cbc_decrypt_128bit); +@@ -278,7 +278,7 @@ + struct scatterlist *src, unsigned int nbytes) + { + const unsigned int bsize = 128 / 8; +- bool fpu_enabled = false; ++ bool fpu_enabled; + struct blkcipher_walk walk; + int err; + +@@ -287,13 +287,12 @@ + + while ((nbytes = walk.nbytes) >= bsize) { + fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit, +- desc, fpu_enabled, nbytes); ++ desc, false, nbytes); + nbytes = __glue_ctr_crypt_128bit(gctx, desc, &walk); ++ glue_fpu_end(fpu_enabled); + err = blkcipher_walk_done(desc, &walk, nbytes); + } + +- glue_fpu_end(fpu_enabled); +- + if (walk.nbytes) { + glue_ctr_crypt_final_128bit( + gctx->funcs[gctx->num_funcs - 1].fn_u.ctr, desc, &walk); +@@ -348,7 +347,7 @@ + void *tweak_ctx, void *crypt_ctx) + { + const unsigned int bsize = 128 / 8; +- bool fpu_enabled = false; ++ bool fpu_enabled; + struct blkcipher_walk walk; + int err; + +@@ -361,21 +360,21 @@ + + /* set minimum length to bsize, for tweak_fn */ + fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit, +- desc, fpu_enabled, ++ desc, false, + nbytes < bsize ? bsize : nbytes); +- + /* calculate first value of T */ + tweak_fn(tweak_ctx, walk.iv, walk.iv); ++ glue_fpu_end(fpu_enabled); + + while (nbytes) { ++ fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit, ++ desc, false, nbytes); + nbytes = __glue_xts_crypt_128bit(gctx, crypt_ctx, desc, &walk); + ++ glue_fpu_end(fpu_enabled); + err = blkcipher_walk_done(desc, &walk, nbytes); + nbytes = walk.nbytes; + } +- +- glue_fpu_end(fpu_enabled); +- + return err; + } + EXPORT_SYMBOL_GPL(glue_xts_crypt_128bit); +diff -Nur linux-3.18.12.orig/arch/x86/include/asm/preempt.h linux-3.18.12/arch/x86/include/asm/preempt.h +--- linux-3.18.12.orig/arch/x86/include/asm/preempt.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/include/asm/preempt.h 2015-04-26 13:32:22.375684003 -0500 +@@ -85,17 +85,33 @@ + * a decrement which hits zero means we have no preempt_count and should + * reschedule. + */ +-static __always_inline bool __preempt_count_dec_and_test(void) ++static __always_inline bool ____preempt_count_dec_and_test(void) + { + GEN_UNARY_RMWcc("decl", __preempt_count, __percpu_arg(0), "e"); + } + ++static __always_inline bool __preempt_count_dec_and_test(void) ++{ ++ if (____preempt_count_dec_and_test()) ++ return true; ++#ifdef CONFIG_PREEMPT_LAZY ++ return test_thread_flag(TIF_NEED_RESCHED_LAZY); ++#else ++ return false; ++#endif ++} ++ + /* + * Returns true when we need to resched and can (barring IRQ state). + */ + static __always_inline bool should_resched(void) + { ++#ifdef CONFIG_PREEMPT_LAZY ++ return unlikely(!raw_cpu_read_4(__preempt_count) || \ ++ test_thread_flag(TIF_NEED_RESCHED_LAZY)); ++#else + return unlikely(!raw_cpu_read_4(__preempt_count)); ++#endif + } + + #ifdef CONFIG_PREEMPT +diff -Nur linux-3.18.12.orig/arch/x86/include/asm/signal.h linux-3.18.12/arch/x86/include/asm/signal.h +--- linux-3.18.12.orig/arch/x86/include/asm/signal.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/include/asm/signal.h 2015-04-26 13:32:22.375684003 -0500 +@@ -23,6 +23,19 @@ + unsigned long sig[_NSIG_WORDS]; + } sigset_t; + ++/* ++ * Because some traps use the IST stack, we must keep preemption ++ * disabled while calling do_trap(), but do_trap() may call ++ * force_sig_info() which will grab the signal spin_locks for the ++ * task, which in PREEMPT_RT_FULL are mutexes. By defining ++ * ARCH_RT_DELAYS_SIGNAL_SEND the force_sig_info() will set ++ * TIF_NOTIFY_RESUME and set up the signal to be sent on exit of the ++ * trap. ++ */ ++#if defined(CONFIG_PREEMPT_RT_FULL) && defined(CONFIG_X86_64) ++#define ARCH_RT_DELAYS_SIGNAL_SEND ++#endif ++ + #ifndef CONFIG_COMPAT + typedef sigset_t compat_sigset_t; + #endif +diff -Nur linux-3.18.12.orig/arch/x86/include/asm/stackprotector.h linux-3.18.12/arch/x86/include/asm/stackprotector.h +--- linux-3.18.12.orig/arch/x86/include/asm/stackprotector.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/include/asm/stackprotector.h 2015-04-26 13:32:22.375684003 -0500 +@@ -57,7 +57,7 @@ + */ + static __always_inline void boot_init_stack_canary(void) + { +- u64 canary; ++ u64 uninitialized_var(canary); + u64 tsc; + + #ifdef CONFIG_X86_64 +@@ -68,8 +68,16 @@ + * of randomness. The TSC only matters for very early init, + * there it already has some randomness on most systems. Later + * on during the bootup the random pool has true entropy too. ++ * ++ * For preempt-rt we need to weaken the randomness a bit, as ++ * we can't call into the random generator from atomic context ++ * due to locking constraints. We just leave canary ++ * uninitialized and use the TSC based randomness on top of ++ * it. + */ ++#ifndef CONFIG_PREEMPT_RT_FULL + get_random_bytes(&canary, sizeof(canary)); ++#endif + tsc = __native_read_tsc(); + canary += tsc + (tsc << 32UL); + +diff -Nur linux-3.18.12.orig/arch/x86/include/asm/thread_info.h linux-3.18.12/arch/x86/include/asm/thread_info.h +--- linux-3.18.12.orig/arch/x86/include/asm/thread_info.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/include/asm/thread_info.h 2015-04-26 13:32:22.375684003 -0500 +@@ -30,6 +30,8 @@ + __u32 status; /* thread synchronous flags */ + __u32 cpu; /* current CPU */ + int saved_preempt_count; ++ int preempt_lazy_count; /* 0 => lazy preemptable ++ <0 => BUG */ + mm_segment_t addr_limit; + struct restart_block restart_block; + void __user *sysenter_return; +@@ -75,6 +77,7 @@ + #define TIF_SYSCALL_EMU 6 /* syscall emulation active */ + #define TIF_SYSCALL_AUDIT 7 /* syscall auditing active */ + #define TIF_SECCOMP 8 /* secure computing */ ++#define TIF_NEED_RESCHED_LAZY 9 /* lazy rescheduling necessary */ + #define TIF_MCE_NOTIFY 10 /* notify userspace of an MCE */ + #define TIF_USER_RETURN_NOTIFY 11 /* notify kernel of userspace return */ + #define TIF_UPROBE 12 /* breakpointed or singlestepping */ +@@ -100,6 +103,7 @@ + #define _TIF_SYSCALL_EMU (1 << TIF_SYSCALL_EMU) + #define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT) + #define _TIF_SECCOMP (1 << TIF_SECCOMP) ++#define _TIF_NEED_RESCHED_LAZY (1 << TIF_NEED_RESCHED_LAZY) + #define _TIF_MCE_NOTIFY (1 << TIF_MCE_NOTIFY) + #define _TIF_USER_RETURN_NOTIFY (1 << TIF_USER_RETURN_NOTIFY) + #define _TIF_UPROBE (1 << TIF_UPROBE) +@@ -150,6 +154,8 @@ + #define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW|_TIF_USER_RETURN_NOTIFY) + #define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW) + ++#define _TIF_NEED_RESCHED_MASK (_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY) ++ + #define STACK_WARN (THREAD_SIZE/8) + #define KERNEL_STACK_OFFSET (5*(BITS_PER_LONG/8)) + +diff -Nur linux-3.18.12.orig/arch/x86/include/asm/uv/uv_bau.h linux-3.18.12/arch/x86/include/asm/uv/uv_bau.h +--- linux-3.18.12.orig/arch/x86/include/asm/uv/uv_bau.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/include/asm/uv/uv_bau.h 2015-04-26 13:32:22.375684003 -0500 +@@ -615,9 +615,9 @@ + cycles_t send_message; + cycles_t period_end; + cycles_t period_time; +- spinlock_t uvhub_lock; +- spinlock_t queue_lock; +- spinlock_t disable_lock; ++ raw_spinlock_t uvhub_lock; ++ raw_spinlock_t queue_lock; ++ raw_spinlock_t disable_lock; + /* tunables */ + int max_concurr; + int max_concurr_const; +@@ -776,15 +776,15 @@ + * to be lowered below the current 'v'. atomic_add_unless can only stop + * on equal. + */ +-static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u) ++static inline int atomic_inc_unless_ge(raw_spinlock_t *lock, atomic_t *v, int u) + { +- spin_lock(lock); ++ raw_spin_lock(lock); + if (atomic_read(v) >= u) { +- spin_unlock(lock); ++ raw_spin_unlock(lock); + return 0; + } + atomic_inc(v); +- spin_unlock(lock); ++ raw_spin_unlock(lock); + return 1; + } + +diff -Nur linux-3.18.12.orig/arch/x86/include/asm/uv/uv_hub.h linux-3.18.12/arch/x86/include/asm/uv/uv_hub.h +--- linux-3.18.12.orig/arch/x86/include/asm/uv/uv_hub.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/include/asm/uv/uv_hub.h 2015-04-26 13:32:22.375684003 -0500 +@@ -492,7 +492,7 @@ + unsigned short nr_online_cpus; + unsigned short pnode; + short memory_nid; +- spinlock_t nmi_lock; /* obsolete, see uv_hub_nmi */ ++ raw_spinlock_t nmi_lock; /* obsolete, see uv_hub_nmi */ + unsigned long nmi_count; /* obsolete, see uv_hub_nmi */ + }; + extern struct uv_blade_info *uv_blade_info; +diff -Nur linux-3.18.12.orig/arch/x86/Kconfig linux-3.18.12/arch/x86/Kconfig +--- linux-3.18.12.orig/arch/x86/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/Kconfig 2015-04-26 13:32:22.375684003 -0500 +@@ -21,6 +21,7 @@ + ### Arch settings + config X86 + def_bool y ++ select HAVE_PREEMPT_LAZY + select ARCH_MIGHT_HAVE_ACPI_PDC if ACPI + select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS + select ARCH_HAS_FAST_MULTIPLIER +@@ -197,8 +198,11 @@ + def_bool y + depends on ISA_DMA_API + ++config RWSEM_GENERIC_SPINLOCK ++ def_bool PREEMPT_RT_FULL ++ + config RWSEM_XCHGADD_ALGORITHM +- def_bool y ++ def_bool !RWSEM_GENERIC_SPINLOCK && !PREEMPT_RT_FULL + + config GENERIC_CALIBRATE_DELAY + def_bool y +@@ -811,7 +815,7 @@ + config MAXSMP + bool "Enable Maximum number of SMP Processors and NUMA Nodes" + depends on X86_64 && SMP && DEBUG_KERNEL +- select CPUMASK_OFFSTACK ++ select CPUMASK_OFFSTACK if !PREEMPT_RT_FULL + ---help--- + Enable maximum number of CPUS and NUMA Nodes for this architecture. + If unsure, say N. +diff -Nur linux-3.18.12.orig/arch/x86/kernel/apic/io_apic.c linux-3.18.12/arch/x86/kernel/apic/io_apic.c +--- linux-3.18.12.orig/arch/x86/kernel/apic/io_apic.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kernel/apic/io_apic.c 2015-04-26 13:32:22.379684003 -0500 +@@ -2494,7 +2494,8 @@ + static inline bool ioapic_irqd_mask(struct irq_data *data, struct irq_cfg *cfg) + { + /* If we are moving the irq we need to mask it */ +- if (unlikely(irqd_is_setaffinity_pending(data))) { ++ if (unlikely(irqd_is_setaffinity_pending(data) && ++ !irqd_irq_inprogress(data))) { + mask_ioapic(cfg); + return true; + } +diff -Nur linux-3.18.12.orig/arch/x86/kernel/apic/x2apic_uv_x.c linux-3.18.12/arch/x86/kernel/apic/x2apic_uv_x.c +--- linux-3.18.12.orig/arch/x86/kernel/apic/x2apic_uv_x.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kernel/apic/x2apic_uv_x.c 2015-04-26 13:32:22.379684003 -0500 +@@ -918,7 +918,7 @@ + uv_blade_info[blade].pnode = pnode; + uv_blade_info[blade].nr_possible_cpus = 0; + uv_blade_info[blade].nr_online_cpus = 0; +- spin_lock_init(&uv_blade_info[blade].nmi_lock); ++ raw_spin_lock_init(&uv_blade_info[blade].nmi_lock); + min_pnode = min(pnode, min_pnode); + max_pnode = max(pnode, max_pnode); + blade++; +diff -Nur linux-3.18.12.orig/arch/x86/kernel/asm-offsets.c linux-3.18.12/arch/x86/kernel/asm-offsets.c +--- linux-3.18.12.orig/arch/x86/kernel/asm-offsets.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kernel/asm-offsets.c 2015-04-26 13:32:22.379684003 -0500 +@@ -32,6 +32,7 @@ + OFFSET(TI_flags, thread_info, flags); + OFFSET(TI_status, thread_info, status); + OFFSET(TI_addr_limit, thread_info, addr_limit); ++ OFFSET(TI_preempt_lazy_count, thread_info, preempt_lazy_count); + + BLANK(); + OFFSET(crypto_tfm_ctx_offset, crypto_tfm, __crt_ctx); +@@ -71,4 +72,5 @@ + + BLANK(); + DEFINE(PTREGS_SIZE, sizeof(struct pt_regs)); ++ DEFINE(_PREEMPT_ENABLED, PREEMPT_ENABLED); + } +diff -Nur linux-3.18.12.orig/arch/x86/kernel/cpu/mcheck/mce.c linux-3.18.12/arch/x86/kernel/cpu/mcheck/mce.c +--- linux-3.18.12.orig/arch/x86/kernel/cpu/mcheck/mce.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kernel/cpu/mcheck/mce.c 2015-04-26 13:32:22.379684003 -0500 +@@ -41,6 +41,8 @@ + #include + #include + #include ++#include ++#include + + #include + #include +@@ -1266,7 +1268,7 @@ + static unsigned long check_interval = 5 * 60; /* 5 minutes */ + + static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ +-static DEFINE_PER_CPU(struct timer_list, mce_timer); ++static DEFINE_PER_CPU(struct hrtimer, mce_timer); + + static unsigned long mce_adjust_timer_default(unsigned long interval) + { +@@ -1283,14 +1285,11 @@ + return test_and_clear_bit(0, v); + } + +-static void mce_timer_fn(unsigned long data) ++static enum hrtimer_restart mce_timer_fn(struct hrtimer *timer) + { +- struct timer_list *t = this_cpu_ptr(&mce_timer); + unsigned long iv; + int notify; + +- WARN_ON(smp_processor_id() != data); +- + if (mce_available(this_cpu_ptr(&cpu_info))) { + machine_check_poll(MCP_TIMESTAMP, + this_cpu_ptr(&mce_poll_banks)); +@@ -1313,9 +1312,11 @@ + __this_cpu_write(mce_next_interval, iv); + /* Might have become 0 after CMCI storm subsided */ + if (iv) { +- t->expires = jiffies + iv; +- add_timer_on(t, smp_processor_id()); ++ hrtimer_forward_now(timer, ns_to_ktime( ++ jiffies_to_usecs(iv) * 1000ULL)); ++ return HRTIMER_RESTART; + } ++ return HRTIMER_NORESTART; + } + + /* +@@ -1323,28 +1324,37 @@ + */ + void mce_timer_kick(unsigned long interval) + { +- struct timer_list *t = this_cpu_ptr(&mce_timer); +- unsigned long when = jiffies + interval; ++ struct hrtimer *t = this_cpu_ptr(&mce_timer); + unsigned long iv = __this_cpu_read(mce_next_interval); + +- if (timer_pending(t)) { +- if (time_before(when, t->expires)) +- mod_timer_pinned(t, when); ++ if (hrtimer_active(t)) { ++ s64 exp; ++ s64 intv_us; ++ ++ intv_us = jiffies_to_usecs(interval); ++ exp = ktime_to_us(hrtimer_expires_remaining(t)); ++ if (intv_us < exp) { ++ hrtimer_cancel(t); ++ hrtimer_start_range_ns(t, ++ ns_to_ktime(intv_us * 1000), ++ 0, HRTIMER_MODE_REL_PINNED); ++ } + } else { +- t->expires = round_jiffies(when); +- add_timer_on(t, smp_processor_id()); ++ hrtimer_start_range_ns(t, ++ ns_to_ktime(jiffies_to_usecs(interval) * 1000ULL), ++ 0, HRTIMER_MODE_REL_PINNED); + } + if (interval < iv) + __this_cpu_write(mce_next_interval, interval); + } + +-/* Must not be called in IRQ context where del_timer_sync() can deadlock */ ++/* Must not be called in IRQ context where hrtimer_cancel() can deadlock */ + static void mce_timer_delete_all(void) + { + int cpu; + + for_each_online_cpu(cpu) +- del_timer_sync(&per_cpu(mce_timer, cpu)); ++ hrtimer_cancel(&per_cpu(mce_timer, cpu)); + } + + static void mce_do_trigger(struct work_struct *work) +@@ -1354,6 +1364,56 @@ + + static DECLARE_WORK(mce_trigger_work, mce_do_trigger); + ++static void __mce_notify_work(struct swork_event *event) ++{ ++ /* Not more than two messages every minute */ ++ static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); ++ ++ /* wake processes polling /dev/mcelog */ ++ wake_up_interruptible(&mce_chrdev_wait); ++ ++ /* ++ * There is no risk of missing notifications because ++ * work_pending is always cleared before the function is ++ * executed. ++ */ ++ if (mce_helper[0] && !work_pending(&mce_trigger_work)) ++ schedule_work(&mce_trigger_work); ++ ++ if (__ratelimit(&ratelimit)) ++ pr_info(HW_ERR "Machine check events logged\n"); ++} ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++static bool notify_work_ready __read_mostly; ++static struct swork_event notify_work; ++ ++static int mce_notify_work_init(void) ++{ ++ int err; ++ ++ err = swork_get(); ++ if (err) ++ return err; ++ ++ INIT_SWORK(¬ify_work, __mce_notify_work); ++ notify_work_ready = true; ++ return 0; ++} ++ ++static void mce_notify_work(void) ++{ ++ if (notify_work_ready) ++ swork_queue(¬ify_work); ++} ++#else ++static void mce_notify_work(void) ++{ ++ __mce_notify_work(NULL); ++} ++static inline int mce_notify_work_init(void) { return 0; } ++#endif ++ + /* + * Notify the user(s) about new machine check events. + * Can be called from interrupt context, but not from machine check/NMI +@@ -1361,19 +1421,8 @@ + */ + int mce_notify_irq(void) + { +- /* Not more than two messages every minute */ +- static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); +- + if (test_and_clear_bit(0, &mce_need_notify)) { +- /* wake processes polling /dev/mcelog */ +- wake_up_interruptible(&mce_chrdev_wait); +- +- if (mce_helper[0]) +- schedule_work(&mce_trigger_work); +- +- if (__ratelimit(&ratelimit)) +- pr_info(HW_ERR "Machine check events logged\n"); +- ++ mce_notify_work(); + return 1; + } + return 0; +@@ -1644,7 +1693,7 @@ + } + } + +-static void mce_start_timer(unsigned int cpu, struct timer_list *t) ++static void mce_start_timer(unsigned int cpu, struct hrtimer *t) + { + unsigned long iv = check_interval * HZ; + +@@ -1653,16 +1702,17 @@ + + per_cpu(mce_next_interval, cpu) = iv; + +- t->expires = round_jiffies(jiffies + iv); +- add_timer_on(t, cpu); ++ hrtimer_start_range_ns(t, ns_to_ktime(jiffies_to_usecs(iv) * 1000ULL), ++ 0, HRTIMER_MODE_REL_PINNED); + } + + static void __mcheck_cpu_init_timer(void) + { +- struct timer_list *t = this_cpu_ptr(&mce_timer); ++ struct hrtimer *t = this_cpu_ptr(&mce_timer); + unsigned int cpu = smp_processor_id(); + +- setup_timer(t, mce_timer_fn, cpu); ++ hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL); ++ t->function = mce_timer_fn; + mce_start_timer(cpu, t); + } + +@@ -2339,6 +2389,8 @@ + if (!mce_available(raw_cpu_ptr(&cpu_info))) + return; + ++ hrtimer_cancel(this_cpu_ptr(&mce_timer)); ++ + if (!(action & CPU_TASKS_FROZEN)) + cmci_clear(); + for (i = 0; i < mca_cfg.banks; i++) { +@@ -2365,6 +2417,7 @@ + if (b->init) + wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl); + } ++ __mcheck_cpu_init_timer(); + } + + /* Get notified when a cpu comes on/off. Be hotplug friendly. */ +@@ -2372,7 +2425,6 @@ + mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) + { + unsigned int cpu = (unsigned long)hcpu; +- struct timer_list *t = &per_cpu(mce_timer, cpu); + + switch (action & ~CPU_TASKS_FROZEN) { + case CPU_ONLINE: +@@ -2392,11 +2444,9 @@ + break; + case CPU_DOWN_PREPARE: + smp_call_function_single(cpu, mce_disable_cpu, &action, 1); +- del_timer_sync(t); + break; + case CPU_DOWN_FAILED: + smp_call_function_single(cpu, mce_reenable_cpu, &action, 1); +- mce_start_timer(cpu, t); + break; + } + +@@ -2435,6 +2485,10 @@ + goto err_out; + } + ++ err = mce_notify_work_init(); ++ if (err) ++ goto err_out; ++ + if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { + err = -ENOMEM; + goto err_out; +diff -Nur linux-3.18.12.orig/arch/x86/kernel/entry_32.S linux-3.18.12/arch/x86/kernel/entry_32.S +--- linux-3.18.12.orig/arch/x86/kernel/entry_32.S 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kernel/entry_32.S 2015-04-26 13:32:22.379684003 -0500 +@@ -359,8 +359,24 @@ + ENTRY(resume_kernel) + DISABLE_INTERRUPTS(CLBR_ANY) + need_resched: ++ # preempt count == 0 + NEED_RS set? + cmpl $0,PER_CPU_VAR(__preempt_count) ++#ifndef CONFIG_PREEMPT_LAZY + jnz restore_all ++#else ++ jz test_int_off ++ ++ # atleast preempt count == 0 ? ++ cmpl $_PREEMPT_ENABLED,PER_CPU_VAR(__preempt_count) ++ jne restore_all ++ ++ cmpl $0,TI_preempt_lazy_count(%ebp) # non-zero preempt_lazy_count ? ++ jnz restore_all ++ ++ testl $_TIF_NEED_RESCHED_LAZY, TI_flags(%ebp) ++ jz restore_all ++test_int_off: ++#endif + testl $X86_EFLAGS_IF,PT_EFLAGS(%esp) # interrupts off (exception path) ? + jz restore_all + call preempt_schedule_irq +@@ -591,7 +607,7 @@ + ALIGN + RING0_PTREGS_FRAME # can't unwind into user space anyway + work_pending: +- testb $_TIF_NEED_RESCHED, %cl ++ testl $_TIF_NEED_RESCHED_MASK, %ecx + jz work_notifysig + work_resched: + call schedule +@@ -604,7 +620,7 @@ + andl $_TIF_WORK_MASK, %ecx # is there any work to be done other + # than syscall tracing? + jz restore_all +- testb $_TIF_NEED_RESCHED, %cl ++ testl $_TIF_NEED_RESCHED_MASK, %ecx + jnz work_resched + + work_notifysig: # deal with pending signals and +diff -Nur linux-3.18.12.orig/arch/x86/kernel/entry_64.S linux-3.18.12/arch/x86/kernel/entry_64.S +--- linux-3.18.12.orig/arch/x86/kernel/entry_64.S 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kernel/entry_64.S 2015-04-26 13:32:22.379684003 -0500 +@@ -454,8 +454,8 @@ + /* Handle reschedules */ + /* edx: work, edi: workmask */ + sysret_careful: +- bt $TIF_NEED_RESCHED,%edx +- jnc sysret_signal ++ testl $_TIF_NEED_RESCHED_MASK,%edx ++ jz sysret_signal + TRACE_IRQS_ON + ENABLE_INTERRUPTS(CLBR_NONE) + pushq_cfi %rdi +@@ -554,8 +554,8 @@ + /* First do a reschedule test. */ + /* edx: work, edi: workmask */ + int_careful: +- bt $TIF_NEED_RESCHED,%edx +- jnc int_very_careful ++ testl $_TIF_NEED_RESCHED_MASK,%edx ++ jz int_very_careful + TRACE_IRQS_ON + ENABLE_INTERRUPTS(CLBR_NONE) + pushq_cfi %rdi +@@ -870,8 +870,8 @@ + /* edi: workmask, edx: work */ + retint_careful: + CFI_RESTORE_STATE +- bt $TIF_NEED_RESCHED,%edx +- jnc retint_signal ++ testl $_TIF_NEED_RESCHED_MASK,%edx ++ jz retint_signal + TRACE_IRQS_ON + ENABLE_INTERRUPTS(CLBR_NONE) + pushq_cfi %rdi +@@ -903,7 +903,22 @@ + /* rcx: threadinfo. interrupts off. */ + ENTRY(retint_kernel) + cmpl $0,PER_CPU_VAR(__preempt_count) ++#ifndef CONFIG_PREEMPT_LAZY + jnz retint_restore_args ++#else ++ jz check_int_off ++ ++ # atleast preempt count == 0 ? ++ cmpl $_PREEMPT_ENABLED,PER_CPU_VAR(__preempt_count) ++ jnz retint_restore_args ++ ++ cmpl $0, TI_preempt_lazy_count(%rcx) ++ jnz retint_restore_args ++ ++ bt $TIF_NEED_RESCHED_LAZY,TI_flags(%rcx) ++ jnc retint_restore_args ++check_int_off: ++#endif + bt $9,EFLAGS-ARGOFFSET(%rsp) /* interrupts off? */ + jnc retint_restore_args + call preempt_schedule_irq +@@ -1119,6 +1134,7 @@ + jmp 2b + .previous + ++#ifndef CONFIG_PREEMPT_RT_FULL + /* Call softirq on interrupt stack. Interrupts are off. */ + ENTRY(do_softirq_own_stack) + CFI_STARTPROC +@@ -1138,6 +1154,7 @@ + ret + CFI_ENDPROC + END(do_softirq_own_stack) ++#endif + + #ifdef CONFIG_XEN + idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0 +@@ -1302,7 +1319,7 @@ + movq %rsp,%rdi /* &pt_regs */ + call sync_regs + movq %rax,%rsp /* switch stack for scheduling */ +- testl $_TIF_NEED_RESCHED,%ebx ++ testl $_TIF_NEED_RESCHED_MASK,%ebx + jnz paranoid_schedule + movl %ebx,%edx /* arg3: thread flags */ + TRACE_IRQS_ON +diff -Nur linux-3.18.12.orig/arch/x86/kernel/irq_32.c linux-3.18.12/arch/x86/kernel/irq_32.c +--- linux-3.18.12.orig/arch/x86/kernel/irq_32.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kernel/irq_32.c 2015-04-26 13:32:22.379684003 -0500 +@@ -142,6 +142,7 @@ + cpu, per_cpu(hardirq_stack, cpu), per_cpu(softirq_stack, cpu)); + } + ++#ifndef CONFIG_PREEMPT_RT_FULL + void do_softirq_own_stack(void) + { + struct thread_info *curstk; +@@ -160,6 +161,7 @@ + + call_on_stack(__do_softirq, isp); + } ++#endif + + bool handle_irq(unsigned irq, struct pt_regs *regs) + { +diff -Nur linux-3.18.12.orig/arch/x86/kernel/process_32.c linux-3.18.12/arch/x86/kernel/process_32.c +--- linux-3.18.12.orig/arch/x86/kernel/process_32.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kernel/process_32.c 2015-04-26 13:32:22.379684003 -0500 +@@ -35,6 +35,7 @@ + #include + #include + #include ++#include + + #include + #include +@@ -214,6 +215,35 @@ + } + EXPORT_SYMBOL_GPL(start_thread); + ++#ifdef CONFIG_PREEMPT_RT_FULL ++static void switch_kmaps(struct task_struct *prev_p, struct task_struct *next_p) ++{ ++ int i; ++ ++ /* ++ * Clear @prev's kmap_atomic mappings ++ */ ++ for (i = 0; i < prev_p->kmap_idx; i++) { ++ int idx = i + KM_TYPE_NR * smp_processor_id(); ++ pte_t *ptep = kmap_pte - idx; ++ ++ kpte_clear_flush(ptep, __fix_to_virt(FIX_KMAP_BEGIN + idx)); ++ } ++ /* ++ * Restore @next_p's kmap_atomic mappings ++ */ ++ for (i = 0; i < next_p->kmap_idx; i++) { ++ int idx = i + KM_TYPE_NR * smp_processor_id(); ++ ++ if (!pte_none(next_p->kmap_pte[i])) ++ set_pte(kmap_pte - idx, next_p->kmap_pte[i]); ++ } ++} ++#else ++static inline void ++switch_kmaps(struct task_struct *prev_p, struct task_struct *next_p) { } ++#endif ++ + + /* + * switch_to(x,y) should switch tasks from x to y. +@@ -301,6 +331,8 @@ + task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) + __switch_to_xtra(prev_p, next_p, tss); + ++ switch_kmaps(prev_p, next_p); ++ + /* + * Leave lazy mode, flushing any hypercalls made here. + * This must be done before restoring TLS segments so +diff -Nur linux-3.18.12.orig/arch/x86/kernel/signal.c linux-3.18.12/arch/x86/kernel/signal.c +--- linux-3.18.12.orig/arch/x86/kernel/signal.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kernel/signal.c 2015-04-26 13:32:22.379684003 -0500 +@@ -746,6 +746,14 @@ + mce_notify_process(); + #endif /* CONFIG_X86_64 && CONFIG_X86_MCE */ + ++#ifdef ARCH_RT_DELAYS_SIGNAL_SEND ++ if (unlikely(current->forced_info.si_signo)) { ++ struct task_struct *t = current; ++ force_sig_info(t->forced_info.si_signo, &t->forced_info, t); ++ t->forced_info.si_signo = 0; ++ } ++#endif ++ + if (thread_info_flags & _TIF_UPROBE) + uprobe_notify_resume(regs); + +diff -Nur linux-3.18.12.orig/arch/x86/kernel/traps.c linux-3.18.12/arch/x86/kernel/traps.c +--- linux-3.18.12.orig/arch/x86/kernel/traps.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kernel/traps.c 2015-04-26 13:32:22.379684003 -0500 +@@ -87,9 +87,21 @@ + local_irq_enable(); + } + +-static inline void preempt_conditional_sti(struct pt_regs *regs) ++static inline void conditional_sti_ist(struct pt_regs *regs) + { ++#ifdef CONFIG_X86_64 ++ /* ++ * X86_64 uses a per CPU stack on the IST for certain traps ++ * like int3. The task can not be preempted when using one ++ * of these stacks, thus preemption must be disabled, otherwise ++ * the stack can be corrupted if the task is scheduled out, ++ * and another task comes in and uses this stack. ++ * ++ * On x86_32 the task keeps its own stack and it is OK if the ++ * task schedules out. ++ */ + preempt_count_inc(); ++#endif + if (regs->flags & X86_EFLAGS_IF) + local_irq_enable(); + } +@@ -100,11 +112,13 @@ + local_irq_disable(); + } + +-static inline void preempt_conditional_cli(struct pt_regs *regs) ++static inline void conditional_cli_ist(struct pt_regs *regs) + { + if (regs->flags & X86_EFLAGS_IF) + local_irq_disable(); ++#ifdef CONFIG_X86_64 + preempt_count_dec(); ++#endif + } + + static nokprobe_inline int +@@ -372,9 +386,9 @@ + * as we may switch to the interrupt stack. + */ + debug_stack_usage_inc(); +- preempt_conditional_sti(regs); ++ conditional_sti_ist(regs); + do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); +- preempt_conditional_cli(regs); ++ conditional_cli_ist(regs); + debug_stack_usage_dec(); + exit: + exception_exit(prev_state); +@@ -517,12 +531,12 @@ + debug_stack_usage_inc(); + + /* It's safe to allow irq's after DR6 has been saved */ +- preempt_conditional_sti(regs); ++ conditional_sti_ist(regs); + + if (regs->flags & X86_VM_MASK) { + handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, + X86_TRAP_DB); +- preempt_conditional_cli(regs); ++ conditional_cli_ist(regs); + debug_stack_usage_dec(); + goto exit; + } +@@ -542,7 +556,7 @@ + si_code = get_si_code(tsk->thread.debugreg6); + if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) + send_sigtrap(tsk, regs, error_code, si_code); +- preempt_conditional_cli(regs); ++ conditional_cli_ist(regs); + debug_stack_usage_dec(); + + exit: +diff -Nur linux-3.18.12.orig/arch/x86/kvm/lapic.c linux-3.18.12/arch/x86/kvm/lapic.c +--- linux-3.18.12.orig/arch/x86/kvm/lapic.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kvm/lapic.c 2015-04-26 13:32:22.379684003 -0500 +@@ -1034,8 +1034,38 @@ + apic->divide_count); + } + ++ ++static enum hrtimer_restart apic_timer_fn(struct hrtimer *data); ++ ++static void apic_timer_expired(struct hrtimer *data) ++{ ++ int ret, i = 0; ++ enum hrtimer_restart r; ++ struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); ++ ++ r = apic_timer_fn(data); ++ ++ if (r == HRTIMER_RESTART) { ++ do { ++ ret = hrtimer_start_expires(data, HRTIMER_MODE_ABS); ++ if (ret == -ETIME) ++ hrtimer_add_expires_ns(&ktimer->timer, ++ ktimer->period); ++ i++; ++ } while (ret == -ETIME && i < 10); ++ ++ if (ret == -ETIME) { ++ printk_once(KERN_ERR "%s: failed to reprogram timer\n", ++ __func__); ++ WARN_ON_ONCE(1); ++ } ++ } ++} ++ ++ + static void start_apic_timer(struct kvm_lapic *apic) + { ++ int ret; + ktime_t now; + atomic_set(&apic->lapic_timer.pending, 0); + +@@ -1065,9 +1095,11 @@ + } + } + +- hrtimer_start(&apic->lapic_timer.timer, ++ ret = hrtimer_start(&apic->lapic_timer.timer, + ktime_add_ns(now, apic->lapic_timer.period), + HRTIMER_MODE_ABS); ++ if (ret == -ETIME) ++ apic_timer_expired(&apic->lapic_timer.timer); + + apic_debug("%s: bus cycle is %" PRId64 "ns, now 0x%016" + PRIx64 ", " +@@ -1097,8 +1129,10 @@ + ns = (tscdeadline - guest_tsc) * 1000000ULL; + do_div(ns, this_tsc_khz); + } +- hrtimer_start(&apic->lapic_timer.timer, ++ ret = hrtimer_start(&apic->lapic_timer.timer, + ktime_add_ns(now, ns), HRTIMER_MODE_ABS); ++ if (ret == -ETIME) ++ apic_timer_expired(&apic->lapic_timer.timer); + + local_irq_restore(flags); + } +@@ -1539,7 +1573,7 @@ + struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); + struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); + struct kvm_vcpu *vcpu = apic->vcpu; +- wait_queue_head_t *q = &vcpu->wq; ++ struct swait_head *q = &vcpu->wq; + + /* + * There is a race window between reading and incrementing, but we do +@@ -1553,8 +1587,8 @@ + kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); + } + +- if (waitqueue_active(q)) +- wake_up_interruptible(q); ++ if (swaitqueue_active(q)) ++ swait_wake_interruptible(q); + + if (lapic_is_periodic(apic)) { + hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); +@@ -1587,6 +1621,7 @@ + hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, + HRTIMER_MODE_ABS); + apic->lapic_timer.timer.function = apic_timer_fn; ++ apic->lapic_timer.timer.irqsafe = 1; + + /* + * APIC is created enabled. This will prevent kvm_lapic_set_base from +@@ -1707,7 +1742,8 @@ + + timer = &vcpu->arch.apic->lapic_timer.timer; + if (hrtimer_cancel(timer)) +- hrtimer_start_expires(timer, HRTIMER_MODE_ABS); ++ if (hrtimer_start_expires(timer, HRTIMER_MODE_ABS) == -ETIME) ++ apic_timer_expired(timer); + } + + /* +diff -Nur linux-3.18.12.orig/arch/x86/kvm/x86.c linux-3.18.12/arch/x86/kvm/x86.c +--- linux-3.18.12.orig/arch/x86/kvm/x86.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/kvm/x86.c 2015-04-26 13:32:22.383684003 -0500 +@@ -5772,6 +5772,13 @@ + goto out; + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++ if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { ++ printk(KERN_ERR "RT requires X86_FEATURE_CONSTANT_TSC\n"); ++ return -EOPNOTSUPP; ++ } ++#endif ++ + r = kvm_mmu_module_init(); + if (r) + goto out_free_percpu; +diff -Nur linux-3.18.12.orig/arch/x86/mm/fault.c linux-3.18.12/arch/x86/mm/fault.c +--- linux-3.18.12.orig/arch/x86/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/mm/fault.c 2015-04-26 13:32:22.383684003 -0500 +@@ -1128,7 +1128,7 @@ + * If we're in an interrupt, have no user context or are running + * in an atomic region then we must not take the fault: + */ +- if (unlikely(in_atomic() || !mm)) { ++ if (unlikely(!mm || pagefault_disabled())) { + bad_area_nosemaphore(regs, error_code, address); + return; + } +diff -Nur linux-3.18.12.orig/arch/x86/mm/highmem_32.c linux-3.18.12/arch/x86/mm/highmem_32.c +--- linux-3.18.12.orig/arch/x86/mm/highmem_32.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/mm/highmem_32.c 2015-04-26 13:32:22.383684003 -0500 +@@ -32,6 +32,7 @@ + */ + void *kmap_atomic_prot(struct page *page, pgprot_t prot) + { ++ pte_t pte = mk_pte(page, prot); + unsigned long vaddr; + int idx, type; + +@@ -45,7 +46,10 @@ + idx = type + KM_TYPE_NR*smp_processor_id(); + vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); + BUG_ON(!pte_none(*(kmap_pte-idx))); +- set_pte(kmap_pte-idx, mk_pte(page, prot)); ++#ifdef CONFIG_PREEMPT_RT_FULL ++ current->kmap_pte[type] = pte; ++#endif ++ set_pte(kmap_pte-idx, pte); + arch_flush_lazy_mmu_mode(); + + return (void *)vaddr; +@@ -88,6 +92,9 @@ + * is a bad idea also, in case the page changes cacheability + * attributes or becomes a protected page in a hypervisor. + */ ++#ifdef CONFIG_PREEMPT_RT_FULL ++ current->kmap_pte[type] = __pte(0); ++#endif + kpte_clear_flush(kmap_pte-idx, vaddr); + kmap_atomic_idx_pop(); + arch_flush_lazy_mmu_mode(); +diff -Nur linux-3.18.12.orig/arch/x86/mm/iomap_32.c linux-3.18.12/arch/x86/mm/iomap_32.c +--- linux-3.18.12.orig/arch/x86/mm/iomap_32.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/mm/iomap_32.c 2015-04-26 13:32:22.383684003 -0500 +@@ -56,6 +56,7 @@ + + void *kmap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot) + { ++ pte_t pte = pfn_pte(pfn, prot); + unsigned long vaddr; + int idx, type; + +@@ -64,7 +65,12 @@ + type = kmap_atomic_idx_push(); + idx = type + KM_TYPE_NR * smp_processor_id(); + vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); +- set_pte(kmap_pte - idx, pfn_pte(pfn, prot)); ++ WARN_ON(!pte_none(*(kmap_pte - idx))); ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++ current->kmap_pte[type] = pte; ++#endif ++ set_pte(kmap_pte - idx, pte); + arch_flush_lazy_mmu_mode(); + + return (void *)vaddr; +@@ -110,6 +116,9 @@ + * is a bad idea also, in case the page changes cacheability + * attributes or becomes a protected page in a hypervisor. + */ ++#ifdef CONFIG_PREEMPT_RT_FULL ++ current->kmap_pte[type] = __pte(0); ++#endif + kpte_clear_flush(kmap_pte-idx, vaddr); + kmap_atomic_idx_pop(); + } +diff -Nur linux-3.18.12.orig/arch/x86/platform/uv/tlb_uv.c linux-3.18.12/arch/x86/platform/uv/tlb_uv.c +--- linux-3.18.12.orig/arch/x86/platform/uv/tlb_uv.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/platform/uv/tlb_uv.c 2015-04-26 13:32:22.383684003 -0500 +@@ -714,9 +714,9 @@ + + quiesce_local_uvhub(hmaster); + +- spin_lock(&hmaster->queue_lock); ++ raw_spin_lock(&hmaster->queue_lock); + reset_with_ipi(&bau_desc->distribution, bcp); +- spin_unlock(&hmaster->queue_lock); ++ raw_spin_unlock(&hmaster->queue_lock); + + end_uvhub_quiesce(hmaster); + +@@ -736,9 +736,9 @@ + + quiesce_local_uvhub(hmaster); + +- spin_lock(&hmaster->queue_lock); ++ raw_spin_lock(&hmaster->queue_lock); + reset_with_ipi(&bau_desc->distribution, bcp); +- spin_unlock(&hmaster->queue_lock); ++ raw_spin_unlock(&hmaster->queue_lock); + + end_uvhub_quiesce(hmaster); + +@@ -759,7 +759,7 @@ + cycles_t tm1; + + hmaster = bcp->uvhub_master; +- spin_lock(&hmaster->disable_lock); ++ raw_spin_lock(&hmaster->disable_lock); + if (!bcp->baudisabled) { + stat->s_bau_disabled++; + tm1 = get_cycles(); +@@ -772,7 +772,7 @@ + } + } + } +- spin_unlock(&hmaster->disable_lock); ++ raw_spin_unlock(&hmaster->disable_lock); + } + + static void count_max_concurr(int stat, struct bau_control *bcp, +@@ -835,7 +835,7 @@ + */ + static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat) + { +- spinlock_t *lock = &hmaster->uvhub_lock; ++ raw_spinlock_t *lock = &hmaster->uvhub_lock; + atomic_t *v; + + v = &hmaster->active_descriptor_count; +@@ -968,7 +968,7 @@ + struct bau_control *hmaster; + + hmaster = bcp->uvhub_master; +- spin_lock(&hmaster->disable_lock); ++ raw_spin_lock(&hmaster->disable_lock); + if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) { + stat->s_bau_reenabled++; + for_each_present_cpu(tcpu) { +@@ -980,10 +980,10 @@ + tbcp->period_giveups = 0; + } + } +- spin_unlock(&hmaster->disable_lock); ++ raw_spin_unlock(&hmaster->disable_lock); + return 0; + } +- spin_unlock(&hmaster->disable_lock); ++ raw_spin_unlock(&hmaster->disable_lock); + return -1; + } + +@@ -1899,9 +1899,9 @@ + bcp->cong_reps = congested_reps; + bcp->disabled_period = sec_2_cycles(disabled_period); + bcp->giveup_limit = giveup_limit; +- spin_lock_init(&bcp->queue_lock); +- spin_lock_init(&bcp->uvhub_lock); +- spin_lock_init(&bcp->disable_lock); ++ raw_spin_lock_init(&bcp->queue_lock); ++ raw_spin_lock_init(&bcp->uvhub_lock); ++ raw_spin_lock_init(&bcp->disable_lock); + } + } + +diff -Nur linux-3.18.12.orig/arch/x86/platform/uv/uv_time.c linux-3.18.12/arch/x86/platform/uv/uv_time.c +--- linux-3.18.12.orig/arch/x86/platform/uv/uv_time.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/x86/platform/uv/uv_time.c 2015-04-26 13:32:22.383684003 -0500 +@@ -58,7 +58,7 @@ + + /* There is one of these allocated per node */ + struct uv_rtc_timer_head { +- spinlock_t lock; ++ raw_spinlock_t lock; + /* next cpu waiting for timer, local node relative: */ + int next_cpu; + /* number of cpus on this node: */ +@@ -178,7 +178,7 @@ + uv_rtc_deallocate_timers(); + return -ENOMEM; + } +- spin_lock_init(&head->lock); ++ raw_spin_lock_init(&head->lock); + head->ncpus = uv_blade_nr_possible_cpus(bid); + head->next_cpu = -1; + blade_info[bid] = head; +@@ -232,7 +232,7 @@ + unsigned long flags; + int next_cpu; + +- spin_lock_irqsave(&head->lock, flags); ++ raw_spin_lock_irqsave(&head->lock, flags); + + next_cpu = head->next_cpu; + *t = expires; +@@ -244,12 +244,12 @@ + if (uv_setup_intr(cpu, expires)) { + *t = ULLONG_MAX; + uv_rtc_find_next_timer(head, pnode); +- spin_unlock_irqrestore(&head->lock, flags); ++ raw_spin_unlock_irqrestore(&head->lock, flags); + return -ETIME; + } + } + +- spin_unlock_irqrestore(&head->lock, flags); ++ raw_spin_unlock_irqrestore(&head->lock, flags); + return 0; + } + +@@ -268,7 +268,7 @@ + unsigned long flags; + int rc = 0; + +- spin_lock_irqsave(&head->lock, flags); ++ raw_spin_lock_irqsave(&head->lock, flags); + + if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force) + rc = 1; +@@ -280,7 +280,7 @@ + uv_rtc_find_next_timer(head, pnode); + } + +- spin_unlock_irqrestore(&head->lock, flags); ++ raw_spin_unlock_irqrestore(&head->lock, flags); + + return rc; + } +@@ -300,13 +300,18 @@ + static cycle_t uv_read_rtc(struct clocksource *cs) + { + unsigned long offset; ++ cycle_t cycles; + ++ preempt_disable(); + if (uv_get_min_hub_revision_id() == 1) + offset = 0; + else + offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE; + +- return (cycle_t)uv_read_local_mmr(UVH_RTC | offset); ++ cycles = (cycle_t)uv_read_local_mmr(UVH_RTC | offset); ++ preempt_enable(); ++ ++ return cycles; + } + + /* +diff -Nur linux-3.18.12.orig/arch/xtensa/mm/fault.c linux-3.18.12/arch/xtensa/mm/fault.c +--- linux-3.18.12.orig/arch/xtensa/mm/fault.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/arch/xtensa/mm/fault.c 2015-04-26 13:32:22.383684003 -0500 +@@ -57,7 +57,7 @@ + /* If we're in an interrupt or have no user + * context, we must not take the fault.. + */ +- if (in_atomic() || !mm) { ++ if (!mm || pagefault_disabled()) { + bad_page_fault(regs, address, SIGSEGV); + return; + } +diff -Nur linux-3.18.12.orig/block/blk-core.c linux-3.18.12/block/blk-core.c +--- linux-3.18.12.orig/block/blk-core.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/block/blk-core.c 2015-04-26 13:32:22.383684003 -0500 +@@ -100,6 +100,9 @@ + + INIT_LIST_HEAD(&rq->queuelist); + INIT_LIST_HEAD(&rq->timeout_list); ++#if CONFIG_PREEMPT_RT_FULL ++ INIT_WORK(&rq->work, __blk_mq_complete_request_remote_work); ++#endif + rq->cpu = -1; + rq->q = q; + rq->__sector = (sector_t) -1; +@@ -194,7 +197,7 @@ + **/ + void blk_start_queue(struct request_queue *q) + { +- WARN_ON(!irqs_disabled()); ++ WARN_ON_NONRT(!irqs_disabled()); + + queue_flag_clear(QUEUE_FLAG_STOPPED, q); + __blk_run_queue(q); +@@ -627,7 +630,7 @@ + q->bypass_depth = 1; + __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); + +- init_waitqueue_head(&q->mq_freeze_wq); ++ init_swait_head(&q->mq_freeze_wq); + + if (blkcg_init_queue(q)) + goto fail_bdi; +@@ -3037,7 +3040,7 @@ + blk_run_queue_async(q); + else + __blk_run_queue(q); +- spin_unlock(q->queue_lock); ++ spin_unlock_irq(q->queue_lock); + } + + static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) +@@ -3085,7 +3088,6 @@ + void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) + { + struct request_queue *q; +- unsigned long flags; + struct request *rq; + LIST_HEAD(list); + unsigned int depth; +@@ -3105,11 +3107,6 @@ + q = NULL; + depth = 0; + +- /* +- * Save and disable interrupts here, to avoid doing it for every +- * queue lock we have to take. +- */ +- local_irq_save(flags); + while (!list_empty(&list)) { + rq = list_entry_rq(list.next); + list_del_init(&rq->queuelist); +@@ -3122,7 +3119,7 @@ + queue_unplugged(q, depth, from_schedule); + q = rq->q; + depth = 0; +- spin_lock(q->queue_lock); ++ spin_lock_irq(q->queue_lock); + } + + /* +@@ -3149,8 +3146,6 @@ + */ + if (q) + queue_unplugged(q, depth, from_schedule); +- +- local_irq_restore(flags); + } + + void blk_finish_plug(struct blk_plug *plug) +diff -Nur linux-3.18.12.orig/block/blk-ioc.c linux-3.18.12/block/blk-ioc.c +--- linux-3.18.12.orig/block/blk-ioc.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/block/blk-ioc.c 2015-04-26 13:32:22.383684003 -0500 +@@ -7,6 +7,7 @@ + #include + #include + #include ++#include + + #include "blk.h" + +@@ -109,7 +110,7 @@ + spin_unlock(q->queue_lock); + } else { + spin_unlock_irqrestore(&ioc->lock, flags); +- cpu_relax(); ++ cpu_chill(); + spin_lock_irqsave_nested(&ioc->lock, flags, 1); + } + } +@@ -187,7 +188,7 @@ + spin_unlock(icq->q->queue_lock); + } else { + spin_unlock_irqrestore(&ioc->lock, flags); +- cpu_relax(); ++ cpu_chill(); + goto retry; + } + } +diff -Nur linux-3.18.12.orig/block/blk-iopoll.c linux-3.18.12/block/blk-iopoll.c +--- linux-3.18.12.orig/block/blk-iopoll.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/block/blk-iopoll.c 2015-04-26 13:32:22.383684003 -0500 +@@ -35,6 +35,7 @@ + list_add_tail(&iop->list, this_cpu_ptr(&blk_cpu_iopoll)); + __raise_softirq_irqoff(BLOCK_IOPOLL_SOFTIRQ); + local_irq_restore(flags); ++ preempt_check_resched_rt(); + } + EXPORT_SYMBOL(blk_iopoll_sched); + +@@ -132,6 +133,7 @@ + __raise_softirq_irqoff(BLOCK_IOPOLL_SOFTIRQ); + + local_irq_enable(); ++ preempt_check_resched_rt(); + } + + /** +@@ -201,6 +203,7 @@ + this_cpu_ptr(&blk_cpu_iopoll)); + __raise_softirq_irqoff(BLOCK_IOPOLL_SOFTIRQ); + local_irq_enable(); ++ preempt_check_resched_rt(); + } + + return NOTIFY_OK; +diff -Nur linux-3.18.12.orig/block/blk-mq.c linux-3.18.12/block/blk-mq.c +--- linux-3.18.12.orig/block/blk-mq.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/block/blk-mq.c 2015-04-26 13:32:22.383684003 -0500 +@@ -85,7 +85,7 @@ + if (percpu_ref_tryget_live(&q->mq_usage_counter)) + return 0; + +- ret = wait_event_interruptible(q->mq_freeze_wq, ++ ret = swait_event_interruptible(q->mq_freeze_wq, + !q->mq_freeze_depth || blk_queue_dying(q)); + if (blk_queue_dying(q)) + return -ENODEV; +@@ -104,7 +104,7 @@ + struct request_queue *q = + container_of(ref, struct request_queue, mq_usage_counter); + +- wake_up_all(&q->mq_freeze_wq); ++ swait_wake_all(&q->mq_freeze_wq); + } + + static void blk_mq_freeze_queue_start(struct request_queue *q) +@@ -123,7 +123,7 @@ + + static void blk_mq_freeze_queue_wait(struct request_queue *q) + { +- wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); ++ swait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); + } + + /* +@@ -146,7 +146,7 @@ + spin_unlock_irq(q->queue_lock); + if (wake) { + percpu_ref_reinit(&q->mq_usage_counter); +- wake_up_all(&q->mq_freeze_wq); ++ swait_wake_all(&q->mq_freeze_wq); + } + } + +@@ -194,6 +194,9 @@ + rq->resid_len = 0; + rq->sense = NULL; + ++#ifdef CONFIG_PREEMPT_RT_FULL ++ INIT_WORK(&rq->work, __blk_mq_complete_request_remote_work); ++#endif + INIT_LIST_HEAD(&rq->timeout_list); + rq->timeout = 0; + +@@ -313,6 +316,17 @@ + } + EXPORT_SYMBOL(blk_mq_end_request); + ++#ifdef CONFIG_PREEMPT_RT_FULL ++ ++void __blk_mq_complete_request_remote_work(struct work_struct *work) ++{ ++ struct request *rq = container_of(work, struct request, work); ++ ++ rq->q->softirq_done_fn(rq); ++} ++ ++#else ++ + static void __blk_mq_complete_request_remote(void *data) + { + struct request *rq = data; +@@ -320,6 +334,8 @@ + rq->q->softirq_done_fn(rq); + } + ++#endif ++ + static void blk_mq_ipi_complete_request(struct request *rq) + { + struct blk_mq_ctx *ctx = rq->mq_ctx; +@@ -331,19 +347,23 @@ + return; + } + +- cpu = get_cpu(); ++ cpu = get_cpu_light(); + if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) + shared = cpus_share_cache(cpu, ctx->cpu); + + if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { ++#ifdef CONFIG_PREEMPT_RT_FULL ++ schedule_work_on(ctx->cpu, &rq->work); ++#else + rq->csd.func = __blk_mq_complete_request_remote; + rq->csd.info = rq; + rq->csd.flags = 0; + smp_call_function_single_async(ctx->cpu, &rq->csd); ++#endif + } else { + rq->q->softirq_done_fn(rq); + } +- put_cpu(); ++ put_cpu_light(); + } + + void __blk_mq_complete_request(struct request *rq) +@@ -814,9 +834,9 @@ + test_bit(BLK_MQ_S_STOPPED, &hctx->state)) + continue; + +- preempt_disable(); ++ migrate_disable(); + blk_mq_run_hw_queue(hctx, async); +- preempt_enable(); ++ migrate_enable(); + } + } + EXPORT_SYMBOL(blk_mq_run_queues); +@@ -843,9 +863,9 @@ + { + clear_bit(BLK_MQ_S_STOPPED, &hctx->state); + +- preempt_disable(); ++ migrate_disable(); + blk_mq_run_hw_queue(hctx, false); +- preempt_enable(); ++ migrate_enable(); + } + EXPORT_SYMBOL(blk_mq_start_hw_queue); + +@@ -870,9 +890,9 @@ + continue; + + clear_bit(BLK_MQ_S_STOPPED, &hctx->state); +- preempt_disable(); ++ migrate_disable(); + blk_mq_run_hw_queue(hctx, async); +- preempt_enable(); ++ migrate_enable(); + } + } + EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); +@@ -1494,7 +1514,7 @@ + { + struct blk_mq_hw_ctx *hctx = data; + +- if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) ++ if (action == CPU_POST_DEAD) + return blk_mq_hctx_cpu_offline(hctx, cpu); + else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) + return blk_mq_hctx_cpu_online(hctx, cpu); +diff -Nur linux-3.18.12.orig/block/blk-mq-cpu.c linux-3.18.12/block/blk-mq-cpu.c +--- linux-3.18.12.orig/block/blk-mq-cpu.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/block/blk-mq-cpu.c 2015-04-26 13:32:22.383684003 -0500 +@@ -16,7 +16,7 @@ + #include "blk-mq.h" + + static LIST_HEAD(blk_mq_cpu_notify_list); +-static DEFINE_RAW_SPINLOCK(blk_mq_cpu_notify_lock); ++static DEFINE_SPINLOCK(blk_mq_cpu_notify_lock); + + static int blk_mq_main_cpu_notify(struct notifier_block *self, + unsigned long action, void *hcpu) +@@ -25,7 +25,10 @@ + struct blk_mq_cpu_notifier *notify; + int ret = NOTIFY_OK; + +- raw_spin_lock(&blk_mq_cpu_notify_lock); ++ if (action != CPU_POST_DEAD) ++ return NOTIFY_OK; ++ ++ spin_lock(&blk_mq_cpu_notify_lock); + + list_for_each_entry(notify, &blk_mq_cpu_notify_list, list) { + ret = notify->notify(notify->data, action, cpu); +@@ -33,7 +36,7 @@ + break; + } + +- raw_spin_unlock(&blk_mq_cpu_notify_lock); ++ spin_unlock(&blk_mq_cpu_notify_lock); + return ret; + } + +@@ -41,16 +44,16 @@ + { + BUG_ON(!notifier->notify); + +- raw_spin_lock(&blk_mq_cpu_notify_lock); ++ spin_lock(&blk_mq_cpu_notify_lock); + list_add_tail(¬ifier->list, &blk_mq_cpu_notify_list); +- raw_spin_unlock(&blk_mq_cpu_notify_lock); ++ spin_unlock(&blk_mq_cpu_notify_lock); + } + + void blk_mq_unregister_cpu_notifier(struct blk_mq_cpu_notifier *notifier) + { +- raw_spin_lock(&blk_mq_cpu_notify_lock); ++ spin_lock(&blk_mq_cpu_notify_lock); + list_del(¬ifier->list); +- raw_spin_unlock(&blk_mq_cpu_notify_lock); ++ spin_unlock(&blk_mq_cpu_notify_lock); + } + + void blk_mq_init_cpu_notifier(struct blk_mq_cpu_notifier *notifier, +diff -Nur linux-3.18.12.orig/block/blk-mq.h linux-3.18.12/block/blk-mq.h +--- linux-3.18.12.orig/block/blk-mq.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/block/blk-mq.h 2015-04-26 13:32:22.383684003 -0500 +@@ -73,7 +73,10 @@ + static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q, + unsigned int cpu) + { +- return per_cpu_ptr(q->queue_ctx, cpu); ++ struct blk_mq_ctx *ctx; ++ ++ ctx = per_cpu_ptr(q->queue_ctx, cpu); ++ return ctx; + } + + /* +@@ -84,12 +87,12 @@ + */ + static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q) + { +- return __blk_mq_get_ctx(q, get_cpu()); ++ return __blk_mq_get_ctx(q, get_cpu_light()); + } + + static inline void blk_mq_put_ctx(struct blk_mq_ctx *ctx) + { +- put_cpu(); ++ put_cpu_light(); + } + + struct blk_mq_alloc_data { +diff -Nur linux-3.18.12.orig/block/blk-softirq.c linux-3.18.12/block/blk-softirq.c +--- linux-3.18.12.orig/block/blk-softirq.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/block/blk-softirq.c 2015-04-26 13:32:22.387684003 -0500 +@@ -51,6 +51,7 @@ + raise_softirq_irqoff(BLOCK_SOFTIRQ); + + local_irq_restore(flags); ++ preempt_check_resched_rt(); + } + + /* +@@ -93,6 +94,7 @@ + this_cpu_ptr(&blk_cpu_done)); + raise_softirq_irqoff(BLOCK_SOFTIRQ); + local_irq_enable(); ++ preempt_check_resched_rt(); + } + + return NOTIFY_OK; +@@ -150,6 +152,7 @@ + goto do_local; + + local_irq_restore(flags); ++ preempt_check_resched_rt(); + } + + /** +diff -Nur linux-3.18.12.orig/block/bounce.c linux-3.18.12/block/bounce.c +--- linux-3.18.12.orig/block/bounce.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/block/bounce.c 2015-04-26 13:32:22.387684003 -0500 +@@ -54,11 +54,11 @@ + unsigned long flags; + unsigned char *vto; + +- local_irq_save(flags); ++ local_irq_save_nort(flags); + vto = kmap_atomic(to->bv_page); + memcpy(vto + to->bv_offset, vfrom, to->bv_len); + kunmap_atomic(vto); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + } + + #else /* CONFIG_HIGHMEM */ +diff -Nur linux-3.18.12.orig/crypto/algapi.c linux-3.18.12/crypto/algapi.c +--- linux-3.18.12.orig/crypto/algapi.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/crypto/algapi.c 2015-04-26 13:32:22.387684003 -0500 +@@ -698,13 +698,13 @@ + + int crypto_register_notifier(struct notifier_block *nb) + { +- return blocking_notifier_chain_register(&crypto_chain, nb); ++ return srcu_notifier_chain_register(&crypto_chain, nb); + } + EXPORT_SYMBOL_GPL(crypto_register_notifier); + + int crypto_unregister_notifier(struct notifier_block *nb) + { +- return blocking_notifier_chain_unregister(&crypto_chain, nb); ++ return srcu_notifier_chain_unregister(&crypto_chain, nb); + } + EXPORT_SYMBOL_GPL(crypto_unregister_notifier); + +diff -Nur linux-3.18.12.orig/crypto/api.c linux-3.18.12/crypto/api.c +--- linux-3.18.12.orig/crypto/api.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/crypto/api.c 2015-04-26 13:32:22.387684003 -0500 +@@ -31,7 +31,7 @@ + DECLARE_RWSEM(crypto_alg_sem); + EXPORT_SYMBOL_GPL(crypto_alg_sem); + +-BLOCKING_NOTIFIER_HEAD(crypto_chain); ++SRCU_NOTIFIER_HEAD(crypto_chain); + EXPORT_SYMBOL_GPL(crypto_chain); + + static struct crypto_alg *crypto_larval_wait(struct crypto_alg *alg); +@@ -236,10 +236,10 @@ + { + int ok; + +- ok = blocking_notifier_call_chain(&crypto_chain, val, v); ++ ok = srcu_notifier_call_chain(&crypto_chain, val, v); + if (ok == NOTIFY_DONE) { + request_module("cryptomgr"); +- ok = blocking_notifier_call_chain(&crypto_chain, val, v); ++ ok = srcu_notifier_call_chain(&crypto_chain, val, v); + } + + return ok; +diff -Nur linux-3.18.12.orig/crypto/internal.h linux-3.18.12/crypto/internal.h +--- linux-3.18.12.orig/crypto/internal.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/crypto/internal.h 2015-04-26 13:32:22.387684003 -0500 +@@ -48,7 +48,7 @@ + + extern struct list_head crypto_alg_list; + extern struct rw_semaphore crypto_alg_sem; +-extern struct blocking_notifier_head crypto_chain; ++extern struct srcu_notifier_head crypto_chain; + + #ifdef CONFIG_PROC_FS + void __init crypto_init_proc(void); +@@ -142,7 +142,7 @@ + + static inline void crypto_notify(unsigned long val, void *v) + { +- blocking_notifier_call_chain(&crypto_chain, val, v); ++ srcu_notifier_call_chain(&crypto_chain, val, v); + } + + #endif /* _CRYPTO_INTERNAL_H */ +diff -Nur linux-3.18.12.orig/Documentation/hwlat_detector.txt linux-3.18.12/Documentation/hwlat_detector.txt +--- linux-3.18.12.orig/Documentation/hwlat_detector.txt 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/Documentation/hwlat_detector.txt 2015-04-26 13:32:22.347684003 -0500 +@@ -0,0 +1,64 @@ ++Introduction: ++------------- ++ ++The module hwlat_detector is a special purpose kernel module that is used to ++detect large system latencies induced by the behavior of certain underlying ++hardware or firmware, independent of Linux itself. The code was developed ++originally to detect SMIs (System Management Interrupts) on x86 systems, ++however there is nothing x86 specific about this patchset. It was ++originally written for use by the "RT" patch since the Real Time ++kernel is highly latency sensitive. ++ ++SMIs are usually not serviced by the Linux kernel, which typically does not ++even know that they are occuring. SMIs are instead are set up by BIOS code ++and are serviced by BIOS code, usually for "critical" events such as ++management of thermal sensors and fans. Sometimes though, SMIs are used for ++other tasks and those tasks can spend an inordinate amount of time in the ++handler (sometimes measured in milliseconds). Obviously this is a problem if ++you are trying to keep event service latencies down in the microsecond range. ++ ++The hardware latency detector works by hogging all of the cpus for configurable ++amounts of time (by calling stop_machine()), polling the CPU Time Stamp Counter ++for some period, then looking for gaps in the TSC data. Any gap indicates a ++time when the polling was interrupted and since the machine is stopped and ++interrupts turned off the only thing that could do that would be an SMI. ++ ++Note that the SMI detector should *NEVER* be used in a production environment. ++It is intended to be run manually to determine if the hardware platform has a ++problem with long system firmware service routines. ++ ++Usage: ++------ ++ ++Loading the module hwlat_detector passing the parameter "enabled=1" (or by ++setting the "enable" entry in "hwlat_detector" debugfs toggled on) is the only ++step required to start the hwlat_detector. It is possible to redefine the ++threshold in microseconds (us) above which latency spikes will be taken ++into account (parameter "threshold="). ++ ++Example: ++ ++ # modprobe hwlat_detector enabled=1 threshold=100 ++ ++After the module is loaded, it creates a directory named "hwlat_detector" under ++the debugfs mountpoint, "/debug/hwlat_detector" for this text. It is necessary ++to have debugfs mounted, which might be on /sys/debug on your system. ++ ++The /debug/hwlat_detector interface contains the following files: ++ ++count - number of latency spikes observed since last reset ++enable - a global enable/disable toggle (0/1), resets count ++max - maximum hardware latency actually observed (usecs) ++sample - a pipe from which to read current raw sample data ++ in the format ++ (can be opened O_NONBLOCK for a single sample) ++threshold - minimum latency value to be considered (usecs) ++width - time period to sample with CPUs held (usecs) ++ must be less than the total window size (enforced) ++window - total period of sampling, width being inside (usecs) ++ ++By default we will set width to 500,000 and window to 1,000,000, meaning that ++we will sample every 1,000,000 usecs (1s) for 500,000 usecs (0.5s). If we ++observe any latencies that exceed the threshold (initially 100 usecs), ++then we write to a global sample ring buffer of 8K samples, which is ++consumed by reading from the "sample" (pipe) debugfs file interface. +diff -Nur linux-3.18.12.orig/Documentation/sysrq.txt linux-3.18.12/Documentation/sysrq.txt +--- linux-3.18.12.orig/Documentation/sysrq.txt 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/Documentation/sysrq.txt 2015-04-26 13:32:22.347684003 -0500 +@@ -59,10 +59,17 @@ + On other - If you know of the key combos for other architectures, please + let me know so I can add them to this section. + +-On all - write a character to /proc/sysrq-trigger. e.g.: +- ++On all - write a character to /proc/sysrq-trigger, e.g.: + echo t > /proc/sysrq-trigger + ++On all - Enable network SysRq by writing a cookie to icmp_echo_sysrq, e.g. ++ echo 0x01020304 >/proc/sys/net/ipv4/icmp_echo_sysrq ++ Send an ICMP echo request with this pattern plus the particular ++ SysRq command key. Example: ++ # ping -c1 -s57 -p0102030468 ++ will trigger the SysRq-H (help) command. ++ ++ + * What are the 'command' keys? + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + 'b' - Will immediately reboot the system without syncing or unmounting +diff -Nur linux-3.18.12.orig/Documentation/trace/histograms.txt linux-3.18.12/Documentation/trace/histograms.txt +--- linux-3.18.12.orig/Documentation/trace/histograms.txt 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/Documentation/trace/histograms.txt 2015-04-26 13:32:22.351684003 -0500 +@@ -0,0 +1,186 @@ ++ Using the Linux Kernel Latency Histograms ++ ++ ++This document gives a short explanation how to enable, configure and use ++latency histograms. Latency histograms are primarily relevant in the ++context of real-time enabled kernels (CONFIG_PREEMPT/CONFIG_PREEMPT_RT) ++and are used in the quality management of the Linux real-time ++capabilities. ++ ++ ++* Purpose of latency histograms ++ ++A latency histogram continuously accumulates the frequencies of latency ++data. There are two types of histograms ++- potential sources of latencies ++- effective latencies ++ ++ ++* Potential sources of latencies ++ ++Potential sources of latencies are code segments where interrupts, ++preemption or both are disabled (aka critical sections). To create ++histograms of potential sources of latency, the kernel stores the time ++stamp at the start of a critical section, determines the time elapsed ++when the end of the section is reached, and increments the frequency ++counter of that latency value - irrespective of whether any concurrently ++running process is affected by latency or not. ++- Configuration items (in the Kernel hacking/Tracers submenu) ++ CONFIG_INTERRUPT_OFF_LATENCY ++ CONFIG_PREEMPT_OFF_LATENCY ++ ++ ++* Effective latencies ++ ++Effective latencies are actually occuring during wakeup of a process. To ++determine effective latencies, the kernel stores the time stamp when a ++process is scheduled to be woken up, and determines the duration of the ++wakeup time shortly before control is passed over to this process. Note ++that the apparent latency in user space may be somewhat longer, since the ++process may be interrupted after control is passed over to it but before ++the execution in user space takes place. Simply measuring the interval ++between enqueuing and wakeup may also not appropriate in cases when a ++process is scheduled as a result of a timer expiration. The timer may have ++missed its deadline, e.g. due to disabled interrupts, but this latency ++would not be registered. Therefore, the offsets of missed timers are ++recorded in a separate histogram. If both wakeup latency and missed timer ++offsets are configured and enabled, a third histogram may be enabled that ++records the overall latency as a sum of the timer latency, if any, and the ++wakeup latency. This histogram is called "timerandwakeup". ++- Configuration items (in the Kernel hacking/Tracers submenu) ++ CONFIG_WAKEUP_LATENCY ++ CONFIG_MISSED_TIMER_OFSETS ++ ++ ++* Usage ++ ++The interface to the administration of the latency histograms is located ++in the debugfs file system. To mount it, either enter ++ ++mount -t sysfs nodev /sys ++mount -t debugfs nodev /sys/kernel/debug ++ ++from shell command line level, or add ++ ++nodev /sys sysfs defaults 0 0 ++nodev /sys/kernel/debug debugfs defaults 0 0 ++ ++to the file /etc/fstab. All latency histogram related files are then ++available in the directory /sys/kernel/debug/tracing/latency_hist. A ++particular histogram type is enabled by writing non-zero to the related ++variable in the /sys/kernel/debug/tracing/latency_hist/enable directory. ++Select "preemptirqsoff" for the histograms of potential sources of ++latencies and "wakeup" for histograms of effective latencies etc. The ++histogram data - one per CPU - are available in the files ++ ++/sys/kernel/debug/tracing/latency_hist/preemptoff/CPUx ++/sys/kernel/debug/tracing/latency_hist/irqsoff/CPUx ++/sys/kernel/debug/tracing/latency_hist/preemptirqsoff/CPUx ++/sys/kernel/debug/tracing/latency_hist/wakeup/CPUx ++/sys/kernel/debug/tracing/latency_hist/wakeup/sharedprio/CPUx ++/sys/kernel/debug/tracing/latency_hist/missed_timer_offsets/CPUx ++/sys/kernel/debug/tracing/latency_hist/timerandwakeup/CPUx ++ ++The histograms are reset by writing non-zero to the file "reset" in a ++particular latency directory. To reset all latency data, use ++ ++#!/bin/sh ++ ++TRACINGDIR=/sys/kernel/debug/tracing ++HISTDIR=$TRACINGDIR/latency_hist ++ ++if test -d $HISTDIR ++then ++ cd $HISTDIR ++ for i in `find . | grep /reset$` ++ do ++ echo 1 >$i ++ done ++fi ++ ++ ++* Data format ++ ++Latency data are stored with a resolution of one microsecond. The ++maximum latency is 10,240 microseconds. The data are only valid, if the ++overflow register is empty. Every output line contains the latency in ++microseconds in the first row and the number of samples in the second ++row. To display only lines with a positive latency count, use, for ++example, ++ ++grep -v " 0$" /sys/kernel/debug/tracing/latency_hist/preemptoff/CPU0 ++ ++#Minimum latency: 0 microseconds. ++#Average latency: 0 microseconds. ++#Maximum latency: 25 microseconds. ++#Total samples: 3104770694 ++#There are 0 samples greater or equal than 10240 microseconds ++#usecs samples ++ 0 2984486876 ++ 1 49843506 ++ 2 58219047 ++ 3 5348126 ++ 4 2187960 ++ 5 3388262 ++ 6 959289 ++ 7 208294 ++ 8 40420 ++ 9 4485 ++ 10 14918 ++ 11 18340 ++ 12 25052 ++ 13 19455 ++ 14 5602 ++ 15 969 ++ 16 47 ++ 17 18 ++ 18 14 ++ 19 1 ++ 20 3 ++ 21 2 ++ 22 5 ++ 23 2 ++ 25 1 ++ ++ ++* Wakeup latency of a selected process ++ ++To only collect wakeup latency data of a particular process, write the ++PID of the requested process to ++ ++/sys/kernel/debug/tracing/latency_hist/wakeup/pid ++ ++PIDs are not considered, if this variable is set to 0. ++ ++ ++* Details of the process with the highest wakeup latency so far ++ ++Selected data of the process that suffered from the highest wakeup ++latency that occurred in a particular CPU are available in the file ++ ++/sys/kernel/debug/tracing/latency_hist/wakeup/max_latency-CPUx. ++ ++In addition, other relevant system data at the time when the ++latency occurred are given. ++ ++The format of the data is (all in one line): ++ () \ ++<- ++ ++The value of is only relevant in the combined timer ++and wakeup latency recording. In the wakeup recording, it is ++always 0, in the missed_timer_offsets recording, it is the same ++as . ++ ++When retrospectively searching for the origin of a latency and ++tracing was not enabled, it may be helpful to know the name and ++some basic data of the task that (finally) was switching to the ++late real-tlme task. In addition to the victim's data, also the ++data of the possible culprit are therefore displayed after the ++"<-" symbol. ++ ++Finally, the timestamp of the time when the latency occurred ++in . after the most recent system boot ++is provided. ++ ++These data are also reset when the wakeup histogram is reset. +diff -Nur linux-3.18.12.orig/drivers/acpi/acpica/acglobal.h linux-3.18.12/drivers/acpi/acpica/acglobal.h +--- linux-3.18.12.orig/drivers/acpi/acpica/acglobal.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/acpi/acpica/acglobal.h 2015-04-26 13:32:22.387684003 -0500 +@@ -112,7 +112,7 @@ + * interrupt level + */ + ACPI_GLOBAL(acpi_spinlock, acpi_gbl_gpe_lock); /* For GPE data structs and registers */ +-ACPI_GLOBAL(acpi_spinlock, acpi_gbl_hardware_lock); /* For ACPI H/W except GPE registers */ ++ACPI_GLOBAL(acpi_raw_spinlock, acpi_gbl_hardware_lock); /* For ACPI H/W except GPE registers */ + ACPI_GLOBAL(acpi_spinlock, acpi_gbl_reference_count_lock); + + /* Mutex for _OSI support */ +diff -Nur linux-3.18.12.orig/drivers/acpi/acpica/hwregs.c linux-3.18.12/drivers/acpi/acpica/hwregs.c +--- linux-3.18.12.orig/drivers/acpi/acpica/hwregs.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/acpi/acpica/hwregs.c 2015-04-26 13:32:22.387684003 -0500 +@@ -269,14 +269,14 @@ + ACPI_BITMASK_ALL_FIXED_STATUS, + ACPI_FORMAT_UINT64(acpi_gbl_xpm1a_status.address))); + +- lock_flags = acpi_os_acquire_lock(acpi_gbl_hardware_lock); ++ raw_spin_lock_irqsave(acpi_gbl_hardware_lock, lock_flags); + + /* Clear the fixed events in PM1 A/B */ + + status = acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS, + ACPI_BITMASK_ALL_FIXED_STATUS); + +- acpi_os_release_lock(acpi_gbl_hardware_lock, lock_flags); ++ raw_spin_unlock_irqrestore(acpi_gbl_hardware_lock, lock_flags); + + if (ACPI_FAILURE(status)) { + goto exit; +diff -Nur linux-3.18.12.orig/drivers/acpi/acpica/hwxface.c linux-3.18.12/drivers/acpi/acpica/hwxface.c +--- linux-3.18.12.orig/drivers/acpi/acpica/hwxface.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/acpi/acpica/hwxface.c 2015-04-26 13:32:22.387684003 -0500 +@@ -374,7 +374,7 @@ + return_ACPI_STATUS(AE_BAD_PARAMETER); + } + +- lock_flags = acpi_os_acquire_lock(acpi_gbl_hardware_lock); ++ raw_spin_lock_irqsave(acpi_gbl_hardware_lock, lock_flags); + + /* + * At this point, we know that the parent register is one of the +@@ -435,7 +435,7 @@ + + unlock_and_exit: + +- acpi_os_release_lock(acpi_gbl_hardware_lock, lock_flags); ++ raw_spin_unlock_irqrestore(acpi_gbl_hardware_lock, lock_flags); + return_ACPI_STATUS(status); + } + +diff -Nur linux-3.18.12.orig/drivers/acpi/acpica/utmutex.c linux-3.18.12/drivers/acpi/acpica/utmutex.c +--- linux-3.18.12.orig/drivers/acpi/acpica/utmutex.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/acpi/acpica/utmutex.c 2015-04-26 13:32:22.387684003 -0500 +@@ -88,7 +88,7 @@ + return_ACPI_STATUS (status); + } + +- status = acpi_os_create_lock (&acpi_gbl_hardware_lock); ++ status = acpi_os_create_raw_lock (&acpi_gbl_hardware_lock); + if (ACPI_FAILURE (status)) { + return_ACPI_STATUS (status); + } +@@ -141,7 +141,7 @@ + /* Delete the spinlocks */ + + acpi_os_delete_lock(acpi_gbl_gpe_lock); +- acpi_os_delete_lock(acpi_gbl_hardware_lock); ++ acpi_os_delete_raw_lock(acpi_gbl_hardware_lock); + acpi_os_delete_lock(acpi_gbl_reference_count_lock); + + /* Delete the reader/writer lock */ +diff -Nur linux-3.18.12.orig/drivers/ata/libata-sff.c linux-3.18.12/drivers/ata/libata-sff.c +--- linux-3.18.12.orig/drivers/ata/libata-sff.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/ata/libata-sff.c 2015-04-26 13:32:22.387684003 -0500 +@@ -678,9 +678,9 @@ + unsigned long flags; + unsigned int consumed; + +- local_irq_save(flags); ++ local_irq_save_nort(flags); + consumed = ata_sff_data_xfer32(dev, buf, buflen, rw); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + return consumed; + } +@@ -719,7 +719,7 @@ + unsigned long flags; + + /* FIXME: use a bounce buffer */ +- local_irq_save(flags); ++ local_irq_save_nort(flags); + buf = kmap_atomic(page); + + /* do the actual data transfer */ +@@ -727,7 +727,7 @@ + do_write); + + kunmap_atomic(buf); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + } else { + buf = page_address(page); + ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, +@@ -864,7 +864,7 @@ + unsigned long flags; + + /* FIXME: use bounce buffer */ +- local_irq_save(flags); ++ local_irq_save_nort(flags); + buf = kmap_atomic(page); + + /* do the actual data transfer */ +@@ -872,7 +872,7 @@ + count, rw); + + kunmap_atomic(buf); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + } else { + buf = page_address(page); + consumed = ap->ops->sff_data_xfer(dev, buf + offset, +diff -Nur linux-3.18.12.orig/drivers/char/random.c linux-3.18.12/drivers/char/random.c +--- linux-3.18.12.orig/drivers/char/random.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/char/random.c 2015-04-26 13:32:22.387684003 -0500 +@@ -776,8 +776,6 @@ + } sample; + long delta, delta2, delta3; + +- preempt_disable(); +- + sample.jiffies = jiffies; + sample.cycles = random_get_entropy(); + sample.num = num; +@@ -818,7 +816,6 @@ + */ + credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); + } +- preempt_enable(); + } + + void add_input_randomness(unsigned int type, unsigned int code, +@@ -871,28 +868,27 @@ + return *(ptr + f->reg_idx++); + } + +-void add_interrupt_randomness(int irq, int irq_flags) ++void add_interrupt_randomness(int irq, int irq_flags, __u64 ip) + { + struct entropy_store *r; + struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); +- struct pt_regs *regs = get_irq_regs(); + unsigned long now = jiffies; + cycles_t cycles = random_get_entropy(); + __u32 c_high, j_high; +- __u64 ip; + unsigned long seed; + int credit = 0; + + if (cycles == 0) +- cycles = get_reg(fast_pool, regs); ++ cycles = get_reg(fast_pool, NULL); + c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; + j_high = (sizeof(now) > 4) ? now >> 32 : 0; + fast_pool->pool[0] ^= cycles ^ j_high ^ irq; + fast_pool->pool[1] ^= now ^ c_high; +- ip = regs ? instruction_pointer(regs) : _RET_IP_; ++ if (!ip) ++ ip = _RET_IP_; + fast_pool->pool[2] ^= ip; + fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : +- get_reg(fast_pool, regs); ++ get_reg(fast_pool, NULL); + + fast_mix(fast_pool); + add_interrupt_bench(cycles); +diff -Nur linux-3.18.12.orig/drivers/clocksource/tcb_clksrc.c linux-3.18.12/drivers/clocksource/tcb_clksrc.c +--- linux-3.18.12.orig/drivers/clocksource/tcb_clksrc.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/clocksource/tcb_clksrc.c 2015-04-26 13:32:22.387684003 -0500 +@@ -23,8 +23,7 @@ + * this 32 bit free-running counter. the second channel is not used. + * + * - The third channel may be used to provide a 16-bit clockevent +- * source, used in either periodic or oneshot mode. This runs +- * at 32 KiHZ, and can handle delays of up to two seconds. ++ * source, used in either periodic or oneshot mode. + * + * A boot clocksource and clockevent source are also currently needed, + * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so +@@ -74,6 +73,7 @@ + struct tc_clkevt_device { + struct clock_event_device clkevt; + struct clk *clk; ++ u32 freq; + void __iomem *regs; + }; + +@@ -82,13 +82,6 @@ + return container_of(clkevt, struct tc_clkevt_device, clkevt); + } + +-/* For now, we always use the 32K clock ... this optimizes for NO_HZ, +- * because using one of the divided clocks would usually mean the +- * tick rate can never be less than several dozen Hz (vs 0.5 Hz). +- * +- * A divided clock could be good for high resolution timers, since +- * 30.5 usec resolution can seem "low". +- */ + static u32 timer_clock; + + static void tc_mode(enum clock_event_mode m, struct clock_event_device *d) +@@ -111,11 +104,12 @@ + case CLOCK_EVT_MODE_PERIODIC: + clk_enable(tcd->clk); + +- /* slow clock, count up to RC, then irq and restart */ ++ /* count up to RC, then irq and restart */ + __raw_writel(timer_clock + | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, + regs + ATMEL_TC_REG(2, CMR)); +- __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC)); ++ __raw_writel((tcd->freq + HZ / 2) / HZ, ++ tcaddr + ATMEL_TC_REG(2, RC)); + + /* Enable clock and interrupts on RC compare */ + __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); +@@ -128,7 +122,7 @@ + case CLOCK_EVT_MODE_ONESHOT: + clk_enable(tcd->clk); + +- /* slow clock, count up to RC, then irq and stop */ ++ /* count up to RC, then irq and stop */ + __raw_writel(timer_clock | ATMEL_TC_CPCSTOP + | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, + regs + ATMEL_TC_REG(2, CMR)); +@@ -157,8 +151,12 @@ + .name = "tc_clkevt", + .features = CLOCK_EVT_FEAT_PERIODIC + | CLOCK_EVT_FEAT_ONESHOT, ++#ifdef CONFIG_ATMEL_TCB_CLKSRC_USE_SLOW_CLOCK + /* Should be lower than at91rm9200's system timer */ + .rating = 125, ++#else ++ .rating = 200, ++#endif + .set_next_event = tc_next_event, + .set_mode = tc_mode, + }, +@@ -178,8 +176,9 @@ + return IRQ_NONE; + } + +-static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx) ++static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx) + { ++ unsigned divisor = atmel_tc_divisors[divisor_idx]; + int ret; + struct clk *t2_clk = tc->clk[2]; + int irq = tc->irq[2]; +@@ -193,7 +192,11 @@ + clkevt.regs = tc->regs; + clkevt.clk = t2_clk; + +- timer_clock = clk32k_divisor_idx; ++ timer_clock = divisor_idx; ++ if (!divisor) ++ clkevt.freq = 32768; ++ else ++ clkevt.freq = clk_get_rate(t2_clk) / divisor; + + clkevt.clkevt.cpumask = cpumask_of(0); + +@@ -203,7 +206,7 @@ + return ret; + } + +- clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff); ++ clockevents_config_and_register(&clkevt.clkevt, clkevt.freq, 1, 0xffff); + + return ret; + } +@@ -340,7 +343,11 @@ + goto err_disable_t1; + + /* channel 2: periodic and oneshot timer support */ ++#ifdef CONFIG_ATMEL_TCB_CLKSRC_USE_SLOW_CLOCK + ret = setup_clkevents(tc, clk32k_divisor_idx); ++#else ++ ret = setup_clkevents(tc, best_divisor_idx); ++#endif + if (ret) + goto err_unregister_clksrc; + +diff -Nur linux-3.18.12.orig/drivers/clocksource/timer-atmel-pit.c linux-3.18.12/drivers/clocksource/timer-atmel-pit.c +--- linux-3.18.12.orig/drivers/clocksource/timer-atmel-pit.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/clocksource/timer-atmel-pit.c 2015-04-26 13:32:22.387684003 -0500 +@@ -90,6 +90,7 @@ + return elapsed; + } + ++static struct irqaction at91sam926x_pit_irq; + /* + * Clockevent device: interrupts every 1/HZ (== pit_cycles * MCK/16) + */ +@@ -100,6 +101,8 @@ + + switch (mode) { + case CLOCK_EVT_MODE_PERIODIC: ++ /* Set up irq handler */ ++ setup_irq(at91sam926x_pit_irq.irq, &at91sam926x_pit_irq); + /* update clocksource counter */ + data->cnt += data->cycle * PIT_PICNT(pit_read(data->base, AT91_PIT_PIVR)); + pit_write(data->base, AT91_PIT_MR, +@@ -113,6 +116,7 @@ + /* disable irq, leaving the clocksource active */ + pit_write(data->base, AT91_PIT_MR, + (data->cycle - 1) | AT91_PIT_PITEN); ++ remove_irq(at91sam926x_pit_irq.irq, &at91sam926x_pit_irq); + break; + case CLOCK_EVT_MODE_RESUME: + break; +diff -Nur linux-3.18.12.orig/drivers/cpufreq/Kconfig.x86 linux-3.18.12/drivers/cpufreq/Kconfig.x86 +--- linux-3.18.12.orig/drivers/cpufreq/Kconfig.x86 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/cpufreq/Kconfig.x86 2015-04-26 13:32:22.387684003 -0500 +@@ -113,7 +113,7 @@ + + config X86_POWERNOW_K8 + tristate "AMD Opteron/Athlon64 PowerNow!" +- depends on ACPI && ACPI_PROCESSOR && X86_ACPI_CPUFREQ ++ depends on ACPI && ACPI_PROCESSOR && X86_ACPI_CPUFREQ && !PREEMPT_RT_BASE + help + This adds the CPUFreq driver for K8/early Opteron/Athlon64 processors. + Support for K10 and newer processors is now in acpi-cpufreq. +diff -Nur linux-3.18.12.orig/drivers/gpio/gpio-omap.c linux-3.18.12/drivers/gpio/gpio-omap.c +--- linux-3.18.12.orig/drivers/gpio/gpio-omap.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/gpio/gpio-omap.c 2015-04-26 13:32:22.387684003 -0500 +@@ -57,7 +57,7 @@ + u32 saved_datain; + u32 level_mask; + u32 toggle_mask; +- spinlock_t lock; ++ raw_spinlock_t lock; + struct gpio_chip chip; + struct clk *dbck; + u32 mod_usage; +@@ -503,19 +503,19 @@ + (type & (IRQ_TYPE_LEVEL_LOW|IRQ_TYPE_LEVEL_HIGH))) + return -EINVAL; + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + offset = GPIO_INDEX(bank, gpio); + retval = omap_set_gpio_triggering(bank, offset, type); + if (!LINE_USED(bank->mod_usage, offset)) { + omap_enable_gpio_module(bank, offset); + omap_set_gpio_direction(bank, offset, 1); + } else if (!omap_gpio_is_input(bank, BIT(offset))) { +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + return -EINVAL; + } + + bank->irq_usage |= BIT(GPIO_INDEX(bank, gpio)); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + + if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH)) + __irq_set_handler_locked(d->irq, handle_level_irq); +@@ -633,14 +633,14 @@ + return -EINVAL; + } + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + if (enable) + bank->context.wake_en |= gpio_bit; + else + bank->context.wake_en &= ~gpio_bit; + + writel_relaxed(bank->context.wake_en, bank->base + bank->regs->wkup_en); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + + return 0; + } +@@ -675,7 +675,7 @@ + if (!BANK_USED(bank)) + pm_runtime_get_sync(bank->dev); + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + /* Set trigger to none. You need to enable the desired trigger with + * request_irq() or set_irq_type(). Only do this if the IRQ line has + * not already been requested. +@@ -685,7 +685,7 @@ + omap_enable_gpio_module(bank, offset); + } + bank->mod_usage |= BIT(offset); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + + return 0; + } +@@ -695,11 +695,11 @@ + struct gpio_bank *bank = container_of(chip, struct gpio_bank, chip); + unsigned long flags; + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + bank->mod_usage &= ~(BIT(offset)); + omap_disable_gpio_module(bank, offset); + omap_reset_gpio(bank, bank->chip.base + offset); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + + /* + * If this is the last gpio to be freed in the bank, +@@ -799,12 +799,12 @@ + unsigned long flags; + unsigned offset = GPIO_INDEX(bank, gpio); + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + gpio_unlock_as_irq(&bank->chip, offset); + bank->irq_usage &= ~(BIT(offset)); + omap_disable_gpio_module(bank, offset); + omap_reset_gpio(bank, gpio); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + + /* + * If this is the last IRQ to be freed in the bank, +@@ -828,10 +828,10 @@ + unsigned int gpio = omap_irq_to_gpio(bank, d->hwirq); + unsigned long flags; + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + omap_set_gpio_irqenable(bank, gpio, 0); + omap_set_gpio_triggering(bank, GPIO_INDEX(bank, gpio), IRQ_TYPE_NONE); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + } + + static void omap_gpio_unmask_irq(struct irq_data *d) +@@ -842,7 +842,7 @@ + u32 trigger = irqd_get_trigger_type(d); + unsigned long flags; + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + if (trigger) + omap_set_gpio_triggering(bank, GPIO_INDEX(bank, gpio), trigger); + +@@ -854,7 +854,7 @@ + } + + omap_set_gpio_irqenable(bank, gpio, 1); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + } + + /*---------------------------------------------------------------------*/ +@@ -867,9 +867,9 @@ + OMAP_MPUIO_GPIO_MASKIT / bank->stride; + unsigned long flags; + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + writel_relaxed(0xffff & ~bank->context.wake_en, mask_reg); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + + return 0; + } +@@ -882,9 +882,9 @@ + OMAP_MPUIO_GPIO_MASKIT / bank->stride; + unsigned long flags; + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + writel_relaxed(bank->context.wake_en, mask_reg); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + + return 0; + } +@@ -930,9 +930,9 @@ + + bank = container_of(chip, struct gpio_bank, chip); + reg = bank->base + bank->regs->direction; +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + dir = !!(readl_relaxed(reg) & BIT(offset)); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + return dir; + } + +@@ -942,9 +942,9 @@ + unsigned long flags; + + bank = container_of(chip, struct gpio_bank, chip); +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + omap_set_gpio_direction(bank, offset, 1); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + return 0; + } + +@@ -968,10 +968,10 @@ + unsigned long flags; + + bank = container_of(chip, struct gpio_bank, chip); +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + bank->set_dataout(bank, offset, value); + omap_set_gpio_direction(bank, offset, 0); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + return 0; + } + +@@ -983,9 +983,9 @@ + + bank = container_of(chip, struct gpio_bank, chip); + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + omap2_set_gpio_debounce(bank, offset, debounce); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + + return 0; + } +@@ -996,9 +996,9 @@ + unsigned long flags; + + bank = container_of(chip, struct gpio_bank, chip); +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + bank->set_dataout(bank, offset, value); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + } + + /*---------------------------------------------------------------------*/ +@@ -1223,7 +1223,7 @@ + else + bank->set_dataout = omap_set_gpio_dataout_mask; + +- spin_lock_init(&bank->lock); ++ raw_spin_lock_init(&bank->lock); + + /* Static mapping, never released */ + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); +@@ -1270,7 +1270,7 @@ + unsigned long flags; + u32 wake_low, wake_hi; + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + + /* + * Only edges can generate a wakeup event to the PRCM. +@@ -1323,7 +1323,7 @@ + bank->get_context_loss_count(bank->dev); + + omap_gpio_dbck_disable(bank); +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + + return 0; + } +@@ -1338,7 +1338,7 @@ + unsigned long flags; + int c; + +- spin_lock_irqsave(&bank->lock, flags); ++ raw_spin_lock_irqsave(&bank->lock, flags); + + /* + * On the first resume during the probe, the context has not +@@ -1374,14 +1374,14 @@ + if (c != bank->context_loss_count) { + omap_gpio_restore_context(bank); + } else { +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + return 0; + } + } + } + + if (!bank->workaround_enabled) { +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + return 0; + } + +@@ -1436,7 +1436,7 @@ + } + + bank->workaround_enabled = false; +- spin_unlock_irqrestore(&bank->lock, flags); ++ raw_spin_unlock_irqrestore(&bank->lock, flags); + + return 0; + } +diff -Nur linux-3.18.12.orig/drivers/gpu/drm/i915/i915_gem.c linux-3.18.12/drivers/gpu/drm/i915/i915_gem.c +--- linux-3.18.12.orig/drivers/gpu/drm/i915/i915_gem.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/gpu/drm/i915/i915_gem.c 2015-04-26 13:32:22.391684003 -0500 +@@ -5144,7 +5144,7 @@ + if (!mutex_is_locked(mutex)) + return false; + +-#if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES) ++#if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES) && !defined(CONFIG_PREEMPT_RT_BASE) + return mutex->owner == task; + #else + /* Since UP may be pre-empted, we cannot assume that we own the lock */ +diff -Nur linux-3.18.12.orig/drivers/gpu/drm/i915/i915_gem_execbuffer.c linux-3.18.12/drivers/gpu/drm/i915/i915_gem_execbuffer.c +--- linux-3.18.12.orig/drivers/gpu/drm/i915/i915_gem_execbuffer.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/gpu/drm/i915/i915_gem_execbuffer.c 2015-04-26 13:32:22.391684003 -0500 +@@ -1170,7 +1170,9 @@ + return ret; + } + ++#ifndef CONFIG_PREEMPT_RT_BASE + trace_i915_gem_ring_dispatch(ring, intel_ring_get_seqno(ring), flags); ++#endif + + i915_gem_execbuffer_move_to_active(vmas, ring); + i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj); +diff -Nur linux-3.18.12.orig/drivers/i2c/busses/i2c-omap.c linux-3.18.12/drivers/i2c/busses/i2c-omap.c +--- linux-3.18.12.orig/drivers/i2c/busses/i2c-omap.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/i2c/busses/i2c-omap.c 2015-04-26 13:32:22.391684003 -0500 +@@ -875,15 +875,12 @@ + u16 mask; + u16 stat; + +- spin_lock(&dev->lock); +- mask = omap_i2c_read_reg(dev, OMAP_I2C_IE_REG); + stat = omap_i2c_read_reg(dev, OMAP_I2C_STAT_REG); ++ mask = omap_i2c_read_reg(dev, OMAP_I2C_IE_REG); + + if (stat & mask) + ret = IRQ_WAKE_THREAD; + +- spin_unlock(&dev->lock); +- + return ret; + } + +diff -Nur linux-3.18.12.orig/drivers/ide/alim15x3.c linux-3.18.12/drivers/ide/alim15x3.c +--- linux-3.18.12.orig/drivers/ide/alim15x3.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/ide/alim15x3.c 2015-04-26 13:32:22.391684003 -0500 +@@ -234,7 +234,7 @@ + + isa_dev = pci_get_device(PCI_VENDOR_ID_AL, PCI_DEVICE_ID_AL_M1533, NULL); + +- local_irq_save(flags); ++ local_irq_save_nort(flags); + + if (m5229_revision < 0xC2) { + /* +@@ -325,7 +325,7 @@ + } + pci_dev_put(north); + pci_dev_put(isa_dev); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + return 0; + } + +diff -Nur linux-3.18.12.orig/drivers/ide/hpt366.c linux-3.18.12/drivers/ide/hpt366.c +--- linux-3.18.12.orig/drivers/ide/hpt366.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/ide/hpt366.c 2015-04-26 13:32:22.391684003 -0500 +@@ -1241,7 +1241,7 @@ + + dma_old = inb(base + 2); + +- local_irq_save(flags); ++ local_irq_save_nort(flags); + + dma_new = dma_old; + pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma); +@@ -1252,7 +1252,7 @@ + if (dma_new != dma_old) + outb(dma_new, base + 2); + +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx\n", + hwif->name, base, base + 7); +diff -Nur linux-3.18.12.orig/drivers/ide/ide-io.c linux-3.18.12/drivers/ide/ide-io.c +--- linux-3.18.12.orig/drivers/ide/ide-io.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/ide/ide-io.c 2015-04-26 13:32:22.391684003 -0500 +@@ -659,7 +659,7 @@ + /* disable_irq_nosync ?? */ + disable_irq(hwif->irq); + /* local CPU only, as if we were handling an interrupt */ +- local_irq_disable(); ++ local_irq_disable_nort(); + if (hwif->polling) { + startstop = handler(drive); + } else if (drive_is_ready(drive)) { +diff -Nur linux-3.18.12.orig/drivers/ide/ide-iops.c linux-3.18.12/drivers/ide/ide-iops.c +--- linux-3.18.12.orig/drivers/ide/ide-iops.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/ide/ide-iops.c 2015-04-26 13:32:22.391684003 -0500 +@@ -129,12 +129,12 @@ + if ((stat & ATA_BUSY) == 0) + break; + +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + *rstat = stat; + return -EBUSY; + } + } +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + } + /* + * Allow status to settle, then read it again. +diff -Nur linux-3.18.12.orig/drivers/ide/ide-io-std.c linux-3.18.12/drivers/ide/ide-io-std.c +--- linux-3.18.12.orig/drivers/ide/ide-io-std.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/ide/ide-io-std.c 2015-04-26 13:32:22.391684003 -0500 +@@ -175,7 +175,7 @@ + unsigned long uninitialized_var(flags); + + if ((io_32bit & 2) && !mmio) { +- local_irq_save(flags); ++ local_irq_save_nort(flags); + ata_vlb_sync(io_ports->nsect_addr); + } + +@@ -186,7 +186,7 @@ + insl(data_addr, buf, words); + + if ((io_32bit & 2) && !mmio) +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + if (((len + 1) & 3) < 2) + return; +@@ -219,7 +219,7 @@ + unsigned long uninitialized_var(flags); + + if ((io_32bit & 2) && !mmio) { +- local_irq_save(flags); ++ local_irq_save_nort(flags); + ata_vlb_sync(io_ports->nsect_addr); + } + +@@ -230,7 +230,7 @@ + outsl(data_addr, buf, words); + + if ((io_32bit & 2) && !mmio) +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + if (((len + 1) & 3) < 2) + return; +diff -Nur linux-3.18.12.orig/drivers/ide/ide-probe.c linux-3.18.12/drivers/ide/ide-probe.c +--- linux-3.18.12.orig/drivers/ide/ide-probe.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/ide/ide-probe.c 2015-04-26 13:32:22.391684003 -0500 +@@ -196,10 +196,10 @@ + int bswap = 1; + + /* local CPU only; some systems need this */ +- local_irq_save(flags); ++ local_irq_save_nort(flags); + /* read 512 bytes of id info */ + hwif->tp_ops->input_data(drive, NULL, id, SECTOR_SIZE); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + drive->dev_flags |= IDE_DFLAG_ID_READ; + #ifdef DEBUG +diff -Nur linux-3.18.12.orig/drivers/ide/ide-taskfile.c linux-3.18.12/drivers/ide/ide-taskfile.c +--- linux-3.18.12.orig/drivers/ide/ide-taskfile.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/ide/ide-taskfile.c 2015-04-26 13:32:22.391684003 -0500 +@@ -250,7 +250,7 @@ + + page_is_high = PageHighMem(page); + if (page_is_high) +- local_irq_save(flags); ++ local_irq_save_nort(flags); + + buf = kmap_atomic(page) + offset; + +@@ -271,7 +271,7 @@ + kunmap_atomic(buf); + + if (page_is_high) +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + len -= nr_bytes; + } +@@ -414,7 +414,7 @@ + } + + if ((drive->dev_flags & IDE_DFLAG_UNMASK) == 0) +- local_irq_disable(); ++ local_irq_disable_nort(); + + ide_set_handler(drive, &task_pio_intr, WAIT_WORSTCASE); + +diff -Nur linux-3.18.12.orig/drivers/infiniband/ulp/ipoib/ipoib_multicast.c linux-3.18.12/drivers/infiniband/ulp/ipoib/ipoib_multicast.c +--- linux-3.18.12.orig/drivers/infiniband/ulp/ipoib/ipoib_multicast.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/infiniband/ulp/ipoib/ipoib_multicast.c 2015-04-26 13:32:22.391684003 -0500 +@@ -796,7 +796,7 @@ + + ipoib_mcast_stop_thread(dev, 0); + +- local_irq_save(flags); ++ local_irq_save_nort(flags); + netif_addr_lock(dev); + spin_lock(&priv->lock); + +@@ -878,7 +878,7 @@ + + spin_unlock(&priv->lock); + netif_addr_unlock(dev); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + /* We have to cancel outside of the spinlock */ + list_for_each_entry_safe(mcast, tmcast, &remove_list, list) { +diff -Nur linux-3.18.12.orig/drivers/input/gameport/gameport.c linux-3.18.12/drivers/input/gameport/gameport.c +--- linux-3.18.12.orig/drivers/input/gameport/gameport.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/input/gameport/gameport.c 2015-04-26 13:32:22.391684003 -0500 +@@ -124,12 +124,12 @@ + tx = 1 << 30; + + for(i = 0; i < 50; i++) { +- local_irq_save(flags); ++ local_irq_save_nort(flags); + GET_TIME(t1); + for (t = 0; t < 50; t++) gameport_read(gameport); + GET_TIME(t2); + GET_TIME(t3); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + udelay(i * 10); + if ((t = DELTA(t2,t1) - DELTA(t3,t2)) < tx) tx = t; + } +@@ -148,11 +148,11 @@ + tx = 1 << 30; + + for(i = 0; i < 50; i++) { +- local_irq_save(flags); ++ local_irq_save_nort(flags); + rdtscl(t1); + for (t = 0; t < 50; t++) gameport_read(gameport); + rdtscl(t2); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + udelay(i * 10); + if (t2 - t1 < tx) tx = t2 - t1; + } +diff -Nur linux-3.18.12.orig/drivers/leds/trigger/Kconfig linux-3.18.12/drivers/leds/trigger/Kconfig +--- linux-3.18.12.orig/drivers/leds/trigger/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/leds/trigger/Kconfig 2015-04-26 13:32:22.391684003 -0500 +@@ -61,7 +61,7 @@ + + config LEDS_TRIGGER_CPU + bool "LED CPU Trigger" +- depends on LEDS_TRIGGERS ++ depends on LEDS_TRIGGERS && !PREEMPT_RT_BASE + help + This allows LEDs to be controlled by active CPUs. This shows + the active CPUs across an array of LEDs so you can see which +diff -Nur linux-3.18.12.orig/drivers/md/bcache/Kconfig linux-3.18.12/drivers/md/bcache/Kconfig +--- linux-3.18.12.orig/drivers/md/bcache/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/md/bcache/Kconfig 2015-04-26 13:32:22.391684003 -0500 +@@ -1,6 +1,7 @@ + + config BCACHE + tristate "Block device as cache" ++ depends on !PREEMPT_RT_FULL + ---help--- + Allows a block device to be used as cache for other devices; uses + a btree for indexing and the layout is optimized for SSDs. +diff -Nur linux-3.18.12.orig/drivers/md/dm.c linux-3.18.12/drivers/md/dm.c +--- linux-3.18.12.orig/drivers/md/dm.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/md/dm.c 2015-04-26 13:32:22.395684003 -0500 +@@ -1898,14 +1898,14 @@ + if (map_request(ti, clone, md)) + goto requeued; + +- BUG_ON(!irqs_disabled()); ++ BUG_ON_NONRT(!irqs_disabled()); + spin_lock(q->queue_lock); + } + + goto out; + + requeued: +- BUG_ON(!irqs_disabled()); ++ BUG_ON_NONRT(!irqs_disabled()); + spin_lock(q->queue_lock); + + delay_and_out: +diff -Nur linux-3.18.12.orig/drivers/md/raid5.c linux-3.18.12/drivers/md/raid5.c +--- linux-3.18.12.orig/drivers/md/raid5.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/md/raid5.c 2015-04-26 13:32:22.395684003 -0500 +@@ -1649,8 +1649,9 @@ + struct raid5_percpu *percpu; + unsigned long cpu; + +- cpu = get_cpu(); ++ cpu = get_cpu_light(); + percpu = per_cpu_ptr(conf->percpu, cpu); ++ spin_lock(&percpu->lock); + if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { + ops_run_biofill(sh); + overlap_clear++; +@@ -1702,7 +1703,8 @@ + if (test_and_clear_bit(R5_Overlap, &dev->flags)) + wake_up(&sh->raid_conf->wait_for_overlap); + } +- put_cpu(); ++ spin_unlock(&percpu->lock); ++ put_cpu_light(); + } + + static int grow_one_stripe(struct r5conf *conf, int hash) +@@ -5708,6 +5710,7 @@ + __func__, cpu); + break; + } ++ spin_lock_init(&per_cpu_ptr(conf->percpu, cpu)->lock); + } + put_online_cpus(); + +diff -Nur linux-3.18.12.orig/drivers/md/raid5.h linux-3.18.12/drivers/md/raid5.h +--- linux-3.18.12.orig/drivers/md/raid5.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/md/raid5.h 2015-04-26 13:32:22.395684003 -0500 +@@ -457,6 +457,7 @@ + int recovery_disabled; + /* per cpu variables */ + struct raid5_percpu { ++ spinlock_t lock; /* Protection for -RT */ + struct page *spare_page; /* Used when checking P/Q in raid6 */ + void *scribble; /* space for constructing buffer + * lists and performing address +diff -Nur linux-3.18.12.orig/drivers/misc/hwlat_detector.c linux-3.18.12/drivers/misc/hwlat_detector.c +--- linux-3.18.12.orig/drivers/misc/hwlat_detector.c 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/drivers/misc/hwlat_detector.c 2015-04-26 13:32:22.395684003 -0500 +@@ -0,0 +1,1240 @@ ++/* ++ * hwlat_detector.c - A simple Hardware Latency detector. ++ * ++ * Use this module to detect large system latencies induced by the behavior of ++ * certain underlying system hardware or firmware, independent of Linux itself. ++ * The code was developed originally to detect the presence of SMIs on Intel ++ * and AMD systems, although there is no dependency upon x86 herein. ++ * ++ * The classical example usage of this module is in detecting the presence of ++ * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a ++ * somewhat special form of hardware interrupt spawned from earlier CPU debug ++ * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge ++ * LPC (or other device) to generate a special interrupt under certain ++ * circumstances, for example, upon expiration of a special SMI timer device, ++ * due to certain external thermal readings, on certain I/O address accesses, ++ * and other situations. An SMI hits a special CPU pin, triggers a special ++ * SMI mode (complete with special memory map), and the OS is unaware. ++ * ++ * Although certain hardware-inducing latencies are necessary (for example, ++ * a modern system often requires an SMI handler for correct thermal control ++ * and remote management) they can wreak havoc upon any OS-level performance ++ * guarantees toward low-latency, especially when the OS is not even made ++ * aware of the presence of these interrupts. For this reason, we need a ++ * somewhat brute force mechanism to detect these interrupts. In this case, ++ * we do it by hogging all of the CPU(s) for configurable timer intervals, ++ * sampling the built-in CPU timer, looking for discontiguous readings. ++ * ++ * WARNING: This implementation necessarily introduces latencies. Therefore, ++ * you should NEVER use this module in a production environment ++ * requiring any kind of low-latency performance guarantee(s). ++ * ++ * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. ++ * ++ * Includes useful feedback from Clark Williams ++ * ++ * This file is licensed under the terms of the GNU General Public ++ * License version 2. This program is licensed "as is" without any ++ * warranty of any kind, whether express or implied. ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#define BUF_SIZE_DEFAULT 262144UL /* 8K*(sizeof(entry)) */ ++#define BUF_FLAGS (RB_FL_OVERWRITE) /* no block on full */ ++#define U64STR_SIZE 22 /* 20 digits max */ ++ ++#define VERSION "1.0.0" ++#define BANNER "hwlat_detector: " ++#define DRVNAME "hwlat_detector" ++#define DEFAULT_SAMPLE_WINDOW 1000000 /* 1s */ ++#define DEFAULT_SAMPLE_WIDTH 500000 /* 0.5s */ ++#define DEFAULT_LAT_THRESHOLD 10 /* 10us */ ++ ++/* Module metadata */ ++ ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("Jon Masters "); ++MODULE_DESCRIPTION("A simple hardware latency detector"); ++MODULE_VERSION(VERSION); ++ ++/* Module parameters */ ++ ++static int debug; ++static int enabled; ++static int threshold; ++ ++module_param(debug, int, 0); /* enable debug */ ++module_param(enabled, int, 0); /* enable detector */ ++module_param(threshold, int, 0); /* latency threshold */ ++ ++/* Buffering and sampling */ ++ ++static struct ring_buffer *ring_buffer; /* sample buffer */ ++static DEFINE_MUTEX(ring_buffer_mutex); /* lock changes */ ++static unsigned long buf_size = BUF_SIZE_DEFAULT; ++static struct task_struct *kthread; /* sampling thread */ ++ ++/* DebugFS filesystem entries */ ++ ++static struct dentry *debug_dir; /* debugfs directory */ ++static struct dentry *debug_max; /* maximum TSC delta */ ++static struct dentry *debug_count; /* total detect count */ ++static struct dentry *debug_sample_width; /* sample width us */ ++static struct dentry *debug_sample_window; /* sample window us */ ++static struct dentry *debug_sample; /* raw samples us */ ++static struct dentry *debug_threshold; /* threshold us */ ++static struct dentry *debug_enable; /* enable/disable */ ++ ++/* Individual samples and global state */ ++ ++struct sample; /* latency sample */ ++struct data; /* Global state */ ++ ++/* Sampling functions */ ++static int __buffer_add_sample(struct sample *sample); ++static struct sample *buffer_get_sample(struct sample *sample); ++ ++/* Threading and state */ ++static int kthread_fn(void *unused); ++static int start_kthread(void); ++static int stop_kthread(void); ++static void __reset_stats(void); ++static int init_stats(void); ++ ++/* Debugfs interface */ ++static ssize_t simple_data_read(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos, const u64 *entry); ++static ssize_t simple_data_write(struct file *filp, const char __user *ubuf, ++ size_t cnt, loff_t *ppos, u64 *entry); ++static int debug_sample_fopen(struct inode *inode, struct file *filp); ++static ssize_t debug_sample_fread(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos); ++static int debug_sample_release(struct inode *inode, struct file *filp); ++static int debug_enable_fopen(struct inode *inode, struct file *filp); ++static ssize_t debug_enable_fread(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos); ++static ssize_t debug_enable_fwrite(struct file *file, ++ const char __user *user_buffer, ++ size_t user_size, loff_t *offset); ++ ++/* Initialization functions */ ++static int init_debugfs(void); ++static void free_debugfs(void); ++static int detector_init(void); ++static void detector_exit(void); ++ ++/* Individual latency samples are stored here when detected and packed into ++ * the ring_buffer circular buffer, where they are overwritten when ++ * more than buf_size/sizeof(sample) samples are received. */ ++struct sample { ++ u64 seqnum; /* unique sequence */ ++ u64 duration; /* ktime delta */ ++ u64 outer_duration; /* ktime delta (outer loop) */ ++ struct timespec timestamp; /* wall time */ ++ unsigned long lost; ++}; ++ ++/* keep the global state somewhere. */ ++static struct data { ++ ++ struct mutex lock; /* protect changes */ ++ ++ u64 count; /* total since reset */ ++ u64 max_sample; /* max hardware latency */ ++ u64 threshold; /* sample threshold level */ ++ ++ u64 sample_window; /* total sampling window (on+off) */ ++ u64 sample_width; /* active sampling portion of window */ ++ ++ atomic_t sample_open; /* whether the sample file is open */ ++ ++ wait_queue_head_t wq; /* waitqeue for new sample values */ ++ ++} data; ++ ++/** ++ * __buffer_add_sample - add a new latency sample recording to the ring buffer ++ * @sample: The new latency sample value ++ * ++ * This receives a new latency sample and records it in a global ring buffer. ++ * No additional locking is used in this case. ++ */ ++static int __buffer_add_sample(struct sample *sample) ++{ ++ return ring_buffer_write(ring_buffer, ++ sizeof(struct sample), sample); ++} ++ ++/** ++ * buffer_get_sample - remove a hardware latency sample from the ring buffer ++ * @sample: Pre-allocated storage for the sample ++ * ++ * This retrieves a hardware latency sample from the global circular buffer ++ */ ++static struct sample *buffer_get_sample(struct sample *sample) ++{ ++ struct ring_buffer_event *e = NULL; ++ struct sample *s = NULL; ++ unsigned int cpu = 0; ++ ++ if (!sample) ++ return NULL; ++ ++ mutex_lock(&ring_buffer_mutex); ++ for_each_online_cpu(cpu) { ++ e = ring_buffer_consume(ring_buffer, cpu, NULL, &sample->lost); ++ if (e) ++ break; ++ } ++ ++ if (e) { ++ s = ring_buffer_event_data(e); ++ memcpy(sample, s, sizeof(struct sample)); ++ } else ++ sample = NULL; ++ mutex_unlock(&ring_buffer_mutex); ++ ++ return sample; ++} ++ ++#ifndef CONFIG_TRACING ++#define time_type ktime_t ++#define time_get() ktime_get() ++#define time_to_us(x) ktime_to_us(x) ++#define time_sub(a, b) ktime_sub(a, b) ++#define init_time(a, b) (a).tv64 = b ++#define time_u64(a) ((a).tv64) ++#else ++#define time_type u64 ++#define time_get() trace_clock_local() ++#define time_to_us(x) div_u64(x, 1000) ++#define time_sub(a, b) ((a) - (b)) ++#define init_time(a, b) (a = b) ++#define time_u64(a) a ++#endif ++/** ++ * get_sample - sample the CPU TSC and look for likely hardware latencies ++ * ++ * Used to repeatedly capture the CPU TSC (or similar), looking for potential ++ * hardware-induced latency. Called with interrupts disabled and with ++ * data.lock held. ++ */ ++static int get_sample(void) ++{ ++ time_type start, t1, t2, last_t2; ++ s64 diff, total = 0; ++ u64 sample = 0; ++ u64 outer_sample = 0; ++ int ret = -1; ++ ++ init_time(last_t2, 0); ++ start = time_get(); /* start timestamp */ ++ ++ do { ++ ++ t1 = time_get(); /* we'll look for a discontinuity */ ++ t2 = time_get(); ++ ++ if (time_u64(last_t2)) { ++ /* Check the delta from outer loop (t2 to next t1) */ ++ diff = time_to_us(time_sub(t1, last_t2)); ++ /* This shouldn't happen */ ++ if (diff < 0) { ++ pr_err(BANNER "time running backwards\n"); ++ goto out; ++ } ++ if (diff > outer_sample) ++ outer_sample = diff; ++ } ++ last_t2 = t2; ++ ++ total = time_to_us(time_sub(t2, start)); /* sample width */ ++ ++ /* This checks the inner loop (t1 to t2) */ ++ diff = time_to_us(time_sub(t2, t1)); /* current diff */ ++ ++ /* This shouldn't happen */ ++ if (diff < 0) { ++ pr_err(BANNER "time running backwards\n"); ++ goto out; ++ } ++ ++ if (diff > sample) ++ sample = diff; /* only want highest value */ ++ ++ } while (total <= data.sample_width); ++ ++ ret = 0; ++ ++ /* If we exceed the threshold value, we have found a hardware latency */ ++ if (sample > data.threshold || outer_sample > data.threshold) { ++ struct sample s; ++ ++ ret = 1; ++ ++ data.count++; ++ s.seqnum = data.count; ++ s.duration = sample; ++ s.outer_duration = outer_sample; ++ s.timestamp = CURRENT_TIME; ++ __buffer_add_sample(&s); ++ ++ /* Keep a running maximum ever recorded hardware latency */ ++ if (sample > data.max_sample) ++ data.max_sample = sample; ++ } ++ ++out: ++ return ret; ++} ++ ++/* ++ * kthread_fn - The CPU time sampling/hardware latency detection kernel thread ++ * @unused: A required part of the kthread API. ++ * ++ * Used to periodically sample the CPU TSC via a call to get_sample. We ++ * disable interrupts, which does (intentionally) introduce latency since we ++ * need to ensure nothing else might be running (and thus pre-empting). ++ * Obviously this should never be used in production environments. ++ * ++ * Currently this runs on which ever CPU it was scheduled on, but most ++ * real-worald hardware latency situations occur across several CPUs, ++ * but we might later generalize this if we find there are any actualy ++ * systems with alternate SMI delivery or other hardware latencies. ++ */ ++static int kthread_fn(void *unused) ++{ ++ int ret; ++ u64 interval; ++ ++ while (!kthread_should_stop()) { ++ ++ mutex_lock(&data.lock); ++ ++ local_irq_disable(); ++ ret = get_sample(); ++ local_irq_enable(); ++ ++ if (ret > 0) ++ wake_up(&data.wq); /* wake up reader(s) */ ++ ++ interval = data.sample_window - data.sample_width; ++ do_div(interval, USEC_PER_MSEC); /* modifies interval value */ ++ ++ mutex_unlock(&data.lock); ++ ++ if (msleep_interruptible(interval)) ++ break; ++ } ++ ++ return 0; ++} ++ ++/** ++ * start_kthread - Kick off the hardware latency sampling/detector kthread ++ * ++ * This starts a kernel thread that will sit and sample the CPU timestamp ++ * counter (TSC or similar) and look for potential hardware latencies. ++ */ ++static int start_kthread(void) ++{ ++ kthread = kthread_run(kthread_fn, NULL, ++ DRVNAME); ++ if (IS_ERR(kthread)) { ++ pr_err(BANNER "could not start sampling thread\n"); ++ enabled = 0; ++ return -ENOMEM; ++ } ++ ++ return 0; ++} ++ ++/** ++ * stop_kthread - Inform the hardware latency samping/detector kthread to stop ++ * ++ * This kicks the running hardware latency sampling/detector kernel thread and ++ * tells it to stop sampling now. Use this on unload and at system shutdown. ++ */ ++static int stop_kthread(void) ++{ ++ int ret; ++ ++ ret = kthread_stop(kthread); ++ ++ return ret; ++} ++ ++/** ++ * __reset_stats - Reset statistics for the hardware latency detector ++ * ++ * We use data to store various statistics and global state. We call this ++ * function in order to reset those when "enable" is toggled on or off, and ++ * also at initialization. Should be called with data.lock held. ++ */ ++static void __reset_stats(void) ++{ ++ data.count = 0; ++ data.max_sample = 0; ++ ring_buffer_reset(ring_buffer); /* flush out old sample entries */ ++} ++ ++/** ++ * init_stats - Setup global state statistics for the hardware latency detector ++ * ++ * We use data to store various statistics and global state. We also use ++ * a global ring buffer (ring_buffer) to keep raw samples of detected hardware ++ * induced system latencies. This function initializes these structures and ++ * allocates the global ring buffer also. ++ */ ++static int init_stats(void) ++{ ++ int ret = -ENOMEM; ++ ++ mutex_init(&data.lock); ++ init_waitqueue_head(&data.wq); ++ atomic_set(&data.sample_open, 0); ++ ++ ring_buffer = ring_buffer_alloc(buf_size, BUF_FLAGS); ++ ++ if (WARN(!ring_buffer, KERN_ERR BANNER ++ "failed to allocate ring buffer!\n")) ++ goto out; ++ ++ __reset_stats(); ++ data.threshold = threshold ?: DEFAULT_LAT_THRESHOLD; /* threshold us */ ++ data.sample_window = DEFAULT_SAMPLE_WINDOW; /* window us */ ++ data.sample_width = DEFAULT_SAMPLE_WIDTH; /* width us */ ++ ++ ret = 0; ++ ++out: ++ return ret; ++ ++} ++ ++/* ++ * simple_data_read - Wrapper read function for global state debugfs entries ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The userspace provided buffer to read value into ++ * @cnt: The maximum number of bytes to read ++ * @ppos: The current "file" position ++ * @entry: The entry to read from ++ * ++ * This function provides a generic read implementation for the global state ++ * "data" structure debugfs filesystem entries. It would be nice to use ++ * simple_attr_read directly, but we need to make sure that the data.lock ++ * is held during the actual read. ++ */ ++static ssize_t simple_data_read(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos, const u64 *entry) ++{ ++ char buf[U64STR_SIZE]; ++ u64 val = 0; ++ int len = 0; ++ ++ memset(buf, 0, sizeof(buf)); ++ ++ if (!entry) ++ return -EFAULT; ++ ++ mutex_lock(&data.lock); ++ val = *entry; ++ mutex_unlock(&data.lock); ++ ++ len = snprintf(buf, sizeof(buf), "%llu\n", (unsigned long long)val); ++ ++ return simple_read_from_buffer(ubuf, cnt, ppos, buf, len); ++ ++} ++ ++/* ++ * simple_data_write - Wrapper write function for global state debugfs entries ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The userspace provided buffer to write value from ++ * @cnt: The maximum number of bytes to write ++ * @ppos: The current "file" position ++ * @entry: The entry to write to ++ * ++ * This function provides a generic write implementation for the global state ++ * "data" structure debugfs filesystem entries. It would be nice to use ++ * simple_attr_write directly, but we need to make sure that the data.lock ++ * is held during the actual write. ++ */ ++static ssize_t simple_data_write(struct file *filp, const char __user *ubuf, ++ size_t cnt, loff_t *ppos, u64 *entry) ++{ ++ char buf[U64STR_SIZE]; ++ int csize = min(cnt, sizeof(buf)); ++ u64 val = 0; ++ int err = 0; ++ ++ memset(buf, '\0', sizeof(buf)); ++ if (copy_from_user(buf, ubuf, csize)) ++ return -EFAULT; ++ ++ buf[U64STR_SIZE-1] = '\0'; /* just in case */ ++ err = kstrtoull(buf, 10, &val); ++ if (err) ++ return -EINVAL; ++ ++ mutex_lock(&data.lock); ++ *entry = val; ++ mutex_unlock(&data.lock); ++ ++ return csize; ++} ++ ++/** ++ * debug_count_fopen - Open function for "count" debugfs entry ++ * @inode: The in-kernel inode representation of the debugfs "file" ++ * @filp: The active open file structure for the debugfs "file" ++ * ++ * This function provides an open implementation for the "count" debugfs ++ * interface to the hardware latency detector. ++ */ ++static int debug_count_fopen(struct inode *inode, struct file *filp) ++{ ++ return 0; ++} ++ ++/** ++ * debug_count_fread - Read function for "count" debugfs entry ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The userspace provided buffer to read value into ++ * @cnt: The maximum number of bytes to read ++ * @ppos: The current "file" position ++ * ++ * This function provides a read implementation for the "count" debugfs ++ * interface to the hardware latency detector. Can be used to read the ++ * number of latency readings exceeding the configured threshold since ++ * the detector was last reset (e.g. by writing a zero into "count"). ++ */ ++static ssize_t debug_count_fread(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos) ++{ ++ return simple_data_read(filp, ubuf, cnt, ppos, &data.count); ++} ++ ++/** ++ * debug_count_fwrite - Write function for "count" debugfs entry ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The user buffer that contains the value to write ++ * @cnt: The maximum number of bytes to write to "file" ++ * @ppos: The current position in the debugfs "file" ++ * ++ * This function provides a write implementation for the "count" debugfs ++ * interface to the hardware latency detector. Can be used to write a ++ * desired value, especially to zero the total count. ++ */ ++static ssize_t debug_count_fwrite(struct file *filp, ++ const char __user *ubuf, ++ size_t cnt, ++ loff_t *ppos) ++{ ++ return simple_data_write(filp, ubuf, cnt, ppos, &data.count); ++} ++ ++/** ++ * debug_enable_fopen - Dummy open function for "enable" debugfs interface ++ * @inode: The in-kernel inode representation of the debugfs "file" ++ * @filp: The active open file structure for the debugfs "file" ++ * ++ * This function provides an open implementation for the "enable" debugfs ++ * interface to the hardware latency detector. ++ */ ++static int debug_enable_fopen(struct inode *inode, struct file *filp) ++{ ++ return 0; ++} ++ ++/** ++ * debug_enable_fread - Read function for "enable" debugfs interface ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The userspace provided buffer to read value into ++ * @cnt: The maximum number of bytes to read ++ * @ppos: The current "file" position ++ * ++ * This function provides a read implementation for the "enable" debugfs ++ * interface to the hardware latency detector. Can be used to determine ++ * whether the detector is currently enabled ("0\n" or "1\n" returned). ++ */ ++static ssize_t debug_enable_fread(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos) ++{ ++ char buf[4]; ++ ++ if ((cnt < sizeof(buf)) || (*ppos)) ++ return 0; ++ ++ buf[0] = enabled ? '1' : '0'; ++ buf[1] = '\n'; ++ buf[2] = '\0'; ++ if (copy_to_user(ubuf, buf, strlen(buf))) ++ return -EFAULT; ++ return *ppos = strlen(buf); ++} ++ ++/** ++ * debug_enable_fwrite - Write function for "enable" debugfs interface ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The user buffer that contains the value to write ++ * @cnt: The maximum number of bytes to write to "file" ++ * @ppos: The current position in the debugfs "file" ++ * ++ * This function provides a write implementation for the "enable" debugfs ++ * interface to the hardware latency detector. Can be used to enable or ++ * disable the detector, which will have the side-effect of possibly ++ * also resetting the global stats and kicking off the measuring ++ * kthread (on an enable) or the converse (upon a disable). ++ */ ++static ssize_t debug_enable_fwrite(struct file *filp, ++ const char __user *ubuf, ++ size_t cnt, ++ loff_t *ppos) ++{ ++ char buf[4]; ++ int csize = min(cnt, sizeof(buf)); ++ long val = 0; ++ int err = 0; ++ ++ memset(buf, '\0', sizeof(buf)); ++ if (copy_from_user(buf, ubuf, csize)) ++ return -EFAULT; ++ ++ buf[sizeof(buf)-1] = '\0'; /* just in case */ ++ err = kstrtoul(buf, 10, &val); ++ if (0 != err) ++ return -EINVAL; ++ ++ if (val) { ++ if (enabled) ++ goto unlock; ++ enabled = 1; ++ __reset_stats(); ++ if (start_kthread()) ++ return -EFAULT; ++ } else { ++ if (!enabled) ++ goto unlock; ++ enabled = 0; ++ err = stop_kthread(); ++ if (err) { ++ pr_err(BANNER "cannot stop kthread\n"); ++ return -EFAULT; ++ } ++ wake_up(&data.wq); /* reader(s) should return */ ++ } ++unlock: ++ return csize; ++} ++ ++/** ++ * debug_max_fopen - Open function for "max" debugfs entry ++ * @inode: The in-kernel inode representation of the debugfs "file" ++ * @filp: The active open file structure for the debugfs "file" ++ * ++ * This function provides an open implementation for the "max" debugfs ++ * interface to the hardware latency detector. ++ */ ++static int debug_max_fopen(struct inode *inode, struct file *filp) ++{ ++ return 0; ++} ++ ++/** ++ * debug_max_fread - Read function for "max" debugfs entry ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The userspace provided buffer to read value into ++ * @cnt: The maximum number of bytes to read ++ * @ppos: The current "file" position ++ * ++ * This function provides a read implementation for the "max" debugfs ++ * interface to the hardware latency detector. Can be used to determine ++ * the maximum latency value observed since it was last reset. ++ */ ++static ssize_t debug_max_fread(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos) ++{ ++ return simple_data_read(filp, ubuf, cnt, ppos, &data.max_sample); ++} ++ ++/** ++ * debug_max_fwrite - Write function for "max" debugfs entry ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The user buffer that contains the value to write ++ * @cnt: The maximum number of bytes to write to "file" ++ * @ppos: The current position in the debugfs "file" ++ * ++ * This function provides a write implementation for the "max" debugfs ++ * interface to the hardware latency detector. Can be used to reset the ++ * maximum or set it to some other desired value - if, then, subsequent ++ * measurements exceed this value, the maximum will be updated. ++ */ ++static ssize_t debug_max_fwrite(struct file *filp, ++ const char __user *ubuf, ++ size_t cnt, ++ loff_t *ppos) ++{ ++ return simple_data_write(filp, ubuf, cnt, ppos, &data.max_sample); ++} ++ ++ ++/** ++ * debug_sample_fopen - An open function for "sample" debugfs interface ++ * @inode: The in-kernel inode representation of this debugfs "file" ++ * @filp: The active open file structure for the debugfs "file" ++ * ++ * This function handles opening the "sample" file within the hardware ++ * latency detector debugfs directory interface. This file is used to read ++ * raw samples from the global ring_buffer and allows the user to see a ++ * running latency history. Can be opened blocking or non-blocking, ++ * affecting whether it behaves as a buffer read pipe, or does not. ++ * Implements simple locking to prevent multiple simultaneous use. ++ */ ++static int debug_sample_fopen(struct inode *inode, struct file *filp) ++{ ++ if (!atomic_add_unless(&data.sample_open, 1, 1)) ++ return -EBUSY; ++ else ++ return 0; ++} ++ ++/** ++ * debug_sample_fread - A read function for "sample" debugfs interface ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The user buffer that will contain the samples read ++ * @cnt: The maximum bytes to read from the debugfs "file" ++ * @ppos: The current position in the debugfs "file" ++ * ++ * This function handles reading from the "sample" file within the hardware ++ * latency detector debugfs directory interface. This file is used to read ++ * raw samples from the global ring_buffer and allows the user to see a ++ * running latency history. By default this will block pending a new ++ * value written into the sample buffer, unless there are already a ++ * number of value(s) waiting in the buffer, or the sample file was ++ * previously opened in a non-blocking mode of operation. ++ */ ++static ssize_t debug_sample_fread(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos) ++{ ++ int len = 0; ++ char buf[64]; ++ struct sample *sample = NULL; ++ ++ if (!enabled) ++ return 0; ++ ++ sample = kzalloc(sizeof(struct sample), GFP_KERNEL); ++ if (!sample) ++ return -ENOMEM; ++ ++ while (!buffer_get_sample(sample)) { ++ ++ DEFINE_WAIT(wait); ++ ++ if (filp->f_flags & O_NONBLOCK) { ++ len = -EAGAIN; ++ goto out; ++ } ++ ++ prepare_to_wait(&data.wq, &wait, TASK_INTERRUPTIBLE); ++ schedule(); ++ finish_wait(&data.wq, &wait); ++ ++ if (signal_pending(current)) { ++ len = -EINTR; ++ goto out; ++ } ++ ++ if (!enabled) { /* enable was toggled */ ++ len = 0; ++ goto out; ++ } ++ } ++ ++ len = snprintf(buf, sizeof(buf), "%010lu.%010lu\t%llu\t%llu\n", ++ sample->timestamp.tv_sec, ++ sample->timestamp.tv_nsec, ++ sample->duration, ++ sample->outer_duration); ++ ++ ++ /* handling partial reads is more trouble than it's worth */ ++ if (len > cnt) ++ goto out; ++ ++ if (copy_to_user(ubuf, buf, len)) ++ len = -EFAULT; ++ ++out: ++ kfree(sample); ++ return len; ++} ++ ++/** ++ * debug_sample_release - Release function for "sample" debugfs interface ++ * @inode: The in-kernel inode represenation of the debugfs "file" ++ * @filp: The active open file structure for the debugfs "file" ++ * ++ * This function completes the close of the debugfs interface "sample" file. ++ * Frees the sample_open "lock" so that other users may open the interface. ++ */ ++static int debug_sample_release(struct inode *inode, struct file *filp) ++{ ++ atomic_dec(&data.sample_open); ++ ++ return 0; ++} ++ ++/** ++ * debug_threshold_fopen - Open function for "threshold" debugfs entry ++ * @inode: The in-kernel inode representation of the debugfs "file" ++ * @filp: The active open file structure for the debugfs "file" ++ * ++ * This function provides an open implementation for the "threshold" debugfs ++ * interface to the hardware latency detector. ++ */ ++static int debug_threshold_fopen(struct inode *inode, struct file *filp) ++{ ++ return 0; ++} ++ ++/** ++ * debug_threshold_fread - Read function for "threshold" debugfs entry ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The userspace provided buffer to read value into ++ * @cnt: The maximum number of bytes to read ++ * @ppos: The current "file" position ++ * ++ * This function provides a read implementation for the "threshold" debugfs ++ * interface to the hardware latency detector. It can be used to determine ++ * the current threshold level at which a latency will be recorded in the ++ * global ring buffer, typically on the order of 10us. ++ */ ++static ssize_t debug_threshold_fread(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos) ++{ ++ return simple_data_read(filp, ubuf, cnt, ppos, &data.threshold); ++} ++ ++/** ++ * debug_threshold_fwrite - Write function for "threshold" debugfs entry ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The user buffer that contains the value to write ++ * @cnt: The maximum number of bytes to write to "file" ++ * @ppos: The current position in the debugfs "file" ++ * ++ * This function provides a write implementation for the "threshold" debugfs ++ * interface to the hardware latency detector. It can be used to configure ++ * the threshold level at which any subsequently detected latencies will ++ * be recorded into the global ring buffer. ++ */ ++static ssize_t debug_threshold_fwrite(struct file *filp, ++ const char __user *ubuf, ++ size_t cnt, ++ loff_t *ppos) ++{ ++ int ret; ++ ++ ret = simple_data_write(filp, ubuf, cnt, ppos, &data.threshold); ++ ++ if (enabled) ++ wake_up_process(kthread); ++ ++ return ret; ++} ++ ++/** ++ * debug_width_fopen - Open function for "width" debugfs entry ++ * @inode: The in-kernel inode representation of the debugfs "file" ++ * @filp: The active open file structure for the debugfs "file" ++ * ++ * This function provides an open implementation for the "width" debugfs ++ * interface to the hardware latency detector. ++ */ ++static int debug_width_fopen(struct inode *inode, struct file *filp) ++{ ++ return 0; ++} ++ ++/** ++ * debug_width_fread - Read function for "width" debugfs entry ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The userspace provided buffer to read value into ++ * @cnt: The maximum number of bytes to read ++ * @ppos: The current "file" position ++ * ++ * This function provides a read implementation for the "width" debugfs ++ * interface to the hardware latency detector. It can be used to determine ++ * for how many us of the total window us we will actively sample for any ++ * hardware-induced latecy periods. Obviously, it is not possible to ++ * sample constantly and have the system respond to a sample reader, or, ++ * worse, without having the system appear to have gone out to lunch. ++ */ ++static ssize_t debug_width_fread(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos) ++{ ++ return simple_data_read(filp, ubuf, cnt, ppos, &data.sample_width); ++} ++ ++/** ++ * debug_width_fwrite - Write function for "width" debugfs entry ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The user buffer that contains the value to write ++ * @cnt: The maximum number of bytes to write to "file" ++ * @ppos: The current position in the debugfs "file" ++ * ++ * This function provides a write implementation for the "width" debugfs ++ * interface to the hardware latency detector. It can be used to configure ++ * for how many us of the total window us we will actively sample for any ++ * hardware-induced latency periods. Obviously, it is not possible to ++ * sample constantly and have the system respond to a sample reader, or, ++ * worse, without having the system appear to have gone out to lunch. It ++ * is enforced that width is less that the total window size. ++ */ ++static ssize_t debug_width_fwrite(struct file *filp, ++ const char __user *ubuf, ++ size_t cnt, ++ loff_t *ppos) ++{ ++ char buf[U64STR_SIZE]; ++ int csize = min(cnt, sizeof(buf)); ++ u64 val = 0; ++ int err = 0; ++ ++ memset(buf, '\0', sizeof(buf)); ++ if (copy_from_user(buf, ubuf, csize)) ++ return -EFAULT; ++ ++ buf[U64STR_SIZE-1] = '\0'; /* just in case */ ++ err = kstrtoull(buf, 10, &val); ++ if (0 != err) ++ return -EINVAL; ++ ++ mutex_lock(&data.lock); ++ if (val < data.sample_window) ++ data.sample_width = val; ++ else { ++ mutex_unlock(&data.lock); ++ return -EINVAL; ++ } ++ mutex_unlock(&data.lock); ++ ++ if (enabled) ++ wake_up_process(kthread); ++ ++ return csize; ++} ++ ++/** ++ * debug_window_fopen - Open function for "window" debugfs entry ++ * @inode: The in-kernel inode representation of the debugfs "file" ++ * @filp: The active open file structure for the debugfs "file" ++ * ++ * This function provides an open implementation for the "window" debugfs ++ * interface to the hardware latency detector. The window is the total time ++ * in us that will be considered one sample period. Conceptually, windows ++ * occur back-to-back and contain a sample width period during which ++ * actual sampling occurs. ++ */ ++static int debug_window_fopen(struct inode *inode, struct file *filp) ++{ ++ return 0; ++} ++ ++/** ++ * debug_window_fread - Read function for "window" debugfs entry ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The userspace provided buffer to read value into ++ * @cnt: The maximum number of bytes to read ++ * @ppos: The current "file" position ++ * ++ * This function provides a read implementation for the "window" debugfs ++ * interface to the hardware latency detector. The window is the total time ++ * in us that will be considered one sample period. Conceptually, windows ++ * occur back-to-back and contain a sample width period during which ++ * actual sampling occurs. Can be used to read the total window size. ++ */ ++static ssize_t debug_window_fread(struct file *filp, char __user *ubuf, ++ size_t cnt, loff_t *ppos) ++{ ++ return simple_data_read(filp, ubuf, cnt, ppos, &data.sample_window); ++} ++ ++/** ++ * debug_window_fwrite - Write function for "window" debugfs entry ++ * @filp: The active open file structure for the debugfs "file" ++ * @ubuf: The user buffer that contains the value to write ++ * @cnt: The maximum number of bytes to write to "file" ++ * @ppos: The current position in the debugfs "file" ++ * ++ * This function provides a write implementation for the "window" debufds ++ * interface to the hardware latency detetector. The window is the total time ++ * in us that will be considered one sample period. Conceptually, windows ++ * occur back-to-back and contain a sample width period during which ++ * actual sampling occurs. Can be used to write a new total window size. It ++ * is enfoced that any value written must be greater than the sample width ++ * size, or an error results. ++ */ ++static ssize_t debug_window_fwrite(struct file *filp, ++ const char __user *ubuf, ++ size_t cnt, ++ loff_t *ppos) ++{ ++ char buf[U64STR_SIZE]; ++ int csize = min(cnt, sizeof(buf)); ++ u64 val = 0; ++ int err = 0; ++ ++ memset(buf, '\0', sizeof(buf)); ++ if (copy_from_user(buf, ubuf, csize)) ++ return -EFAULT; ++ ++ buf[U64STR_SIZE-1] = '\0'; /* just in case */ ++ err = kstrtoull(buf, 10, &val); ++ if (0 != err) ++ return -EINVAL; ++ ++ mutex_lock(&data.lock); ++ if (data.sample_width < val) ++ data.sample_window = val; ++ else { ++ mutex_unlock(&data.lock); ++ return -EINVAL; ++ } ++ mutex_unlock(&data.lock); ++ ++ return csize; ++} ++ ++/* ++ * Function pointers for the "count" debugfs file operations ++ */ ++static const struct file_operations count_fops = { ++ .open = debug_count_fopen, ++ .read = debug_count_fread, ++ .write = debug_count_fwrite, ++ .owner = THIS_MODULE, ++}; ++ ++/* ++ * Function pointers for the "enable" debugfs file operations ++ */ ++static const struct file_operations enable_fops = { ++ .open = debug_enable_fopen, ++ .read = debug_enable_fread, ++ .write = debug_enable_fwrite, ++ .owner = THIS_MODULE, ++}; ++ ++/* ++ * Function pointers for the "max" debugfs file operations ++ */ ++static const struct file_operations max_fops = { ++ .open = debug_max_fopen, ++ .read = debug_max_fread, ++ .write = debug_max_fwrite, ++ .owner = THIS_MODULE, ++}; ++ ++/* ++ * Function pointers for the "sample" debugfs file operations ++ */ ++static const struct file_operations sample_fops = { ++ .open = debug_sample_fopen, ++ .read = debug_sample_fread, ++ .release = debug_sample_release, ++ .owner = THIS_MODULE, ++}; ++ ++/* ++ * Function pointers for the "threshold" debugfs file operations ++ */ ++static const struct file_operations threshold_fops = { ++ .open = debug_threshold_fopen, ++ .read = debug_threshold_fread, ++ .write = debug_threshold_fwrite, ++ .owner = THIS_MODULE, ++}; ++ ++/* ++ * Function pointers for the "width" debugfs file operations ++ */ ++static const struct file_operations width_fops = { ++ .open = debug_width_fopen, ++ .read = debug_width_fread, ++ .write = debug_width_fwrite, ++ .owner = THIS_MODULE, ++}; ++ ++/* ++ * Function pointers for the "window" debugfs file operations ++ */ ++static const struct file_operations window_fops = { ++ .open = debug_window_fopen, ++ .read = debug_window_fread, ++ .write = debug_window_fwrite, ++ .owner = THIS_MODULE, ++}; ++ ++/** ++ * init_debugfs - A function to initialize the debugfs interface files ++ * ++ * This function creates entries in debugfs for "hwlat_detector", including ++ * files to read values from the detector, current samples, and the ++ * maximum sample that has been captured since the hardware latency ++ * dectector was started. ++ */ ++static int init_debugfs(void) ++{ ++ int ret = -ENOMEM; ++ ++ debug_dir = debugfs_create_dir(DRVNAME, NULL); ++ if (!debug_dir) ++ goto err_debug_dir; ++ ++ debug_sample = debugfs_create_file("sample", 0444, ++ debug_dir, NULL, ++ &sample_fops); ++ if (!debug_sample) ++ goto err_sample; ++ ++ debug_count = debugfs_create_file("count", 0444, ++ debug_dir, NULL, ++ &count_fops); ++ if (!debug_count) ++ goto err_count; ++ ++ debug_max = debugfs_create_file("max", 0444, ++ debug_dir, NULL, ++ &max_fops); ++ if (!debug_max) ++ goto err_max; ++ ++ debug_sample_window = debugfs_create_file("window", 0644, ++ debug_dir, NULL, ++ &window_fops); ++ if (!debug_sample_window) ++ goto err_window; ++ ++ debug_sample_width = debugfs_create_file("width", 0644, ++ debug_dir, NULL, ++ &width_fops); ++ if (!debug_sample_width) ++ goto err_width; ++ ++ debug_threshold = debugfs_create_file("threshold", 0644, ++ debug_dir, NULL, ++ &threshold_fops); ++ if (!debug_threshold) ++ goto err_threshold; ++ ++ debug_enable = debugfs_create_file("enable", 0644, ++ debug_dir, &enabled, ++ &enable_fops); ++ if (!debug_enable) ++ goto err_enable; ++ ++ else { ++ ret = 0; ++ goto out; ++ } ++ ++err_enable: ++ debugfs_remove(debug_threshold); ++err_threshold: ++ debugfs_remove(debug_sample_width); ++err_width: ++ debugfs_remove(debug_sample_window); ++err_window: ++ debugfs_remove(debug_max); ++err_max: ++ debugfs_remove(debug_count); ++err_count: ++ debugfs_remove(debug_sample); ++err_sample: ++ debugfs_remove(debug_dir); ++err_debug_dir: ++out: ++ return ret; ++} ++ ++/** ++ * free_debugfs - A function to cleanup the debugfs file interface ++ */ ++static void free_debugfs(void) ++{ ++ /* could also use a debugfs_remove_recursive */ ++ debugfs_remove(debug_enable); ++ debugfs_remove(debug_threshold); ++ debugfs_remove(debug_sample_width); ++ debugfs_remove(debug_sample_window); ++ debugfs_remove(debug_max); ++ debugfs_remove(debug_count); ++ debugfs_remove(debug_sample); ++ debugfs_remove(debug_dir); ++} ++ ++/** ++ * detector_init - Standard module initialization code ++ */ ++static int detector_init(void) ++{ ++ int ret = -ENOMEM; ++ ++ pr_info(BANNER "version %s\n", VERSION); ++ ++ ret = init_stats(); ++ if (0 != ret) ++ goto out; ++ ++ ret = init_debugfs(); ++ if (0 != ret) ++ goto err_stats; ++ ++ if (enabled) ++ ret = start_kthread(); ++ ++ goto out; ++ ++err_stats: ++ ring_buffer_free(ring_buffer); ++out: ++ return ret; ++ ++} ++ ++/** ++ * detector_exit - Standard module cleanup code ++ */ ++static void detector_exit(void) ++{ ++ int err; ++ ++ if (enabled) { ++ enabled = 0; ++ err = stop_kthread(); ++ if (err) ++ pr_err(BANNER "cannot stop kthread\n"); ++ } ++ ++ free_debugfs(); ++ ring_buffer_free(ring_buffer); /* free up the ring buffer */ ++ ++} ++ ++module_init(detector_init); ++module_exit(detector_exit); +diff -Nur linux-3.18.12.orig/drivers/misc/Kconfig linux-3.18.12/drivers/misc/Kconfig +--- linux-3.18.12.orig/drivers/misc/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/misc/Kconfig 2015-04-26 13:32:22.395684003 -0500 +@@ -54,6 +54,7 @@ + config ATMEL_TCLIB + bool "Atmel AT32/AT91 Timer/Counter Library" + depends on (AVR32 || ARCH_AT91) ++ default y if PREEMPT_RT_FULL + help + Select this if you want a library to allocate the Timer/Counter + blocks found on many Atmel processors. This facilitates using +@@ -69,8 +70,7 @@ + are combined to make a single 32-bit timer. + + When GENERIC_CLOCKEVENTS is defined, the third timer channel +- may be used as a clock event device supporting oneshot mode +- (delays of up to two seconds) based on the 32 KiHz clock. ++ may be used as a clock event device supporting oneshot mode. + + config ATMEL_TCB_CLKSRC_BLOCK + int +@@ -84,6 +84,15 @@ + TC can be used for other purposes, such as PWM generation and + interval timing. + ++config ATMEL_TCB_CLKSRC_USE_SLOW_CLOCK ++ bool "TC Block use 32 KiHz clock" ++ depends on ATMEL_TCB_CLKSRC ++ default y if !PREEMPT_RT_FULL ++ help ++ Select this to use 32 KiHz base clock rate as TC block clock ++ source for clock events. ++ ++ + config DUMMY_IRQ + tristate "Dummy IRQ handler" + default n +@@ -113,6 +122,35 @@ + for information on the specific driver level and support statement + for your IBM server. + ++config HWLAT_DETECTOR ++ tristate "Testing module to detect hardware-induced latencies" ++ depends on DEBUG_FS ++ depends on RING_BUFFER ++ default m ++ ---help--- ++ A simple hardware latency detector. Use this module to detect ++ large latencies introduced by the behavior of the underlying ++ system firmware external to Linux. We do this using periodic ++ use of stop_machine to grab all available CPUs and measure ++ for unexplainable gaps in the CPU timestamp counter(s). By ++ default, the module is not enabled until the "enable" file ++ within the "hwlat_detector" debugfs directory is toggled. ++ ++ This module is often used to detect SMI (System Management ++ Interrupts) on x86 systems, though is not x86 specific. To ++ this end, we default to using a sample window of 1 second, ++ during which we will sample for 0.5 seconds. If an SMI or ++ similar event occurs during that time, it is recorded ++ into an 8K samples global ring buffer until retreived. ++ ++ WARNING: This software should never be enabled (it can be built ++ but should not be turned on after it is loaded) in a production ++ environment where high latencies are a concern since the ++ sampling mechanism actually introduces latencies for ++ regular tasks while the CPU(s) are being held. ++ ++ If unsure, say N ++ + config PHANTOM + tristate "Sensable PHANToM (PCI)" + depends on PCI +diff -Nur linux-3.18.12.orig/drivers/misc/Makefile linux-3.18.12/drivers/misc/Makefile +--- linux-3.18.12.orig/drivers/misc/Makefile 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/misc/Makefile 2015-04-26 13:32:22.395684003 -0500 +@@ -38,6 +38,7 @@ + obj-$(CONFIG_HMC6352) += hmc6352.o + obj-y += eeprom/ + obj-y += cb710/ ++obj-$(CONFIG_HWLAT_DETECTOR) += hwlat_detector.o + obj-$(CONFIG_SPEAR13XX_PCIE_GADGET) += spear13xx_pcie_gadget.o + obj-$(CONFIG_VMWARE_BALLOON) += vmw_balloon.o + obj-$(CONFIG_ARM_CHARLCD) += arm-charlcd.o +diff -Nur linux-3.18.12.orig/drivers/mmc/host/mmci.c linux-3.18.12/drivers/mmc/host/mmci.c +--- linux-3.18.12.orig/drivers/mmc/host/mmci.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/mmc/host/mmci.c 2015-04-26 13:32:22.395684003 -0500 +@@ -1153,15 +1153,12 @@ + struct sg_mapping_iter *sg_miter = &host->sg_miter; + struct variant_data *variant = host->variant; + void __iomem *base = host->base; +- unsigned long flags; + u32 status; + + status = readl(base + MMCISTATUS); + + dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); + +- local_irq_save(flags); +- + do { + unsigned int remain, len; + char *buffer; +@@ -1201,8 +1198,6 @@ + + sg_miter_stop(sg_miter); + +- local_irq_restore(flags); +- + /* + * If we have less than the fifo 'half-full' threshold to transfer, + * trigger a PIO interrupt as soon as any data is available. +diff -Nur linux-3.18.12.orig/drivers/mmc/host/sdhci.c linux-3.18.12/drivers/mmc/host/sdhci.c +--- linux-3.18.12.orig/drivers/mmc/host/sdhci.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/mmc/host/sdhci.c 2015-04-26 13:32:22.399684003 -0500 +@@ -2565,6 +2565,31 @@ + return isr ? IRQ_HANDLED : IRQ_NONE; + } + ++#ifdef CONFIG_PREEMPT_RT_BASE ++static irqreturn_t sdhci_rt_irq(int irq, void *dev_id) ++{ ++ irqreturn_t ret; ++ ++ local_bh_disable(); ++ ret = sdhci_irq(irq, dev_id); ++ local_bh_enable(); ++ if (ret == IRQ_WAKE_THREAD) ++ ret = sdhci_thread_irq(irq, dev_id); ++ return ret; ++} ++#endif ++ ++static int sdhci_req_irq(struct sdhci_host *host) ++{ ++#ifdef CONFIG_PREEMPT_RT_BASE ++ return request_threaded_irq(host->irq, NULL, sdhci_rt_irq, ++ IRQF_SHARED, mmc_hostname(host->mmc), host); ++#else ++ return request_threaded_irq(host->irq, sdhci_irq, sdhci_thread_irq, ++ IRQF_SHARED, mmc_hostname(host->mmc), host); ++#endif ++} ++ + /*****************************************************************************\ + * * + * Suspend/resume * +@@ -2632,9 +2657,7 @@ + } + + if (!device_may_wakeup(mmc_dev(host->mmc))) { +- ret = request_threaded_irq(host->irq, sdhci_irq, +- sdhci_thread_irq, IRQF_SHARED, +- mmc_hostname(host->mmc), host); ++ ret = sdhci_req_irq(host); + if (ret) + return ret; + } else { +@@ -3253,8 +3276,7 @@ + + sdhci_init(host, 0); + +- ret = request_threaded_irq(host->irq, sdhci_irq, sdhci_thread_irq, +- IRQF_SHARED, mmc_hostname(mmc), host); ++ ret = sdhci_req_irq(host); + if (ret) { + pr_err("%s: Failed to request IRQ %d: %d\n", + mmc_hostname(mmc), host->irq, ret); +diff -Nur linux-3.18.12.orig/drivers/net/ethernet/3com/3c59x.c linux-3.18.12/drivers/net/ethernet/3com/3c59x.c +--- linux-3.18.12.orig/drivers/net/ethernet/3com/3c59x.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/ethernet/3com/3c59x.c 2015-04-26 13:32:22.399684003 -0500 +@@ -842,9 +842,9 @@ + { + struct vortex_private *vp = netdev_priv(dev); + unsigned long flags; +- local_irq_save(flags); ++ local_irq_save_nort(flags); + (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + } + #endif + +@@ -1916,12 +1916,12 @@ + * Block interrupts because vortex_interrupt does a bare spin_lock() + */ + unsigned long flags; +- local_irq_save(flags); ++ local_irq_save_nort(flags); + if (vp->full_bus_master_tx) + boomerang_interrupt(dev->irq, dev); + else + vortex_interrupt(dev->irq, dev); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + } + } + +diff -Nur linux-3.18.12.orig/drivers/net/ethernet/atheros/atl1c/atl1c_main.c linux-3.18.12/drivers/net/ethernet/atheros/atl1c/atl1c_main.c +--- linux-3.18.12.orig/drivers/net/ethernet/atheros/atl1c/atl1c_main.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/ethernet/atheros/atl1c/atl1c_main.c 2015-04-26 13:32:22.399684003 -0500 +@@ -2213,11 +2213,7 @@ + } + + tpd_req = atl1c_cal_tpd_req(skb); +- if (!spin_trylock_irqsave(&adapter->tx_lock, flags)) { +- if (netif_msg_pktdata(adapter)) +- dev_info(&adapter->pdev->dev, "tx locked\n"); +- return NETDEV_TX_LOCKED; +- } ++ spin_lock_irqsave(&adapter->tx_lock, flags); + + if (atl1c_tpd_avail(adapter, type) < tpd_req) { + /* no enough descriptor, just stop queue */ +diff -Nur linux-3.18.12.orig/drivers/net/ethernet/atheros/atl1e/atl1e_main.c linux-3.18.12/drivers/net/ethernet/atheros/atl1e/atl1e_main.c +--- linux-3.18.12.orig/drivers/net/ethernet/atheros/atl1e/atl1e_main.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/ethernet/atheros/atl1e/atl1e_main.c 2015-04-26 13:32:22.399684003 -0500 +@@ -1880,8 +1880,7 @@ + return NETDEV_TX_OK; + } + tpd_req = atl1e_cal_tdp_req(skb); +- if (!spin_trylock_irqsave(&adapter->tx_lock, flags)) +- return NETDEV_TX_LOCKED; ++ spin_lock_irqsave(&adapter->tx_lock, flags); + + if (atl1e_tpd_avail(adapter) < tpd_req) { + /* no enough descriptor, just stop queue */ +diff -Nur linux-3.18.12.orig/drivers/net/ethernet/chelsio/cxgb/sge.c linux-3.18.12/drivers/net/ethernet/chelsio/cxgb/sge.c +--- linux-3.18.12.orig/drivers/net/ethernet/chelsio/cxgb/sge.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/ethernet/chelsio/cxgb/sge.c 2015-04-26 13:32:22.399684003 -0500 +@@ -1663,8 +1663,7 @@ + struct cmdQ *q = &sge->cmdQ[qid]; + unsigned int credits, pidx, genbit, count, use_sched_skb = 0; + +- if (!spin_trylock(&q->lock)) +- return NETDEV_TX_LOCKED; ++ spin_lock(&q->lock); + + reclaim_completed_tx(sge, q); + +diff -Nur linux-3.18.12.orig/drivers/net/ethernet/freescale/gianfar.c linux-3.18.12/drivers/net/ethernet/freescale/gianfar.c +--- linux-3.18.12.orig/drivers/net/ethernet/freescale/gianfar.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/ethernet/freescale/gianfar.c 2015-04-26 13:32:22.399684003 -0500 +@@ -1483,7 +1483,7 @@ + + if (netif_running(ndev)) { + +- local_irq_save(flags); ++ local_irq_save_nort(flags); + lock_tx_qs(priv); + + gfar_halt_nodisable(priv); +@@ -1499,7 +1499,7 @@ + gfar_write(®s->maccfg1, tempval); + + unlock_tx_qs(priv); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + disable_napi(priv); + +@@ -1541,7 +1541,7 @@ + /* Disable Magic Packet mode, in case something + * else woke us up. + */ +- local_irq_save(flags); ++ local_irq_save_nort(flags); + lock_tx_qs(priv); + + tempval = gfar_read(®s->maccfg2); +@@ -1551,7 +1551,7 @@ + gfar_start(priv); + + unlock_tx_qs(priv); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + netif_device_attach(ndev); + +@@ -3307,14 +3307,14 @@ + dev->stats.tx_dropped++; + atomic64_inc(&priv->extra_stats.tx_underrun); + +- local_irq_save(flags); ++ local_irq_save_nort(flags); + lock_tx_qs(priv); + + /* Reactivate the Tx Queues */ + gfar_write(®s->tstat, gfargrp->tstat); + + unlock_tx_qs(priv); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + } + netif_dbg(priv, tx_err, dev, "Transmit Error\n"); + } +diff -Nur linux-3.18.12.orig/drivers/net/ethernet/neterion/s2io.c linux-3.18.12/drivers/net/ethernet/neterion/s2io.c +--- linux-3.18.12.orig/drivers/net/ethernet/neterion/s2io.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/ethernet/neterion/s2io.c 2015-04-26 13:32:22.403684003 -0500 +@@ -4084,12 +4084,7 @@ + [skb->priority & (MAX_TX_FIFOS - 1)]; + fifo = &mac_control->fifos[queue]; + +- if (do_spin_lock) +- spin_lock_irqsave(&fifo->tx_lock, flags); +- else { +- if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags))) +- return NETDEV_TX_LOCKED; +- } ++ spin_lock_irqsave(&fifo->tx_lock, flags); + + if (sp->config.multiq) { + if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { +diff -Nur linux-3.18.12.orig/drivers/net/ethernet/oki-semi/pch_gbe/pch_gbe_main.c linux-3.18.12/drivers/net/ethernet/oki-semi/pch_gbe/pch_gbe_main.c +--- linux-3.18.12.orig/drivers/net/ethernet/oki-semi/pch_gbe/pch_gbe_main.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/ethernet/oki-semi/pch_gbe/pch_gbe_main.c 2015-04-26 13:32:22.403684003 -0500 +@@ -2137,10 +2137,8 @@ + struct pch_gbe_tx_ring *tx_ring = adapter->tx_ring; + unsigned long flags; + +- if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags)) { +- /* Collision - tell upper layer to requeue */ +- return NETDEV_TX_LOCKED; +- } ++ spin_lock_irqsave(&tx_ring->tx_lock, flags); ++ + if (unlikely(!PCH_GBE_DESC_UNUSED(tx_ring))) { + netif_stop_queue(netdev); + spin_unlock_irqrestore(&tx_ring->tx_lock, flags); +diff -Nur linux-3.18.12.orig/drivers/net/ethernet/realtek/8139too.c linux-3.18.12/drivers/net/ethernet/realtek/8139too.c +--- linux-3.18.12.orig/drivers/net/ethernet/realtek/8139too.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/ethernet/realtek/8139too.c 2015-04-26 13:32:22.403684003 -0500 +@@ -2215,7 +2215,7 @@ + struct rtl8139_private *tp = netdev_priv(dev); + const int irq = tp->pci_dev->irq; + +- disable_irq(irq); ++ disable_irq_nosync(irq); + rtl8139_interrupt(irq, dev); + enable_irq(irq); + } +diff -Nur linux-3.18.12.orig/drivers/net/ethernet/tehuti/tehuti.c linux-3.18.12/drivers/net/ethernet/tehuti/tehuti.c +--- linux-3.18.12.orig/drivers/net/ethernet/tehuti/tehuti.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/ethernet/tehuti/tehuti.c 2015-04-26 13:32:22.403684003 -0500 +@@ -1629,13 +1629,8 @@ + unsigned long flags; + + ENTER; +- local_irq_save(flags); +- if (!spin_trylock(&priv->tx_lock)) { +- local_irq_restore(flags); +- DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n", +- BDX_DRV_NAME, ndev->name); +- return NETDEV_TX_LOCKED; +- } ++ ++ spin_lock_irqsave(&priv->tx_lock, flags); + + /* build tx descriptor */ + BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */ +diff -Nur linux-3.18.12.orig/drivers/net/rionet.c linux-3.18.12/drivers/net/rionet.c +--- linux-3.18.12.orig/drivers/net/rionet.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/rionet.c 2015-04-26 13:32:22.403684003 -0500 +@@ -174,11 +174,7 @@ + unsigned long flags; + int add_num = 1; + +- local_irq_save(flags); +- if (!spin_trylock(&rnet->tx_lock)) { +- local_irq_restore(flags); +- return NETDEV_TX_LOCKED; +- } ++ spin_lock_irqsave(&rnet->tx_lock, flags); + + if (is_multicast_ether_addr(eth->h_dest)) + add_num = nets[rnet->mport->id].nact; +diff -Nur linux-3.18.12.orig/drivers/net/wireless/orinoco/orinoco_usb.c linux-3.18.12/drivers/net/wireless/orinoco/orinoco_usb.c +--- linux-3.18.12.orig/drivers/net/wireless/orinoco/orinoco_usb.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/net/wireless/orinoco/orinoco_usb.c 2015-04-26 13:32:22.403684003 -0500 +@@ -699,7 +699,7 @@ + while (!ctx->done.done && msecs--) + udelay(1000); + } else { +- wait_event_interruptible(ctx->done.wait, ++ swait_event_interruptible(ctx->done.wait, + ctx->done.done); + } + break; +diff -Nur linux-3.18.12.orig/drivers/pci/access.c linux-3.18.12/drivers/pci/access.c +--- linux-3.18.12.orig/drivers/pci/access.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/pci/access.c 2015-04-26 13:32:22.403684003 -0500 +@@ -434,7 +434,7 @@ + WARN_ON(!dev->block_cfg_access); + + dev->block_cfg_access = 0; +- wake_up_all(&pci_cfg_wait); ++ wake_up_all_locked(&pci_cfg_wait); + raw_spin_unlock_irqrestore(&pci_lock, flags); + } + EXPORT_SYMBOL_GPL(pci_cfg_access_unlock); +diff -Nur linux-3.18.12.orig/drivers/scsi/fcoe/fcoe.c linux-3.18.12/drivers/scsi/fcoe/fcoe.c +--- linux-3.18.12.orig/drivers/scsi/fcoe/fcoe.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/scsi/fcoe/fcoe.c 2015-04-26 13:32:22.403684003 -0500 +@@ -1286,7 +1286,7 @@ + struct sk_buff *skb; + #ifdef CONFIG_SMP + struct fcoe_percpu_s *p0; +- unsigned targ_cpu = get_cpu(); ++ unsigned targ_cpu = get_cpu_light(); + #endif /* CONFIG_SMP */ + + FCOE_DBG("Destroying receive thread for CPU %d\n", cpu); +@@ -1342,7 +1342,7 @@ + kfree_skb(skb); + spin_unlock_bh(&p->fcoe_rx_list.lock); + } +- put_cpu(); ++ put_cpu_light(); + #else + /* + * This a non-SMP scenario where the singular Rx thread is +@@ -1566,11 +1566,11 @@ + static int fcoe_alloc_paged_crc_eof(struct sk_buff *skb, int tlen) + { + struct fcoe_percpu_s *fps; +- int rc; ++ int rc, cpu = get_cpu_light(); + +- fps = &get_cpu_var(fcoe_percpu); ++ fps = &per_cpu(fcoe_percpu, cpu); + rc = fcoe_get_paged_crc_eof(skb, tlen, fps); +- put_cpu_var(fcoe_percpu); ++ put_cpu_light(); + + return rc; + } +@@ -1768,11 +1768,11 @@ + return 0; + } + +- stats = per_cpu_ptr(lport->stats, get_cpu()); ++ stats = per_cpu_ptr(lport->stats, get_cpu_light()); + stats->InvalidCRCCount++; + if (stats->InvalidCRCCount < 5) + printk(KERN_WARNING "fcoe: dropping frame with CRC error\n"); +- put_cpu(); ++ put_cpu_light(); + return -EINVAL; + } + +@@ -1848,13 +1848,13 @@ + goto drop; + + if (!fcoe_filter_frames(lport, fp)) { +- put_cpu(); ++ put_cpu_light(); + fc_exch_recv(lport, fp); + return; + } + drop: + stats->ErrorFrames++; +- put_cpu(); ++ put_cpu_light(); + kfree_skb(skb); + } + +diff -Nur linux-3.18.12.orig/drivers/scsi/fcoe/fcoe_ctlr.c linux-3.18.12/drivers/scsi/fcoe/fcoe_ctlr.c +--- linux-3.18.12.orig/drivers/scsi/fcoe/fcoe_ctlr.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/scsi/fcoe/fcoe_ctlr.c 2015-04-26 13:32:22.403684003 -0500 +@@ -831,7 +831,7 @@ + + INIT_LIST_HEAD(&del_list); + +- stats = per_cpu_ptr(fip->lp->stats, get_cpu()); ++ stats = per_cpu_ptr(fip->lp->stats, get_cpu_light()); + + list_for_each_entry_safe(fcf, next, &fip->fcfs, list) { + deadline = fcf->time + fcf->fka_period + fcf->fka_period / 2; +@@ -867,7 +867,7 @@ + sel_time = fcf->time; + } + } +- put_cpu(); ++ put_cpu_light(); + + list_for_each_entry_safe(fcf, next, &del_list, list) { + /* Removes fcf from current list */ +diff -Nur linux-3.18.12.orig/drivers/scsi/libfc/fc_exch.c linux-3.18.12/drivers/scsi/libfc/fc_exch.c +--- linux-3.18.12.orig/drivers/scsi/libfc/fc_exch.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/scsi/libfc/fc_exch.c 2015-04-26 13:32:22.403684003 -0500 +@@ -816,10 +816,10 @@ + } + memset(ep, 0, sizeof(*ep)); + +- cpu = get_cpu(); ++ cpu = get_cpu_light(); + pool = per_cpu_ptr(mp->pool, cpu); + spin_lock_bh(&pool->lock); +- put_cpu(); ++ put_cpu_light(); + + /* peek cache of free slot */ + if (pool->left != FC_XID_UNKNOWN) { +diff -Nur linux-3.18.12.orig/drivers/scsi/libsas/sas_ata.c linux-3.18.12/drivers/scsi/libsas/sas_ata.c +--- linux-3.18.12.orig/drivers/scsi/libsas/sas_ata.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/scsi/libsas/sas_ata.c 2015-04-26 13:32:22.407684003 -0500 +@@ -191,7 +191,7 @@ + /* TODO: audit callers to ensure they are ready for qc_issue to + * unconditionally re-enable interrupts + */ +- local_irq_save(flags); ++ local_irq_save_nort(flags); + spin_unlock(ap->lock); + + /* If the device fell off, no sense in issuing commands */ +@@ -261,7 +261,7 @@ + + out: + spin_lock(ap->lock); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + return ret; + } + +diff -Nur linux-3.18.12.orig/drivers/scsi/qla2xxx/qla_inline.h linux-3.18.12/drivers/scsi/qla2xxx/qla_inline.h +--- linux-3.18.12.orig/drivers/scsi/qla2xxx/qla_inline.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/scsi/qla2xxx/qla_inline.h 2015-04-26 13:32:22.407684003 -0500 +@@ -59,12 +59,12 @@ + { + unsigned long flags; + struct qla_hw_data *ha = rsp->hw; +- local_irq_save(flags); ++ local_irq_save_nort(flags); + if (IS_P3P_TYPE(ha)) + qla82xx_poll(0, rsp); + else + ha->isp_ops->intr_handler(0, rsp); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + } + + static inline uint8_t * +diff -Nur linux-3.18.12.orig/drivers/thermal/x86_pkg_temp_thermal.c linux-3.18.12/drivers/thermal/x86_pkg_temp_thermal.c +--- linux-3.18.12.orig/drivers/thermal/x86_pkg_temp_thermal.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/thermal/x86_pkg_temp_thermal.c 2015-04-26 13:32:22.407684003 -0500 +@@ -29,6 +29,7 @@ + #include + #include + #include ++#include + #include + #include + +@@ -352,7 +353,7 @@ + } + } + +-static int pkg_temp_thermal_platform_thermal_notify(__u64 msr_val) ++static void platform_thermal_notify_work(struct swork_event *event) + { + unsigned long flags; + int cpu = smp_processor_id(); +@@ -369,7 +370,7 @@ + pkg_work_scheduled[phy_id]) { + disable_pkg_thres_interrupt(); + spin_unlock_irqrestore(&pkg_work_lock, flags); +- return -EINVAL; ++ return; + } + pkg_work_scheduled[phy_id] = 1; + spin_unlock_irqrestore(&pkg_work_lock, flags); +@@ -378,9 +379,48 @@ + schedule_delayed_work_on(cpu, + &per_cpu(pkg_temp_thermal_threshold_work, cpu), + msecs_to_jiffies(notify_delay_ms)); ++} ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++static struct swork_event notify_work; ++ ++static int thermal_notify_work_init(void) ++{ ++ int err; ++ ++ err = swork_get(); ++ if (err) ++ return err; ++ ++ INIT_SWORK(¬ify_work, platform_thermal_notify_work); + return 0; + } + ++static void thermal_notify_work_cleanup(void) ++{ ++ swork_put(); ++} ++ ++static int pkg_temp_thermal_platform_thermal_notify(__u64 msr_val) ++{ ++ swork_queue(¬ify_work); ++ return 0; ++} ++ ++#else /* !CONFIG_PREEMPT_RT_FULL */ ++ ++static int thermal_notify_work_init(void) { return 0; } ++ ++static int thermal_notify_work_cleanup(void) { } ++ ++static int pkg_temp_thermal_platform_thermal_notify(__u64 msr_val) ++{ ++ platform_thermal_notify_work(NULL); ++ ++ return 0; ++} ++#endif /* CONFIG_PREEMPT_RT_FULL */ ++ + static int find_siblings_cpu(int cpu) + { + int i; +@@ -584,6 +624,9 @@ + if (!x86_match_cpu(pkg_temp_thermal_ids)) + return -ENODEV; + ++ if (!thermal_notify_work_init()) ++ return -ENODEV; ++ + spin_lock_init(&pkg_work_lock); + platform_thermal_package_notify = + pkg_temp_thermal_platform_thermal_notify; +@@ -608,7 +651,7 @@ + kfree(pkg_work_scheduled); + platform_thermal_package_notify = NULL; + platform_thermal_package_rate_control = NULL; +- ++ thermal_notify_work_cleanup(); + return -ENODEV; + } + +@@ -633,6 +676,7 @@ + mutex_unlock(&phy_dev_list_mutex); + platform_thermal_package_notify = NULL; + platform_thermal_package_rate_control = NULL; ++ thermal_notify_work_cleanup(); + for_each_online_cpu(i) + cancel_delayed_work_sync( + &per_cpu(pkg_temp_thermal_threshold_work, i)); +diff -Nur linux-3.18.12.orig/drivers/tty/serial/8250/8250_core.c linux-3.18.12/drivers/tty/serial/8250/8250_core.c +--- linux-3.18.12.orig/drivers/tty/serial/8250/8250_core.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/tty/serial/8250/8250_core.c 2015-04-26 13:32:22.407684003 -0500 +@@ -37,6 +37,7 @@ + #include + #include + #include ++#include + #include + #include + #ifdef CONFIG_SPARC +@@ -81,7 +82,16 @@ + #define DEBUG_INTR(fmt...) do { } while (0) + #endif + +-#define PASS_LIMIT 512 ++/* ++ * On -rt we can have a more delays, and legitimately ++ * so - so don't drop work spuriously and spam the ++ * syslog: ++ */ ++#ifdef CONFIG_PREEMPT_RT_FULL ++# define PASS_LIMIT 1000000 ++#else ++# define PASS_LIMIT 512 ++#endif + + #define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE) + +@@ -3197,7 +3207,7 @@ + + serial8250_rpm_get(up); + +- if (port->sysrq || oops_in_progress) ++ if (port->sysrq || oops_in_progress || in_kdb_printk()) + locked = spin_trylock_irqsave(&port->lock, flags); + else + spin_lock_irqsave(&port->lock, flags); +diff -Nur linux-3.18.12.orig/drivers/tty/serial/amba-pl011.c linux-3.18.12/drivers/tty/serial/amba-pl011.c +--- linux-3.18.12.orig/drivers/tty/serial/amba-pl011.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/tty/serial/amba-pl011.c 2015-04-26 13:32:22.407684003 -0500 +@@ -1935,13 +1935,19 @@ + + clk_enable(uap->clk); + +- local_irq_save(flags); ++ /* ++ * local_irq_save(flags); ++ * ++ * This local_irq_save() is nonsense. If we come in via sysrq ++ * handling then interrupts are already disabled. Aside of ++ * that the port.sysrq check is racy on SMP regardless. ++ */ + if (uap->port.sysrq) + locked = 0; + else if (oops_in_progress) +- locked = spin_trylock(&uap->port.lock); ++ locked = spin_trylock_irqsave(&uap->port.lock, flags); + else +- spin_lock(&uap->port.lock); ++ spin_lock_irqsave(&uap->port.lock, flags); + + /* + * First save the CR then disable the interrupts +@@ -1963,8 +1969,7 @@ + writew(old_cr, uap->port.membase + UART011_CR); + + if (locked) +- spin_unlock(&uap->port.lock); +- local_irq_restore(flags); ++ spin_unlock_irqrestore(&uap->port.lock, flags); + + clk_disable(uap->clk); + } +diff -Nur linux-3.18.12.orig/drivers/tty/serial/omap-serial.c linux-3.18.12/drivers/tty/serial/omap-serial.c +--- linux-3.18.12.orig/drivers/tty/serial/omap-serial.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/tty/serial/omap-serial.c 2015-04-26 13:32:22.407684003 -0500 +@@ -1270,13 +1270,10 @@ + + pm_runtime_get_sync(up->dev); + +- local_irq_save(flags); +- if (up->port.sysrq) +- locked = 0; +- else if (oops_in_progress) +- locked = spin_trylock(&up->port.lock); ++ if (up->port.sysrq || oops_in_progress) ++ locked = spin_trylock_irqsave(&up->port.lock, flags); + else +- spin_lock(&up->port.lock); ++ spin_lock_irqsave(&up->port.lock, flags); + + /* + * First save the IER then disable the interrupts +@@ -1305,8 +1302,7 @@ + pm_runtime_mark_last_busy(up->dev); + pm_runtime_put_autosuspend(up->dev); + if (locked) +- spin_unlock(&up->port.lock); +- local_irq_restore(flags); ++ spin_unlock_irqrestore(&up->port.lock, flags); + } + + static int __init +diff -Nur linux-3.18.12.orig/drivers/usb/core/hcd.c linux-3.18.12/drivers/usb/core/hcd.c +--- linux-3.18.12.orig/drivers/usb/core/hcd.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/usb/core/hcd.c 2015-04-26 13:32:22.407684003 -0500 +@@ -1681,9 +1681,9 @@ + * and no one may trigger the above deadlock situation when + * running complete() in tasklet. + */ +- local_irq_save(flags); ++ local_irq_save_nort(flags); + urb->complete(urb); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + usb_anchor_resume_wakeups(anchor); + atomic_dec(&urb->use_count); +diff -Nur linux-3.18.12.orig/drivers/usb/gadget/function/f_fs.c linux-3.18.12/drivers/usb/gadget/function/f_fs.c +--- linux-3.18.12.orig/drivers/usb/gadget/function/f_fs.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/usb/gadget/function/f_fs.c 2015-04-26 13:32:22.407684003 -0500 +@@ -1428,7 +1428,7 @@ + pr_info("%s(): freeing\n", __func__); + ffs_data_clear(ffs); + BUG_ON(waitqueue_active(&ffs->ev.waitq) || +- waitqueue_active(&ffs->ep0req_completion.wait)); ++ swaitqueue_active(&ffs->ep0req_completion.wait)); + kfree(ffs->dev_name); + kfree(ffs); + } +diff -Nur linux-3.18.12.orig/drivers/usb/gadget/legacy/inode.c linux-3.18.12/drivers/usb/gadget/legacy/inode.c +--- linux-3.18.12.orig/drivers/usb/gadget/legacy/inode.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/drivers/usb/gadget/legacy/inode.c 2015-04-26 13:32:22.407684003 -0500 +@@ -339,7 +339,7 @@ + spin_unlock_irq (&epdata->dev->lock); + + if (likely (value == 0)) { +- value = wait_event_interruptible (done.wait, done.done); ++ value = swait_event_interruptible (done.wait, done.done); + if (value != 0) { + spin_lock_irq (&epdata->dev->lock); + if (likely (epdata->ep != NULL)) { +@@ -348,7 +348,7 @@ + usb_ep_dequeue (epdata->ep, epdata->req); + spin_unlock_irq (&epdata->dev->lock); + +- wait_event (done.wait, done.done); ++ swait_event (done.wait, done.done); + if (epdata->status == -ECONNRESET) + epdata->status = -EINTR; + } else { +diff -Nur linux-3.18.12.orig/fs/aio.c linux-3.18.12/fs/aio.c +--- linux-3.18.12.orig/fs/aio.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/aio.c 2015-04-26 13:32:22.407684003 -0500 +@@ -40,6 +40,7 @@ + #include + #include + #include ++#include + + #include + #include +@@ -110,7 +111,7 @@ + struct page **ring_pages; + long nr_pages; + +- struct work_struct free_work; ++ struct swork_event free_work; + + /* + * signals when all in-flight requests are done +@@ -226,6 +227,7 @@ + .mount = aio_mount, + .kill_sb = kill_anon_super, + }; ++ BUG_ON(swork_get()); + aio_mnt = kern_mount(&aio_fs); + if (IS_ERR(aio_mnt)) + panic("Failed to create aio fs mount."); +@@ -505,9 +507,9 @@ + return cancel(kiocb); + } + +-static void free_ioctx(struct work_struct *work) ++static void free_ioctx(struct swork_event *sev) + { +- struct kioctx *ctx = container_of(work, struct kioctx, free_work); ++ struct kioctx *ctx = container_of(sev, struct kioctx, free_work); + + pr_debug("freeing %p\n", ctx); + +@@ -526,8 +528,8 @@ + if (ctx->requests_done) + complete(ctx->requests_done); + +- INIT_WORK(&ctx->free_work, free_ioctx); +- schedule_work(&ctx->free_work); ++ INIT_SWORK(&ctx->free_work, free_ioctx); ++ swork_queue(&ctx->free_work); + } + + /* +@@ -535,9 +537,9 @@ + * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - + * now it's safe to cancel any that need to be. + */ +-static void free_ioctx_users(struct percpu_ref *ref) ++static void free_ioctx_users_work(struct swork_event *sev) + { +- struct kioctx *ctx = container_of(ref, struct kioctx, users); ++ struct kioctx *ctx = container_of(sev, struct kioctx, free_work); + struct kiocb *req; + + spin_lock_irq(&ctx->ctx_lock); +@@ -556,6 +558,14 @@ + percpu_ref_put(&ctx->reqs); + } + ++static void free_ioctx_users(struct percpu_ref *ref) ++{ ++ struct kioctx *ctx = container_of(ref, struct kioctx, users); ++ ++ INIT_SWORK(&ctx->free_work, free_ioctx_users_work); ++ swork_queue(&ctx->free_work); ++} ++ + static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) + { + unsigned i, new_nr; +diff -Nur linux-3.18.12.orig/fs/autofs4/autofs_i.h linux-3.18.12/fs/autofs4/autofs_i.h +--- linux-3.18.12.orig/fs/autofs4/autofs_i.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/autofs4/autofs_i.h 2015-04-26 13:32:22.411684003 -0500 +@@ -34,6 +34,7 @@ + #include + #include + #include ++#include + #include + #include + +diff -Nur linux-3.18.12.orig/fs/autofs4/expire.c linux-3.18.12/fs/autofs4/expire.c +--- linux-3.18.12.orig/fs/autofs4/expire.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/autofs4/expire.c 2015-04-26 13:32:22.411684003 -0500 +@@ -151,7 +151,7 @@ + parent = p->d_parent; + if (!spin_trylock(&parent->d_lock)) { + spin_unlock(&p->d_lock); +- cpu_relax(); ++ cpu_chill(); + goto relock; + } + spin_unlock(&p->d_lock); +diff -Nur linux-3.18.12.orig/fs/buffer.c linux-3.18.12/fs/buffer.c +--- linux-3.18.12.orig/fs/buffer.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/buffer.c 2015-04-26 13:32:22.411684003 -0500 +@@ -301,8 +301,7 @@ + * decide that the page is now completely done. + */ + first = page_buffers(page); +- local_irq_save(flags); +- bit_spin_lock(BH_Uptodate_Lock, &first->b_state); ++ flags = bh_uptodate_lock_irqsave(first); + clear_buffer_async_read(bh); + unlock_buffer(bh); + tmp = bh; +@@ -315,8 +314,7 @@ + } + tmp = tmp->b_this_page; + } while (tmp != bh); +- bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); +- local_irq_restore(flags); ++ bh_uptodate_unlock_irqrestore(first, flags); + + /* + * If none of the buffers had errors and they are all +@@ -328,9 +326,7 @@ + return; + + still_busy: +- bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); +- local_irq_restore(flags); +- return; ++ bh_uptodate_unlock_irqrestore(first, flags); + } + + /* +@@ -358,8 +354,7 @@ + } + + first = page_buffers(page); +- local_irq_save(flags); +- bit_spin_lock(BH_Uptodate_Lock, &first->b_state); ++ flags = bh_uptodate_lock_irqsave(first); + + clear_buffer_async_write(bh); + unlock_buffer(bh); +@@ -371,15 +366,12 @@ + } + tmp = tmp->b_this_page; + } +- bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); +- local_irq_restore(flags); ++ bh_uptodate_unlock_irqrestore(first, flags); + end_page_writeback(page); + return; + + still_busy: +- bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); +- local_irq_restore(flags); +- return; ++ bh_uptodate_unlock_irqrestore(first, flags); + } + EXPORT_SYMBOL(end_buffer_async_write); + +@@ -3325,6 +3317,7 @@ + struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); + if (ret) { + INIT_LIST_HEAD(&ret->b_assoc_buffers); ++ buffer_head_init_locks(ret); + preempt_disable(); + __this_cpu_inc(bh_accounting.nr); + recalc_bh_state(); +diff -Nur linux-3.18.12.orig/fs/dcache.c linux-3.18.12/fs/dcache.c +--- linux-3.18.12.orig/fs/dcache.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/dcache.c 2015-04-26 13:32:22.411684003 -0500 +@@ -19,6 +19,7 @@ + #include + #include + #include ++#include + #include + #include + #include +@@ -552,7 +553,7 @@ + + failed: + spin_unlock(&dentry->d_lock); +- cpu_relax(); ++ cpu_chill(); + return dentry; /* try again with same dentry */ + } + +@@ -2285,7 +2286,7 @@ + if (dentry->d_lockref.count == 1) { + if (!spin_trylock(&inode->i_lock)) { + spin_unlock(&dentry->d_lock); +- cpu_relax(); ++ cpu_chill(); + goto again; + } + dentry->d_flags &= ~DCACHE_CANT_MOUNT; +diff -Nur linux-3.18.12.orig/fs/eventpoll.c linux-3.18.12/fs/eventpoll.c +--- linux-3.18.12.orig/fs/eventpoll.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/eventpoll.c 2015-04-26 13:32:22.411684003 -0500 +@@ -505,12 +505,12 @@ + */ + static void ep_poll_safewake(wait_queue_head_t *wq) + { +- int this_cpu = get_cpu(); ++ int this_cpu = get_cpu_light(); + + ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, + ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); + +- put_cpu(); ++ put_cpu_light(); + } + + static void ep_remove_wait_queue(struct eppoll_entry *pwq) +diff -Nur linux-3.18.12.orig/fs/exec.c linux-3.18.12/fs/exec.c +--- linux-3.18.12.orig/fs/exec.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/exec.c 2015-04-26 13:32:22.411684003 -0500 +@@ -841,12 +841,14 @@ + } + } + task_lock(tsk); ++ preempt_disable_rt(); + active_mm = tsk->active_mm; + tsk->mm = mm; + tsk->active_mm = mm; + activate_mm(active_mm, mm); + tsk->mm->vmacache_seqnum = 0; + vmacache_flush(tsk); ++ preempt_enable_rt(); + task_unlock(tsk); + if (old_mm) { + up_read(&old_mm->mmap_sem); +diff -Nur linux-3.18.12.orig/fs/jbd/checkpoint.c linux-3.18.12/fs/jbd/checkpoint.c +--- linux-3.18.12.orig/fs/jbd/checkpoint.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/jbd/checkpoint.c 2015-04-26 13:32:22.411684003 -0500 +@@ -129,6 +129,8 @@ + if (journal->j_flags & JFS_ABORT) + return; + spin_unlock(&journal->j_state_lock); ++ if (current->plug) ++ io_schedule(); + mutex_lock(&journal->j_checkpoint_mutex); + + /* +diff -Nur linux-3.18.12.orig/fs/jbd2/checkpoint.c linux-3.18.12/fs/jbd2/checkpoint.c +--- linux-3.18.12.orig/fs/jbd2/checkpoint.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/jbd2/checkpoint.c 2015-04-26 13:32:22.411684003 -0500 +@@ -116,6 +116,8 @@ + nblocks = jbd2_space_needed(journal); + while (jbd2_log_space_left(journal) < nblocks) { + write_unlock(&journal->j_state_lock); ++ if (current->plug) ++ io_schedule(); + mutex_lock(&journal->j_checkpoint_mutex); + + /* +diff -Nur linux-3.18.12.orig/fs/namespace.c linux-3.18.12/fs/namespace.c +--- linux-3.18.12.orig/fs/namespace.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/namespace.c 2015-04-26 13:32:22.411684003 -0500 +@@ -14,6 +14,7 @@ + #include + #include + #include ++#include + #include + #include + #include /* init_rootfs */ +@@ -344,8 +345,11 @@ + * incremented count after it has set MNT_WRITE_HOLD. + */ + smp_mb(); +- while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) +- cpu_relax(); ++ while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { ++ preempt_enable(); ++ cpu_chill(); ++ preempt_disable(); ++ } + /* + * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will + * be set to match its requirements. So we must not load that until +diff -Nur linux-3.18.12.orig/fs/ntfs/aops.c linux-3.18.12/fs/ntfs/aops.c +--- linux-3.18.12.orig/fs/ntfs/aops.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/ntfs/aops.c 2015-04-26 13:32:22.411684003 -0500 +@@ -107,8 +107,7 @@ + "0x%llx.", (unsigned long long)bh->b_blocknr); + } + first = page_buffers(page); +- local_irq_save(flags); +- bit_spin_lock(BH_Uptodate_Lock, &first->b_state); ++ flags = bh_uptodate_lock_irqsave(first); + clear_buffer_async_read(bh); + unlock_buffer(bh); + tmp = bh; +@@ -123,8 +122,7 @@ + } + tmp = tmp->b_this_page; + } while (tmp != bh); +- bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); +- local_irq_restore(flags); ++ bh_uptodate_unlock_irqrestore(first, flags); + /* + * If none of the buffers had errors then we can set the page uptodate, + * but we first have to perform the post read mst fixups, if the +@@ -145,13 +143,13 @@ + recs = PAGE_CACHE_SIZE / rec_size; + /* Should have been verified before we got here... */ + BUG_ON(!recs); +- local_irq_save(flags); ++ local_irq_save_nort(flags); + kaddr = kmap_atomic(page); + for (i = 0; i < recs; i++) + post_read_mst_fixup((NTFS_RECORD*)(kaddr + + i * rec_size), rec_size); + kunmap_atomic(kaddr); +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + flush_dcache_page(page); + if (likely(page_uptodate && !PageError(page))) + SetPageUptodate(page); +@@ -159,9 +157,7 @@ + unlock_page(page); + return; + still_busy: +- bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); +- local_irq_restore(flags); +- return; ++ bh_uptodate_unlock_irqrestore(first, flags); + } + + /** +diff -Nur linux-3.18.12.orig/fs/timerfd.c linux-3.18.12/fs/timerfd.c +--- linux-3.18.12.orig/fs/timerfd.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/fs/timerfd.c 2015-04-26 13:32:22.411684003 -0500 +@@ -449,7 +449,10 @@ + break; + } + spin_unlock_irq(&ctx->wqh.lock); +- cpu_relax(); ++ if (isalarm(ctx)) ++ hrtimer_wait_for_timer(&ctx->t.alarm.timer); ++ else ++ hrtimer_wait_for_timer(&ctx->t.tmr); + } + + /* +diff -Nur linux-3.18.12.orig/include/acpi/platform/aclinux.h linux-3.18.12/include/acpi/platform/aclinux.h +--- linux-3.18.12.orig/include/acpi/platform/aclinux.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/acpi/platform/aclinux.h 2015-04-26 13:32:22.415684003 -0500 +@@ -123,6 +123,7 @@ + + #define acpi_cache_t struct kmem_cache + #define acpi_spinlock spinlock_t * ++#define acpi_raw_spinlock raw_spinlock_t * + #define acpi_cpu_flags unsigned long + + /* Use native linux version of acpi_os_allocate_zeroed */ +@@ -141,6 +142,20 @@ + #define ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_get_thread_id + #define ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_create_lock + ++#define acpi_os_create_raw_lock(__handle) \ ++({ \ ++ raw_spinlock_t *lock = ACPI_ALLOCATE(sizeof(*lock)); \ ++ \ ++ if (lock) { \ ++ *(__handle) = lock; \ ++ raw_spin_lock_init(*(__handle)); \ ++ } \ ++ lock ? AE_OK : AE_NO_MEMORY; \ ++ }) ++ ++#define acpi_os_delete_raw_lock(__handle) kfree(__handle) ++ ++ + /* + * OSL interfaces used by debugger/disassembler + */ +diff -Nur linux-3.18.12.orig/include/asm-generic/bug.h linux-3.18.12/include/asm-generic/bug.h +--- linux-3.18.12.orig/include/asm-generic/bug.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/asm-generic/bug.h 2015-04-26 13:32:22.415684003 -0500 +@@ -206,6 +206,20 @@ + # define WARN_ON_SMP(x) ({0;}) + #endif + ++#ifdef CONFIG_PREEMPT_RT_BASE ++# define BUG_ON_RT(c) BUG_ON(c) ++# define BUG_ON_NONRT(c) do { } while (0) ++# define WARN_ON_RT(condition) WARN_ON(condition) ++# define WARN_ON_NONRT(condition) do { } while (0) ++# define WARN_ON_ONCE_NONRT(condition) do { } while (0) ++#else ++# define BUG_ON_RT(c) do { } while (0) ++# define BUG_ON_NONRT(c) BUG_ON(c) ++# define WARN_ON_RT(condition) do { } while (0) ++# define WARN_ON_NONRT(condition) WARN_ON(condition) ++# define WARN_ON_ONCE_NONRT(condition) WARN_ON_ONCE(condition) ++#endif ++ + #endif /* __ASSEMBLY__ */ + + #endif +diff -Nur linux-3.18.12.orig/include/linux/blkdev.h linux-3.18.12/include/linux/blkdev.h +--- linux-3.18.12.orig/include/linux/blkdev.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/blkdev.h 2015-04-26 13:32:22.415684003 -0500 +@@ -101,6 +101,7 @@ + struct list_head queuelist; + union { + struct call_single_data csd; ++ struct work_struct work; + unsigned long fifo_time; + }; + +@@ -478,7 +479,7 @@ + struct throtl_data *td; + #endif + struct rcu_head rcu_head; +- wait_queue_head_t mq_freeze_wq; ++ struct swait_head mq_freeze_wq; + struct percpu_ref mq_usage_counter; + struct list_head all_q_node; + +diff -Nur linux-3.18.12.orig/include/linux/blk-mq.h linux-3.18.12/include/linux/blk-mq.h +--- linux-3.18.12.orig/include/linux/blk-mq.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/blk-mq.h 2015-04-26 13:32:22.415684003 -0500 +@@ -169,6 +169,7 @@ + + struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *, const int ctx_index); + struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *, unsigned int, int); ++void __blk_mq_complete_request_remote_work(struct work_struct *work); + + void blk_mq_start_request(struct request *rq); + void blk_mq_end_request(struct request *rq, int error); +diff -Nur linux-3.18.12.orig/include/linux/bottom_half.h linux-3.18.12/include/linux/bottom_half.h +--- linux-3.18.12.orig/include/linux/bottom_half.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/bottom_half.h 2015-04-26 13:32:22.415684003 -0500 +@@ -4,6 +4,17 @@ + #include + #include + ++#ifdef CONFIG_PREEMPT_RT_FULL ++ ++extern void local_bh_disable(void); ++extern void _local_bh_enable(void); ++extern void local_bh_enable(void); ++extern void local_bh_enable_ip(unsigned long ip); ++extern void __local_bh_disable_ip(unsigned long ip, unsigned int cnt); ++extern void __local_bh_enable_ip(unsigned long ip, unsigned int cnt); ++ ++#else ++ + #ifdef CONFIG_TRACE_IRQFLAGS + extern void __local_bh_disable_ip(unsigned long ip, unsigned int cnt); + #else +@@ -31,5 +42,6 @@ + { + __local_bh_enable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); + } ++#endif + + #endif /* _LINUX_BH_H */ +diff -Nur linux-3.18.12.orig/include/linux/buffer_head.h linux-3.18.12/include/linux/buffer_head.h +--- linux-3.18.12.orig/include/linux/buffer_head.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/buffer_head.h 2015-04-26 13:32:22.415684003 -0500 +@@ -75,8 +75,52 @@ + struct address_space *b_assoc_map; /* mapping this buffer is + associated with */ + atomic_t b_count; /* users using this buffer_head */ ++#ifdef CONFIG_PREEMPT_RT_BASE ++ spinlock_t b_uptodate_lock; ++#if defined(CONFIG_JBD) || defined(CONFIG_JBD_MODULE) || \ ++ defined(CONFIG_JBD2) || defined(CONFIG_JBD2_MODULE) ++ spinlock_t b_state_lock; ++ spinlock_t b_journal_head_lock; ++#endif ++#endif + }; + ++static inline unsigned long bh_uptodate_lock_irqsave(struct buffer_head *bh) ++{ ++ unsigned long flags; ++ ++#ifndef CONFIG_PREEMPT_RT_BASE ++ local_irq_save(flags); ++ bit_spin_lock(BH_Uptodate_Lock, &bh->b_state); ++#else ++ spin_lock_irqsave(&bh->b_uptodate_lock, flags); ++#endif ++ return flags; ++} ++ ++static inline void ++bh_uptodate_unlock_irqrestore(struct buffer_head *bh, unsigned long flags) ++{ ++#ifndef CONFIG_PREEMPT_RT_BASE ++ bit_spin_unlock(BH_Uptodate_Lock, &bh->b_state); ++ local_irq_restore(flags); ++#else ++ spin_unlock_irqrestore(&bh->b_uptodate_lock, flags); ++#endif ++} ++ ++static inline void buffer_head_init_locks(struct buffer_head *bh) ++{ ++#ifdef CONFIG_PREEMPT_RT_BASE ++ spin_lock_init(&bh->b_uptodate_lock); ++#if defined(CONFIG_JBD) || defined(CONFIG_JBD_MODULE) || \ ++ defined(CONFIG_JBD2) || defined(CONFIG_JBD2_MODULE) ++ spin_lock_init(&bh->b_state_lock); ++ spin_lock_init(&bh->b_journal_head_lock); ++#endif ++#endif ++} ++ + /* + * macro tricks to expand the set_buffer_foo(), clear_buffer_foo() + * and buffer_foo() functions. +diff -Nur linux-3.18.12.orig/include/linux/cgroup.h linux-3.18.12/include/linux/cgroup.h +--- linux-3.18.12.orig/include/linux/cgroup.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/cgroup.h 2015-04-26 13:32:22.415684003 -0500 +@@ -22,6 +22,7 @@ + #include + #include + #include ++#include + + #ifdef CONFIG_CGROUPS + +@@ -91,6 +92,7 @@ + /* percpu_ref killing and RCU release */ + struct rcu_head rcu_head; + struct work_struct destroy_work; ++ struct swork_event destroy_swork; + }; + + /* bits in struct cgroup_subsys_state flags field */ +diff -Nur linux-3.18.12.orig/include/linux/completion.h linux-3.18.12/include/linux/completion.h +--- linux-3.18.12.orig/include/linux/completion.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/completion.h 2015-04-26 13:32:22.415684003 -0500 +@@ -7,8 +7,7 @@ + * Atomic wait-for-completion handler data structures. + * See kernel/sched/completion.c for details. + */ +- +-#include ++#include + + /* + * struct completion - structure used to maintain state for a "completion" +@@ -24,11 +23,11 @@ + */ + struct completion { + unsigned int done; +- wait_queue_head_t wait; ++ struct swait_head wait; + }; + + #define COMPLETION_INITIALIZER(work) \ +- { 0, __WAIT_QUEUE_HEAD_INITIALIZER((work).wait) } ++ { 0, SWAIT_HEAD_INITIALIZER((work).wait) } + + #define COMPLETION_INITIALIZER_ONSTACK(work) \ + ({ init_completion(&work); work; }) +@@ -73,7 +72,7 @@ + static inline void init_completion(struct completion *x) + { + x->done = 0; +- init_waitqueue_head(&x->wait); ++ init_swait_head(&x->wait); + } + + /** +diff -Nur linux-3.18.12.orig/include/linux/cpu.h linux-3.18.12/include/linux/cpu.h +--- linux-3.18.12.orig/include/linux/cpu.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/cpu.h 2015-04-26 13:32:22.415684003 -0500 +@@ -217,6 +217,8 @@ + extern void put_online_cpus(void); + extern void cpu_hotplug_disable(void); + extern void cpu_hotplug_enable(void); ++extern void pin_current_cpu(void); ++extern void unpin_current_cpu(void); + #define hotcpu_notifier(fn, pri) cpu_notifier(fn, pri) + #define __hotcpu_notifier(fn, pri) __cpu_notifier(fn, pri) + #define register_hotcpu_notifier(nb) register_cpu_notifier(nb) +@@ -235,6 +237,8 @@ + #define put_online_cpus() do { } while (0) + #define cpu_hotplug_disable() do { } while (0) + #define cpu_hotplug_enable() do { } while (0) ++static inline void pin_current_cpu(void) { } ++static inline void unpin_current_cpu(void) { } + #define hotcpu_notifier(fn, pri) do { (void)(fn); } while (0) + #define __hotcpu_notifier(fn, pri) do { (void)(fn); } while (0) + /* These aren't inline functions due to a GCC bug. */ +diff -Nur linux-3.18.12.orig/include/linux/delay.h linux-3.18.12/include/linux/delay.h +--- linux-3.18.12.orig/include/linux/delay.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/delay.h 2015-04-26 13:32:22.415684003 -0500 +@@ -52,4 +52,10 @@ + msleep(seconds * 1000); + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++extern void cpu_chill(void); ++#else ++# define cpu_chill() cpu_relax() ++#endif ++ + #endif /* defined(_LINUX_DELAY_H) */ +diff -Nur linux-3.18.12.orig/include/linux/ftrace_event.h linux-3.18.12/include/linux/ftrace_event.h +--- linux-3.18.12.orig/include/linux/ftrace_event.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/ftrace_event.h 2015-04-26 13:32:22.415684003 -0500 +@@ -61,6 +61,9 @@ + unsigned char flags; + unsigned char preempt_count; + int pid; ++ unsigned short migrate_disable; ++ unsigned short padding; ++ unsigned char preempt_lazy_count; + }; + + #define FTRACE_MAX_EVENT \ +diff -Nur linux-3.18.12.orig/include/linux/highmem.h linux-3.18.12/include/linux/highmem.h +--- linux-3.18.12.orig/include/linux/highmem.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/highmem.h 2015-04-26 13:32:22.415684003 -0500 +@@ -7,6 +7,7 @@ + #include + #include + #include ++#include + + #include + +@@ -85,32 +86,51 @@ + + #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) + ++#ifndef CONFIG_PREEMPT_RT_FULL + DECLARE_PER_CPU(int, __kmap_atomic_idx); ++#endif + + static inline int kmap_atomic_idx_push(void) + { ++#ifndef CONFIG_PREEMPT_RT_FULL + int idx = __this_cpu_inc_return(__kmap_atomic_idx) - 1; + +-#ifdef CONFIG_DEBUG_HIGHMEM ++# ifdef CONFIG_DEBUG_HIGHMEM + WARN_ON_ONCE(in_irq() && !irqs_disabled()); + BUG_ON(idx >= KM_TYPE_NR); +-#endif ++# endif + return idx; ++#else ++ current->kmap_idx++; ++ BUG_ON(current->kmap_idx > KM_TYPE_NR); ++ return current->kmap_idx - 1; ++#endif + } + + static inline int kmap_atomic_idx(void) + { ++#ifndef CONFIG_PREEMPT_RT_FULL + return __this_cpu_read(__kmap_atomic_idx) - 1; ++#else ++ return current->kmap_idx - 1; ++#endif + } + + static inline void kmap_atomic_idx_pop(void) + { +-#ifdef CONFIG_DEBUG_HIGHMEM ++#ifndef CONFIG_PREEMPT_RT_FULL ++# ifdef CONFIG_DEBUG_HIGHMEM + int idx = __this_cpu_dec_return(__kmap_atomic_idx); + + BUG_ON(idx < 0); +-#else ++# else + __this_cpu_dec(__kmap_atomic_idx); ++# endif ++#else ++ current->kmap_idx--; ++# ifdef CONFIG_DEBUG_HIGHMEM ++ BUG_ON(current->kmap_idx < 0); ++# endif + #endif + } + +diff -Nur linux-3.18.12.orig/include/linux/hrtimer.h linux-3.18.12/include/linux/hrtimer.h +--- linux-3.18.12.orig/include/linux/hrtimer.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/hrtimer.h 2015-04-26 13:32:22.415684003 -0500 +@@ -111,6 +111,11 @@ + enum hrtimer_restart (*function)(struct hrtimer *); + struct hrtimer_clock_base *base; + unsigned long state; ++ struct list_head cb_entry; ++ int irqsafe; ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ ktime_t praecox; ++#endif + #ifdef CONFIG_TIMER_STATS + int start_pid; + void *start_site; +@@ -147,6 +152,7 @@ + int index; + clockid_t clockid; + struct timerqueue_head active; ++ struct list_head expired; + ktime_t resolution; + ktime_t (*get_time)(void); + ktime_t softirq_time; +@@ -192,6 +198,9 @@ + unsigned long nr_hangs; + ktime_t max_hang_time; + #endif ++#ifdef CONFIG_PREEMPT_RT_BASE ++ wait_queue_head_t wait; ++#endif + struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES]; + }; + +@@ -379,6 +388,13 @@ + return hrtimer_start_expires(timer, HRTIMER_MODE_ABS); + } + ++/* Softirq preemption could deadlock timer removal */ ++#ifdef CONFIG_PREEMPT_RT_BASE ++ extern void hrtimer_wait_for_timer(const struct hrtimer *timer); ++#else ++# define hrtimer_wait_for_timer(timer) do { cpu_relax(); } while (0) ++#endif ++ + /* Query timers: */ + extern ktime_t hrtimer_get_remaining(const struct hrtimer *timer); + extern int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp); +diff -Nur linux-3.18.12.orig/include/linux/idr.h linux-3.18.12/include/linux/idr.h +--- linux-3.18.12.orig/include/linux/idr.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/idr.h 2015-04-26 13:32:22.415684003 -0500 +@@ -95,10 +95,14 @@ + * Each idr_preload() should be matched with an invocation of this + * function. See idr_preload() for details. + */ ++#ifdef CONFIG_PREEMPT_RT_FULL ++void idr_preload_end(void); ++#else + static inline void idr_preload_end(void) + { + preempt_enable(); + } ++#endif + + /** + * idr_find - return pointer for given id +diff -Nur linux-3.18.12.orig/include/linux/init_task.h linux-3.18.12/include/linux/init_task.h +--- linux-3.18.12.orig/include/linux/init_task.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/init_task.h 2015-04-26 13:32:22.415684003 -0500 +@@ -147,9 +147,16 @@ + # define INIT_PERF_EVENTS(tsk) + #endif + ++#ifdef CONFIG_PREEMPT_RT_BASE ++# define INIT_TIMER_LIST .posix_timer_list = NULL, ++#else ++# define INIT_TIMER_LIST ++#endif ++ + #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN + # define INIT_VTIME(tsk) \ +- .vtime_seqlock = __SEQLOCK_UNLOCKED(tsk.vtime_seqlock), \ ++ .vtime_lock = __RAW_SPIN_LOCK_UNLOCKED(tsk.vtime_lock), \ ++ .vtime_seq = SEQCNT_ZERO(tsk.vtime_seq), \ + .vtime_snap = 0, \ + .vtime_snap_whence = VTIME_SYS, + #else +@@ -219,6 +226,7 @@ + .cpu_timers = INIT_CPU_TIMERS(tsk.cpu_timers), \ + .pi_lock = __RAW_SPIN_LOCK_UNLOCKED(tsk.pi_lock), \ + .timer_slack_ns = 50000, /* 50 usec default slack */ \ ++ INIT_TIMER_LIST \ + .pids = { \ + [PIDTYPE_PID] = INIT_PID_LINK(PIDTYPE_PID), \ + [PIDTYPE_PGID] = INIT_PID_LINK(PIDTYPE_PGID), \ +diff -Nur linux-3.18.12.orig/include/linux/interrupt.h linux-3.18.12/include/linux/interrupt.h +--- linux-3.18.12.orig/include/linux/interrupt.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/interrupt.h 2015-04-26 13:32:22.415684003 -0500 +@@ -57,6 +57,7 @@ + * IRQF_NO_THREAD - Interrupt cannot be threaded + * IRQF_EARLY_RESUME - Resume IRQ early during syscore instead of at device + * resume time. ++ * IRQF_NO_SOFTIRQ_CALL - Do not process softirqs in the irq thread context (RT) + */ + #define IRQF_DISABLED 0x00000020 + #define IRQF_SHARED 0x00000080 +@@ -70,6 +71,7 @@ + #define IRQF_FORCE_RESUME 0x00008000 + #define IRQF_NO_THREAD 0x00010000 + #define IRQF_EARLY_RESUME 0x00020000 ++#define IRQF_NO_SOFTIRQ_CALL 0x00080000 + + #define IRQF_TIMER (__IRQF_TIMER | IRQF_NO_SUSPEND | IRQF_NO_THREAD) + +@@ -180,7 +182,7 @@ + #ifdef CONFIG_LOCKDEP + # define local_irq_enable_in_hardirq() do { } while (0) + #else +-# define local_irq_enable_in_hardirq() local_irq_enable() ++# define local_irq_enable_in_hardirq() local_irq_enable_nort() + #endif + + extern void disable_irq_nosync(unsigned int irq); +@@ -210,6 +212,7 @@ + unsigned int irq; + struct kref kref; + struct work_struct work; ++ struct list_head list; + void (*notify)(struct irq_affinity_notify *, const cpumask_t *mask); + void (*release)(struct kref *ref); + }; +@@ -358,9 +361,13 @@ + + + #ifdef CONFIG_IRQ_FORCED_THREADING ++# ifndef CONFIG_PREEMPT_RT_BASE + extern bool force_irqthreads; ++# else ++# define force_irqthreads (true) ++# endif + #else +-#define force_irqthreads (0) ++#define force_irqthreads (false) + #endif + + #ifndef __ARCH_SET_SOFTIRQ_PENDING +@@ -416,9 +423,10 @@ + void (*action)(struct softirq_action *); + }; + ++#ifndef CONFIG_PREEMPT_RT_FULL + asmlinkage void do_softirq(void); + asmlinkage void __do_softirq(void); +- ++static inline void thread_do_softirq(void) { do_softirq(); } + #ifdef __ARCH_HAS_DO_SOFTIRQ + void do_softirq_own_stack(void); + #else +@@ -427,6 +435,9 @@ + __do_softirq(); + } + #endif ++#else ++extern void thread_do_softirq(void); ++#endif + + extern void open_softirq(int nr, void (*action)(struct softirq_action *)); + extern void softirq_init(void); +@@ -434,6 +445,7 @@ + + extern void raise_softirq_irqoff(unsigned int nr); + extern void raise_softirq(unsigned int nr); ++extern void softirq_check_pending_idle(void); + + DECLARE_PER_CPU(struct task_struct *, ksoftirqd); + +@@ -455,8 +467,9 @@ + to be executed on some cpu at least once after this. + * If the tasklet is already scheduled, but its execution is still not + started, it will be executed only once. +- * If this tasklet is already running on another CPU (or schedule is called +- from tasklet itself), it is rescheduled for later. ++ * If this tasklet is already running on another CPU, it is rescheduled ++ for later. ++ * Schedule must not be called from the tasklet itself (a lockup occurs) + * Tasklet is strictly serialized wrt itself, but not + wrt another tasklets. If client needs some intertask synchronization, + he makes it with spinlocks. +@@ -481,27 +494,36 @@ + enum + { + TASKLET_STATE_SCHED, /* Tasklet is scheduled for execution */ +- TASKLET_STATE_RUN /* Tasklet is running (SMP only) */ ++ TASKLET_STATE_RUN, /* Tasklet is running (SMP only) */ ++ TASKLET_STATE_PENDING /* Tasklet is pending */ + }; + +-#ifdef CONFIG_SMP ++#define TASKLET_STATEF_SCHED (1 << TASKLET_STATE_SCHED) ++#define TASKLET_STATEF_RUN (1 << TASKLET_STATE_RUN) ++#define TASKLET_STATEF_PENDING (1 << TASKLET_STATE_PENDING) ++ ++#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT_FULL) + static inline int tasklet_trylock(struct tasklet_struct *t) + { + return !test_and_set_bit(TASKLET_STATE_RUN, &(t)->state); + } + ++static inline int tasklet_tryunlock(struct tasklet_struct *t) ++{ ++ return cmpxchg(&t->state, TASKLET_STATEF_RUN, 0) == TASKLET_STATEF_RUN; ++} ++ + static inline void tasklet_unlock(struct tasklet_struct *t) + { + smp_mb__before_atomic(); + clear_bit(TASKLET_STATE_RUN, &(t)->state); + } + +-static inline void tasklet_unlock_wait(struct tasklet_struct *t) +-{ +- while (test_bit(TASKLET_STATE_RUN, &(t)->state)) { barrier(); } +-} ++extern void tasklet_unlock_wait(struct tasklet_struct *t); ++ + #else + #define tasklet_trylock(t) 1 ++#define tasklet_tryunlock(t) 1 + #define tasklet_unlock_wait(t) do { } while (0) + #define tasklet_unlock(t) do { } while (0) + #endif +@@ -550,17 +572,8 @@ + smp_mb(); + } + +-static inline void tasklet_enable(struct tasklet_struct *t) +-{ +- smp_mb__before_atomic(); +- atomic_dec(&t->count); +-} +- +-static inline void tasklet_hi_enable(struct tasklet_struct *t) +-{ +- smp_mb__before_atomic(); +- atomic_dec(&t->count); +-} ++extern void tasklet_enable(struct tasklet_struct *t); ++extern void tasklet_hi_enable(struct tasklet_struct *t); + + extern void tasklet_kill(struct tasklet_struct *t); + extern void tasklet_kill_immediate(struct tasklet_struct *t, unsigned int cpu); +@@ -592,6 +605,12 @@ + tasklet_kill(&ttimer->tasklet); + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++extern void softirq_early_init(void); ++#else ++static inline void softirq_early_init(void) { } ++#endif ++ + /* + * Autoprobing for irqs: + * +diff -Nur linux-3.18.12.orig/include/linux/irqdesc.h linux-3.18.12/include/linux/irqdesc.h +--- linux-3.18.12.orig/include/linux/irqdesc.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/irqdesc.h 2015-04-26 13:32:22.415684003 -0500 +@@ -63,6 +63,7 @@ + unsigned int irqs_unhandled; + atomic_t threads_handled; + int threads_handled_last; ++ u64 random_ip; + raw_spinlock_t lock; + struct cpumask *percpu_enabled; + #ifdef CONFIG_SMP +diff -Nur linux-3.18.12.orig/include/linux/irqflags.h linux-3.18.12/include/linux/irqflags.h +--- linux-3.18.12.orig/include/linux/irqflags.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/irqflags.h 2015-04-26 13:32:22.415684003 -0500 +@@ -25,8 +25,6 @@ + # define trace_softirqs_enabled(p) ((p)->softirqs_enabled) + # define trace_hardirq_enter() do { current->hardirq_context++; } while (0) + # define trace_hardirq_exit() do { current->hardirq_context--; } while (0) +-# define lockdep_softirq_enter() do { current->softirq_context++; } while (0) +-# define lockdep_softirq_exit() do { current->softirq_context--; } while (0) + # define INIT_TRACE_IRQFLAGS .softirqs_enabled = 1, + #else + # define trace_hardirqs_on() do { } while (0) +@@ -39,9 +37,15 @@ + # define trace_softirqs_enabled(p) 0 + # define trace_hardirq_enter() do { } while (0) + # define trace_hardirq_exit() do { } while (0) ++# define INIT_TRACE_IRQFLAGS ++#endif ++ ++#if defined(CONFIG_TRACE_IRQFLAGS) && !defined(CONFIG_PREEMPT_RT_FULL) ++# define lockdep_softirq_enter() do { current->softirq_context++; } while (0) ++# define lockdep_softirq_exit() do { current->softirq_context--; } while (0) ++#else + # define lockdep_softirq_enter() do { } while (0) + # define lockdep_softirq_exit() do { } while (0) +-# define INIT_TRACE_IRQFLAGS + #endif + + #if defined(CONFIG_IRQSOFF_TRACER) || \ +@@ -147,4 +151,23 @@ + + #endif /* CONFIG_TRACE_IRQFLAGS_SUPPORT */ + ++/* ++ * local_irq* variants depending on RT/!RT ++ */ ++#ifdef CONFIG_PREEMPT_RT_FULL ++# define local_irq_disable_nort() do { } while (0) ++# define local_irq_enable_nort() do { } while (0) ++# define local_irq_save_nort(flags) local_save_flags(flags) ++# define local_irq_restore_nort(flags) (void)(flags) ++# define local_irq_disable_rt() local_irq_disable() ++# define local_irq_enable_rt() local_irq_enable() ++#else ++# define local_irq_disable_nort() local_irq_disable() ++# define local_irq_enable_nort() local_irq_enable() ++# define local_irq_save_nort(flags) local_irq_save(flags) ++# define local_irq_restore_nort(flags) local_irq_restore(flags) ++# define local_irq_disable_rt() do { } while (0) ++# define local_irq_enable_rt() do { } while (0) ++#endif ++ + #endif +diff -Nur linux-3.18.12.orig/include/linux/irq.h linux-3.18.12/include/linux/irq.h +--- linux-3.18.12.orig/include/linux/irq.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/irq.h 2015-04-26 13:32:22.415684003 -0500 +@@ -73,6 +73,7 @@ + * IRQ_IS_POLLED - Always polled by another interrupt. Exclude + * it from the spurious interrupt detection + * mechanism and from core side polling. ++ * IRQ_NO_SOFTIRQ_CALL - No softirq processing in the irq thread context (RT) + */ + enum { + IRQ_TYPE_NONE = 0x00000000, +@@ -98,13 +99,14 @@ + IRQ_NOTHREAD = (1 << 16), + IRQ_PER_CPU_DEVID = (1 << 17), + IRQ_IS_POLLED = (1 << 18), ++ IRQ_NO_SOFTIRQ_CALL = (1 << 19), + }; + + #define IRQF_MODIFY_MASK \ + (IRQ_TYPE_SENSE_MASK | IRQ_NOPROBE | IRQ_NOREQUEST | \ + IRQ_NOAUTOEN | IRQ_MOVE_PCNTXT | IRQ_LEVEL | IRQ_NO_BALANCING | \ + IRQ_PER_CPU | IRQ_NESTED_THREAD | IRQ_NOTHREAD | IRQ_PER_CPU_DEVID | \ +- IRQ_IS_POLLED) ++ IRQ_IS_POLLED | IRQ_NO_SOFTIRQ_CALL) + + #define IRQ_NO_BALANCING_MASK (IRQ_PER_CPU | IRQ_NO_BALANCING) + +diff -Nur linux-3.18.12.orig/include/linux/irq_work.h linux-3.18.12/include/linux/irq_work.h +--- linux-3.18.12.orig/include/linux/irq_work.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/irq_work.h 2015-04-26 13:32:22.415684003 -0500 +@@ -16,6 +16,7 @@ + #define IRQ_WORK_BUSY 2UL + #define IRQ_WORK_FLAGS 3UL + #define IRQ_WORK_LAZY 4UL /* Doesn't want IPI, wait for tick */ ++#define IRQ_WORK_HARD_IRQ 8UL /* Run hard IRQ context, even on RT */ + + struct irq_work { + unsigned long flags; +diff -Nur linux-3.18.12.orig/include/linux/jbd_common.h linux-3.18.12/include/linux/jbd_common.h +--- linux-3.18.12.orig/include/linux/jbd_common.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/jbd_common.h 2015-04-26 13:32:22.415684003 -0500 +@@ -15,32 +15,56 @@ + + static inline void jbd_lock_bh_state(struct buffer_head *bh) + { ++#ifndef CONFIG_PREEMPT_RT_BASE + bit_spin_lock(BH_State, &bh->b_state); ++#else ++ spin_lock(&bh->b_state_lock); ++#endif + } + + static inline int jbd_trylock_bh_state(struct buffer_head *bh) + { ++#ifndef CONFIG_PREEMPT_RT_BASE + return bit_spin_trylock(BH_State, &bh->b_state); ++#else ++ return spin_trylock(&bh->b_state_lock); ++#endif + } + + static inline int jbd_is_locked_bh_state(struct buffer_head *bh) + { ++#ifndef CONFIG_PREEMPT_RT_BASE + return bit_spin_is_locked(BH_State, &bh->b_state); ++#else ++ return spin_is_locked(&bh->b_state_lock); ++#endif + } + + static inline void jbd_unlock_bh_state(struct buffer_head *bh) + { ++#ifndef CONFIG_PREEMPT_RT_BASE + bit_spin_unlock(BH_State, &bh->b_state); ++#else ++ spin_unlock(&bh->b_state_lock); ++#endif + } + + static inline void jbd_lock_bh_journal_head(struct buffer_head *bh) + { ++#ifndef CONFIG_PREEMPT_RT_BASE + bit_spin_lock(BH_JournalHead, &bh->b_state); ++#else ++ spin_lock(&bh->b_journal_head_lock); ++#endif + } + + static inline void jbd_unlock_bh_journal_head(struct buffer_head *bh) + { ++#ifndef CONFIG_PREEMPT_RT_BASE + bit_spin_unlock(BH_JournalHead, &bh->b_state); ++#else ++ spin_unlock(&bh->b_journal_head_lock); ++#endif + } + + #endif +diff -Nur linux-3.18.12.orig/include/linux/jump_label.h linux-3.18.12/include/linux/jump_label.h +--- linux-3.18.12.orig/include/linux/jump_label.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/jump_label.h 2015-04-26 13:32:22.419684003 -0500 +@@ -55,7 +55,8 @@ + "%s used before call to jump_label_init", \ + __func__) + +-#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL) ++#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL) && \ ++ !defined(CONFIG_PREEMPT_BASE) + + struct static_key { + atomic_t enabled; +diff -Nur linux-3.18.12.orig/include/linux/kdb.h linux-3.18.12/include/linux/kdb.h +--- linux-3.18.12.orig/include/linux/kdb.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/kdb.h 2015-04-26 13:32:22.419684003 -0500 +@@ -116,7 +116,7 @@ + extern __printf(1, 0) int vkdb_printf(const char *fmt, va_list args); + extern __printf(1, 2) int kdb_printf(const char *, ...); + typedef __printf(1, 2) int (*kdb_printf_t)(const char *, ...); +- ++#define in_kdb_printk() (kdb_trap_printk) + extern void kdb_init(int level); + + /* Access to kdb specific polling devices */ +@@ -151,6 +151,7 @@ + extern int kdb_unregister(char *); + #else /* ! CONFIG_KGDB_KDB */ + static inline __printf(1, 2) int kdb_printf(const char *fmt, ...) { return 0; } ++#define in_kdb_printk() (0) + static inline void kdb_init(int level) {} + static inline int kdb_register(char *cmd, kdb_func_t func, char *usage, + char *help, short minlen) { return 0; } +diff -Nur linux-3.18.12.orig/include/linux/kernel.h linux-3.18.12/include/linux/kernel.h +--- linux-3.18.12.orig/include/linux/kernel.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/kernel.h 2015-04-26 13:32:22.419684003 -0500 +@@ -451,6 +451,7 @@ + SYSTEM_HALT, + SYSTEM_POWER_OFF, + SYSTEM_RESTART, ++ SYSTEM_SUSPEND, + } system_state; + + #define TAINT_PROPRIETARY_MODULE 0 +diff -Nur linux-3.18.12.orig/include/linux/kvm_host.h linux-3.18.12/include/linux/kvm_host.h +--- linux-3.18.12.orig/include/linux/kvm_host.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/kvm_host.h 2015-04-26 13:32:22.419684003 -0500 +@@ -244,7 +244,7 @@ + + int fpu_active; + int guest_fpu_loaded, guest_xcr0_loaded; +- wait_queue_head_t wq; ++ struct swait_head wq; + struct pid *pid; + int sigset_active; + sigset_t sigset; +@@ -687,7 +687,7 @@ + } + #endif + +-static inline wait_queue_head_t *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) ++static inline struct swait_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) + { + #ifdef __KVM_HAVE_ARCH_WQP + return vcpu->arch.wqp; +diff -Nur linux-3.18.12.orig/include/linux/lglock.h linux-3.18.12/include/linux/lglock.h +--- linux-3.18.12.orig/include/linux/lglock.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/lglock.h 2015-04-26 13:32:22.419684003 -0500 +@@ -34,22 +34,39 @@ + #endif + + struct lglock { ++#ifndef CONFIG_PREEMPT_RT_FULL + arch_spinlock_t __percpu *lock; ++#else ++ struct rt_mutex __percpu *lock; ++#endif + #ifdef CONFIG_DEBUG_LOCK_ALLOC + struct lock_class_key lock_key; + struct lockdep_map lock_dep_map; + #endif + }; + +-#define DEFINE_LGLOCK(name) \ ++#ifndef CONFIG_PREEMPT_RT_FULL ++# define DEFINE_LGLOCK(name) \ + static DEFINE_PER_CPU(arch_spinlock_t, name ## _lock) \ + = __ARCH_SPIN_LOCK_UNLOCKED; \ + struct lglock name = { .lock = &name ## _lock } + +-#define DEFINE_STATIC_LGLOCK(name) \ ++# define DEFINE_STATIC_LGLOCK(name) \ + static DEFINE_PER_CPU(arch_spinlock_t, name ## _lock) \ + = __ARCH_SPIN_LOCK_UNLOCKED; \ + static struct lglock name = { .lock = &name ## _lock } ++#else ++ ++# define DEFINE_LGLOCK(name) \ ++ static DEFINE_PER_CPU(struct rt_mutex, name ## _lock) \ ++ = __RT_MUTEX_INITIALIZER( name ## _lock); \ ++ struct lglock name = { .lock = &name ## _lock } ++ ++# define DEFINE_STATIC_LGLOCK(name) \ ++ static DEFINE_PER_CPU(struct rt_mutex, name ## _lock) \ ++ = __RT_MUTEX_INITIALIZER( name ## _lock); \ ++ static struct lglock name = { .lock = &name ## _lock } ++#endif + + void lg_lock_init(struct lglock *lg, char *name); + void lg_local_lock(struct lglock *lg); +@@ -59,6 +76,12 @@ + void lg_global_lock(struct lglock *lg); + void lg_global_unlock(struct lglock *lg); + ++#ifndef CONFIG_PREEMPT_RT_FULL ++#define lg_global_trylock_relax(name) lg_global_lock(name) ++#else ++void lg_global_trylock_relax(struct lglock *lg); ++#endif ++ + #else + /* When !CONFIG_SMP, map lglock to spinlock */ + #define lglock spinlock +diff -Nur linux-3.18.12.orig/include/linux/list_bl.h linux-3.18.12/include/linux/list_bl.h +--- linux-3.18.12.orig/include/linux/list_bl.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/list_bl.h 2015-04-26 13:32:22.419684003 -0500 +@@ -2,6 +2,7 @@ + #define _LINUX_LIST_BL_H + + #include ++#include + #include + + /* +@@ -32,13 +33,22 @@ + + struct hlist_bl_head { + struct hlist_bl_node *first; ++#ifdef CONFIG_PREEMPT_RT_BASE ++ raw_spinlock_t lock; ++#endif + }; + + struct hlist_bl_node { + struct hlist_bl_node *next, **pprev; + }; +-#define INIT_HLIST_BL_HEAD(ptr) \ +- ((ptr)->first = NULL) ++ ++static inline void INIT_HLIST_BL_HEAD(struct hlist_bl_head *h) ++{ ++ h->first = NULL; ++#ifdef CONFIG_PREEMPT_RT_BASE ++ raw_spin_lock_init(&h->lock); ++#endif ++} + + static inline void INIT_HLIST_BL_NODE(struct hlist_bl_node *h) + { +@@ -117,12 +127,26 @@ + + static inline void hlist_bl_lock(struct hlist_bl_head *b) + { ++#ifndef CONFIG_PREEMPT_RT_BASE + bit_spin_lock(0, (unsigned long *)b); ++#else ++ raw_spin_lock(&b->lock); ++#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) ++ __set_bit(0, (unsigned long *)b); ++#endif ++#endif + } + + static inline void hlist_bl_unlock(struct hlist_bl_head *b) + { ++#ifndef CONFIG_PREEMPT_RT_BASE + __bit_spin_unlock(0, (unsigned long *)b); ++#else ++#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) ++ __clear_bit(0, (unsigned long *)b); ++#endif ++ raw_spin_unlock(&b->lock); ++#endif + } + + static inline bool hlist_bl_is_locked(struct hlist_bl_head *b) +diff -Nur linux-3.18.12.orig/include/linux/locallock.h linux-3.18.12/include/linux/locallock.h +--- linux-3.18.12.orig/include/linux/locallock.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/locallock.h 2015-04-26 13:32:22.419684003 -0500 +@@ -0,0 +1,270 @@ ++#ifndef _LINUX_LOCALLOCK_H ++#define _LINUX_LOCALLOCK_H ++ ++#include ++#include ++ ++#ifdef CONFIG_PREEMPT_RT_BASE ++ ++#ifdef CONFIG_DEBUG_SPINLOCK ++# define LL_WARN(cond) WARN_ON(cond) ++#else ++# define LL_WARN(cond) do { } while (0) ++#endif ++ ++/* ++ * per cpu lock based substitute for local_irq_*() ++ */ ++struct local_irq_lock { ++ spinlock_t lock; ++ struct task_struct *owner; ++ int nestcnt; ++ unsigned long flags; ++}; ++ ++#define DEFINE_LOCAL_IRQ_LOCK(lvar) \ ++ DEFINE_PER_CPU(struct local_irq_lock, lvar) = { \ ++ .lock = __SPIN_LOCK_UNLOCKED((lvar).lock) } ++ ++#define DECLARE_LOCAL_IRQ_LOCK(lvar) \ ++ DECLARE_PER_CPU(struct local_irq_lock, lvar) ++ ++#define local_irq_lock_init(lvar) \ ++ do { \ ++ int __cpu; \ ++ for_each_possible_cpu(__cpu) \ ++ spin_lock_init(&per_cpu(lvar, __cpu).lock); \ ++ } while (0) ++ ++/* ++ * spin_lock|trylock|unlock_local flavour that does not migrate disable ++ * used for __local_lock|trylock|unlock where get_local_var/put_local_var ++ * already takes care of the migrate_disable/enable ++ * for CONFIG_PREEMPT_BASE map to the normal spin_* calls. ++ */ ++#ifdef CONFIG_PREEMPT_RT_FULL ++# define spin_lock_local(lock) rt_spin_lock(lock) ++# define spin_trylock_local(lock) rt_spin_trylock(lock) ++# define spin_unlock_local(lock) rt_spin_unlock(lock) ++#else ++# define spin_lock_local(lock) spin_lock(lock) ++# define spin_trylock_local(lock) spin_trylock(lock) ++# define spin_unlock_local(lock) spin_unlock(lock) ++#endif ++ ++static inline void __local_lock(struct local_irq_lock *lv) ++{ ++ if (lv->owner != current) { ++ spin_lock_local(&lv->lock); ++ LL_WARN(lv->owner); ++ LL_WARN(lv->nestcnt); ++ lv->owner = current; ++ } ++ lv->nestcnt++; ++} ++ ++#define local_lock(lvar) \ ++ do { __local_lock(&get_local_var(lvar)); } while (0) ++ ++static inline int __local_trylock(struct local_irq_lock *lv) ++{ ++ if (lv->owner != current && spin_trylock_local(&lv->lock)) { ++ LL_WARN(lv->owner); ++ LL_WARN(lv->nestcnt); ++ lv->owner = current; ++ lv->nestcnt = 1; ++ return 1; ++ } ++ return 0; ++} ++ ++#define local_trylock(lvar) \ ++ ({ \ ++ int __locked; \ ++ __locked = __local_trylock(&get_local_var(lvar)); \ ++ if (!__locked) \ ++ put_local_var(lvar); \ ++ __locked; \ ++ }) ++ ++static inline void __local_unlock(struct local_irq_lock *lv) ++{ ++ LL_WARN(lv->nestcnt == 0); ++ LL_WARN(lv->owner != current); ++ if (--lv->nestcnt) ++ return; ++ ++ lv->owner = NULL; ++ spin_unlock_local(&lv->lock); ++} ++ ++#define local_unlock(lvar) \ ++ do { \ ++ __local_unlock(&__get_cpu_var(lvar)); \ ++ put_local_var(lvar); \ ++ } while (0) ++ ++static inline void __local_lock_irq(struct local_irq_lock *lv) ++{ ++ spin_lock_irqsave(&lv->lock, lv->flags); ++ LL_WARN(lv->owner); ++ LL_WARN(lv->nestcnt); ++ lv->owner = current; ++ lv->nestcnt = 1; ++} ++ ++#define local_lock_irq(lvar) \ ++ do { __local_lock_irq(&get_local_var(lvar)); } while (0) ++ ++#define local_lock_irq_on(lvar, cpu) \ ++ do { __local_lock_irq(&per_cpu(lvar, cpu)); } while (0) ++ ++static inline void __local_unlock_irq(struct local_irq_lock *lv) ++{ ++ LL_WARN(!lv->nestcnt); ++ LL_WARN(lv->owner != current); ++ lv->owner = NULL; ++ lv->nestcnt = 0; ++ spin_unlock_irq(&lv->lock); ++} ++ ++#define local_unlock_irq(lvar) \ ++ do { \ ++ __local_unlock_irq(&__get_cpu_var(lvar)); \ ++ put_local_var(lvar); \ ++ } while (0) ++ ++#define local_unlock_irq_on(lvar, cpu) \ ++ do { \ ++ __local_unlock_irq(&per_cpu(lvar, cpu)); \ ++ } while (0) ++ ++static inline int __local_lock_irqsave(struct local_irq_lock *lv) ++{ ++ if (lv->owner != current) { ++ __local_lock_irq(lv); ++ return 0; ++ } else { ++ lv->nestcnt++; ++ return 1; ++ } ++} ++ ++#define local_lock_irqsave(lvar, _flags) \ ++ do { \ ++ if (__local_lock_irqsave(&get_local_var(lvar))) \ ++ put_local_var(lvar); \ ++ _flags = __get_cpu_var(lvar).flags; \ ++ } while (0) ++ ++#define local_lock_irqsave_on(lvar, _flags, cpu) \ ++ do { \ ++ __local_lock_irqsave(&per_cpu(lvar, cpu)); \ ++ _flags = per_cpu(lvar, cpu).flags; \ ++ } while (0) ++ ++static inline int __local_unlock_irqrestore(struct local_irq_lock *lv, ++ unsigned long flags) ++{ ++ LL_WARN(!lv->nestcnt); ++ LL_WARN(lv->owner != current); ++ if (--lv->nestcnt) ++ return 0; ++ ++ lv->owner = NULL; ++ spin_unlock_irqrestore(&lv->lock, lv->flags); ++ return 1; ++} ++ ++#define local_unlock_irqrestore(lvar, flags) \ ++ do { \ ++ if (__local_unlock_irqrestore(&__get_cpu_var(lvar), flags)) \ ++ put_local_var(lvar); \ ++ } while (0) ++ ++#define local_unlock_irqrestore_on(lvar, flags, cpu) \ ++ do { \ ++ __local_unlock_irqrestore(&per_cpu(lvar, cpu), flags); \ ++ } while (0) ++ ++#define local_spin_trylock_irq(lvar, lock) \ ++ ({ \ ++ int __locked; \ ++ local_lock_irq(lvar); \ ++ __locked = spin_trylock(lock); \ ++ if (!__locked) \ ++ local_unlock_irq(lvar); \ ++ __locked; \ ++ }) ++ ++#define local_spin_lock_irq(lvar, lock) \ ++ do { \ ++ local_lock_irq(lvar); \ ++ spin_lock(lock); \ ++ } while (0) ++ ++#define local_spin_unlock_irq(lvar, lock) \ ++ do { \ ++ spin_unlock(lock); \ ++ local_unlock_irq(lvar); \ ++ } while (0) ++ ++#define local_spin_lock_irqsave(lvar, lock, flags) \ ++ do { \ ++ local_lock_irqsave(lvar, flags); \ ++ spin_lock(lock); \ ++ } while (0) ++ ++#define local_spin_unlock_irqrestore(lvar, lock, flags) \ ++ do { \ ++ spin_unlock(lock); \ ++ local_unlock_irqrestore(lvar, flags); \ ++ } while (0) ++ ++#define get_locked_var(lvar, var) \ ++ (*({ \ ++ local_lock(lvar); \ ++ &__get_cpu_var(var); \ ++ })) ++ ++#define put_locked_var(lvar, var) local_unlock(lvar); ++ ++#define local_lock_cpu(lvar) \ ++ ({ \ ++ local_lock(lvar); \ ++ smp_processor_id(); \ ++ }) ++ ++#define local_unlock_cpu(lvar) local_unlock(lvar) ++ ++#else /* PREEMPT_RT_BASE */ ++ ++#define DEFINE_LOCAL_IRQ_LOCK(lvar) __typeof__(const int) lvar ++#define DECLARE_LOCAL_IRQ_LOCK(lvar) extern __typeof__(const int) lvar ++ ++static inline void local_irq_lock_init(int lvar) { } ++ ++#define local_lock(lvar) preempt_disable() ++#define local_unlock(lvar) preempt_enable() ++#define local_lock_irq(lvar) local_irq_disable() ++#define local_unlock_irq(lvar) local_irq_enable() ++#define local_lock_irqsave(lvar, flags) local_irq_save(flags) ++#define local_unlock_irqrestore(lvar, flags) local_irq_restore(flags) ++ ++#define local_spin_trylock_irq(lvar, lock) spin_trylock_irq(lock) ++#define local_spin_lock_irq(lvar, lock) spin_lock_irq(lock) ++#define local_spin_unlock_irq(lvar, lock) spin_unlock_irq(lock) ++#define local_spin_lock_irqsave(lvar, lock, flags) \ ++ spin_lock_irqsave(lock, flags) ++#define local_spin_unlock_irqrestore(lvar, lock, flags) \ ++ spin_unlock_irqrestore(lock, flags) ++ ++#define get_locked_var(lvar, var) get_cpu_var(var) ++#define put_locked_var(lvar, var) put_cpu_var(var) ++ ++#define local_lock_cpu(lvar) get_cpu() ++#define local_unlock_cpu(lvar) put_cpu() ++ ++#endif ++ ++#endif +diff -Nur linux-3.18.12.orig/include/linux/mm_types.h linux-3.18.12/include/linux/mm_types.h +--- linux-3.18.12.orig/include/linux/mm_types.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/mm_types.h 2015-04-26 13:32:22.419684003 -0500 +@@ -11,6 +11,7 @@ + #include + #include + #include ++#include + #include + #include + #include +@@ -454,6 +455,9 @@ + bool tlb_flush_pending; + #endif + struct uprobes_state uprobes_state; ++#ifdef CONFIG_PREEMPT_RT_BASE ++ struct rcu_head delayed_drop; ++#endif + }; + + static inline void mm_init_cpumask(struct mm_struct *mm) +diff -Nur linux-3.18.12.orig/include/linux/mutex.h linux-3.18.12/include/linux/mutex.h +--- linux-3.18.12.orig/include/linux/mutex.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/mutex.h 2015-04-26 13:32:22.419684003 -0500 +@@ -19,6 +19,17 @@ + #include + #include + ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++# define __DEP_MAP_MUTEX_INITIALIZER(lockname) \ ++ , .dep_map = { .name = #lockname } ++#else ++# define __DEP_MAP_MUTEX_INITIALIZER(lockname) ++#endif ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++# include ++#else ++ + /* + * Simple, straightforward mutexes with strict semantics: + * +@@ -100,13 +111,6 @@ + static inline void mutex_destroy(struct mutex *lock) {} + #endif + +-#ifdef CONFIG_DEBUG_LOCK_ALLOC +-# define __DEP_MAP_MUTEX_INITIALIZER(lockname) \ +- , .dep_map = { .name = #lockname } +-#else +-# define __DEP_MAP_MUTEX_INITIALIZER(lockname) +-#endif +- + #define __MUTEX_INITIALIZER(lockname) \ + { .count = ATOMIC_INIT(1) \ + , .wait_lock = __SPIN_LOCK_UNLOCKED(lockname.wait_lock) \ +@@ -174,6 +178,8 @@ + extern int mutex_trylock(struct mutex *lock); + extern void mutex_unlock(struct mutex *lock); + ++#endif /* !PREEMPT_RT_FULL */ ++ + extern int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock); + + #endif /* __LINUX_MUTEX_H */ +diff -Nur linux-3.18.12.orig/include/linux/mutex_rt.h linux-3.18.12/include/linux/mutex_rt.h +--- linux-3.18.12.orig/include/linux/mutex_rt.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/mutex_rt.h 2015-04-26 13:32:22.419684003 -0500 +@@ -0,0 +1,84 @@ ++#ifndef __LINUX_MUTEX_RT_H ++#define __LINUX_MUTEX_RT_H ++ ++#ifndef __LINUX_MUTEX_H ++#error "Please include mutex.h" ++#endif ++ ++#include ++ ++/* FIXME: Just for __lockfunc */ ++#include ++ ++struct mutex { ++ struct rt_mutex lock; ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ struct lockdep_map dep_map; ++#endif ++}; ++ ++#define __MUTEX_INITIALIZER(mutexname) \ ++ { \ ++ .lock = __RT_MUTEX_INITIALIZER(mutexname.lock) \ ++ __DEP_MAP_MUTEX_INITIALIZER(mutexname) \ ++ } ++ ++#define DEFINE_MUTEX(mutexname) \ ++ struct mutex mutexname = __MUTEX_INITIALIZER(mutexname) ++ ++extern void __mutex_do_init(struct mutex *lock, const char *name, struct lock_class_key *key); ++extern void __lockfunc _mutex_lock(struct mutex *lock); ++extern int __lockfunc _mutex_lock_interruptible(struct mutex *lock); ++extern int __lockfunc _mutex_lock_killable(struct mutex *lock); ++extern void __lockfunc _mutex_lock_nested(struct mutex *lock, int subclass); ++extern void __lockfunc _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock); ++extern int __lockfunc _mutex_lock_interruptible_nested(struct mutex *lock, int subclass); ++extern int __lockfunc _mutex_lock_killable_nested(struct mutex *lock, int subclass); ++extern int __lockfunc _mutex_trylock(struct mutex *lock); ++extern void __lockfunc _mutex_unlock(struct mutex *lock); ++ ++#define mutex_is_locked(l) rt_mutex_is_locked(&(l)->lock) ++#define mutex_lock(l) _mutex_lock(l) ++#define mutex_lock_interruptible(l) _mutex_lock_interruptible(l) ++#define mutex_lock_killable(l) _mutex_lock_killable(l) ++#define mutex_trylock(l) _mutex_trylock(l) ++#define mutex_unlock(l) _mutex_unlock(l) ++#define mutex_destroy(l) rt_mutex_destroy(&(l)->lock) ++ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++# define mutex_lock_nested(l, s) _mutex_lock_nested(l, s) ++# define mutex_lock_interruptible_nested(l, s) \ ++ _mutex_lock_interruptible_nested(l, s) ++# define mutex_lock_killable_nested(l, s) \ ++ _mutex_lock_killable_nested(l, s) ++ ++# define mutex_lock_nest_lock(lock, nest_lock) \ ++do { \ ++ typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \ ++ _mutex_lock_nest_lock(lock, &(nest_lock)->dep_map); \ ++} while (0) ++ ++#else ++# define mutex_lock_nested(l, s) _mutex_lock(l) ++# define mutex_lock_interruptible_nested(l, s) \ ++ _mutex_lock_interruptible(l) ++# define mutex_lock_killable_nested(l, s) \ ++ _mutex_lock_killable(l) ++# define mutex_lock_nest_lock(lock, nest_lock) mutex_lock(lock) ++#endif ++ ++# define mutex_init(mutex) \ ++do { \ ++ static struct lock_class_key __key; \ ++ \ ++ rt_mutex_init(&(mutex)->lock); \ ++ __mutex_do_init((mutex), #mutex, &__key); \ ++} while (0) ++ ++# define __mutex_init(mutex, name, key) \ ++do { \ ++ rt_mutex_init(&(mutex)->lock); \ ++ __mutex_do_init((mutex), name, key); \ ++} while (0) ++ ++#endif +diff -Nur linux-3.18.12.orig/include/linux/netdevice.h linux-3.18.12/include/linux/netdevice.h +--- linux-3.18.12.orig/include/linux/netdevice.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/netdevice.h 2015-04-26 13:32:22.419684003 -0500 +@@ -2345,6 +2345,7 @@ + unsigned int dropped; + struct sk_buff_head input_pkt_queue; + struct napi_struct backlog; ++ struct sk_buff_head tofree_queue; + + #ifdef CONFIG_NET_FLOW_LIMIT + struct sd_flow_limit __rcu *flow_limit; +diff -Nur linux-3.18.12.orig/include/linux/netfilter/x_tables.h linux-3.18.12/include/linux/netfilter/x_tables.h +--- linux-3.18.12.orig/include/linux/netfilter/x_tables.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/netfilter/x_tables.h 2015-04-26 13:32:22.419684003 -0500 +@@ -3,6 +3,7 @@ + + + #include ++#include + #include + + /** +@@ -282,6 +283,8 @@ + */ + DECLARE_PER_CPU(seqcount_t, xt_recseq); + ++DECLARE_LOCAL_IRQ_LOCK(xt_write_lock); ++ + /** + * xt_write_recseq_begin - start of a write section + * +@@ -296,6 +299,9 @@ + { + unsigned int addend; + ++ /* RT protection */ ++ local_lock(xt_write_lock); ++ + /* + * Low order bit of sequence is set if we already + * called xt_write_recseq_begin(). +@@ -326,6 +332,7 @@ + /* this is kind of a write_seqcount_end(), but addend is 0 or 1 */ + smp_wmb(); + __this_cpu_add(xt_recseq.sequence, addend); ++ local_unlock(xt_write_lock); + } + + /* +diff -Nur linux-3.18.12.orig/include/linux/notifier.h linux-3.18.12/include/linux/notifier.h +--- linux-3.18.12.orig/include/linux/notifier.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/notifier.h 2015-04-26 13:32:22.419684003 -0500 +@@ -6,7 +6,7 @@ + * + * Alan Cox + */ +- ++ + #ifndef _LINUX_NOTIFIER_H + #define _LINUX_NOTIFIER_H + #include +@@ -42,9 +42,7 @@ + * in srcu_notifier_call_chain(): no cache bounces and no memory barriers. + * As compensation, srcu_notifier_chain_unregister() is rather expensive. + * SRCU notifier chains should be used when the chain will be called very +- * often but notifier_blocks will seldom be removed. Also, SRCU notifier +- * chains are slightly more difficult to use because they require special +- * runtime initialization. ++ * often but notifier_blocks will seldom be removed. + */ + + typedef int (*notifier_fn_t)(struct notifier_block *nb, +@@ -88,7 +86,7 @@ + (name)->head = NULL; \ + } while (0) + +-/* srcu_notifier_heads must be initialized and cleaned up dynamically */ ++/* srcu_notifier_heads must be cleaned up dynamically */ + extern void srcu_init_notifier_head(struct srcu_notifier_head *nh); + #define srcu_cleanup_notifier_head(name) \ + cleanup_srcu_struct(&(name)->srcu); +@@ -101,7 +99,13 @@ + .head = NULL } + #define RAW_NOTIFIER_INIT(name) { \ + .head = NULL } +-/* srcu_notifier_heads cannot be initialized statically */ ++ ++#define SRCU_NOTIFIER_INIT(name, pcpu) \ ++ { \ ++ .mutex = __MUTEX_INITIALIZER(name.mutex), \ ++ .head = NULL, \ ++ .srcu = __SRCU_STRUCT_INIT(name.srcu, pcpu), \ ++ } + + #define ATOMIC_NOTIFIER_HEAD(name) \ + struct atomic_notifier_head name = \ +@@ -113,6 +117,18 @@ + struct raw_notifier_head name = \ + RAW_NOTIFIER_INIT(name) + ++#define _SRCU_NOTIFIER_HEAD(name, mod) \ ++ static DEFINE_PER_CPU(struct srcu_struct_array, \ ++ name##_head_srcu_array); \ ++ mod struct srcu_notifier_head name = \ ++ SRCU_NOTIFIER_INIT(name, name##_head_srcu_array) ++ ++#define SRCU_NOTIFIER_HEAD(name) \ ++ _SRCU_NOTIFIER_HEAD(name, ) ++ ++#define SRCU_NOTIFIER_HEAD_STATIC(name) \ ++ _SRCU_NOTIFIER_HEAD(name, static) ++ + #ifdef __KERNEL__ + + extern int atomic_notifier_chain_register(struct atomic_notifier_head *nh, +@@ -182,12 +198,12 @@ + + /* + * Declared notifiers so far. I can imagine quite a few more chains +- * over time (eg laptop power reset chains, reboot chain (to clean ++ * over time (eg laptop power reset chains, reboot chain (to clean + * device units up), device [un]mount chain, module load/unload chain, +- * low memory chain, screenblank chain (for plug in modular screenblankers) ++ * low memory chain, screenblank chain (for plug in modular screenblankers) + * VC switch chains (for loadable kernel svgalib VC switch helpers) etc... + */ +- ++ + /* CPU notfiers are defined in include/linux/cpu.h. */ + + /* netdevice notifiers are defined in include/linux/netdevice.h */ +diff -Nur linux-3.18.12.orig/include/linux/percpu.h linux-3.18.12/include/linux/percpu.h +--- linux-3.18.12.orig/include/linux/percpu.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/percpu.h 2015-04-26 13:32:22.419684003 -0500 +@@ -23,6 +23,35 @@ + PERCPU_MODULE_RESERVE) + #endif + ++#ifdef CONFIG_PREEMPT_RT_FULL ++ ++#define get_local_var(var) (*({ \ ++ migrate_disable(); \ ++ &__get_cpu_var(var); })) ++ ++#define put_local_var(var) do { \ ++ (void)&(var); \ ++ migrate_enable(); \ ++} while (0) ++ ++# define get_local_ptr(var) ({ \ ++ migrate_disable(); \ ++ this_cpu_ptr(var); }) ++ ++# define put_local_ptr(var) do { \ ++ (void)(var); \ ++ migrate_enable(); \ ++} while (0) ++ ++#else ++ ++#define get_local_var(var) get_cpu_var(var) ++#define put_local_var(var) put_cpu_var(var) ++#define get_local_ptr(var) get_cpu_ptr(var) ++#define put_local_ptr(var) put_cpu_ptr(var) ++ ++#endif ++ + /* minimum unit size, also is the maximum supported allocation size */ + #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) + +diff -Nur linux-3.18.12.orig/include/linux/pid.h linux-3.18.12/include/linux/pid.h +--- linux-3.18.12.orig/include/linux/pid.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/pid.h 2015-04-26 13:32:22.419684003 -0500 +@@ -2,6 +2,7 @@ + #define _LINUX_PID_H + + #include ++#include + + enum pid_type + { +diff -Nur linux-3.18.12.orig/include/linux/preempt.h linux-3.18.12/include/linux/preempt.h +--- linux-3.18.12.orig/include/linux/preempt.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/preempt.h 2015-04-26 13:32:22.419684003 -0500 +@@ -33,6 +33,20 @@ + #define preempt_count_inc() preempt_count_add(1) + #define preempt_count_dec() preempt_count_sub(1) + ++#ifdef CONFIG_PREEMPT_LAZY ++#define add_preempt_lazy_count(val) do { preempt_lazy_count() += (val); } while (0) ++#define sub_preempt_lazy_count(val) do { preempt_lazy_count() -= (val); } while (0) ++#define inc_preempt_lazy_count() add_preempt_lazy_count(1) ++#define dec_preempt_lazy_count() sub_preempt_lazy_count(1) ++#define preempt_lazy_count() (current_thread_info()->preempt_lazy_count) ++#else ++#define add_preempt_lazy_count(val) do { } while (0) ++#define sub_preempt_lazy_count(val) do { } while (0) ++#define inc_preempt_lazy_count() do { } while (0) ++#define dec_preempt_lazy_count() do { } while (0) ++#define preempt_lazy_count() (0) ++#endif ++ + #ifdef CONFIG_PREEMPT_COUNT + + #define preempt_disable() \ +@@ -41,13 +55,25 @@ + barrier(); \ + } while (0) + ++#define preempt_lazy_disable() \ ++do { \ ++ inc_preempt_lazy_count(); \ ++ barrier(); \ ++} while (0) ++ + #define sched_preempt_enable_no_resched() \ + do { \ + barrier(); \ + preempt_count_dec(); \ + } while (0) + +-#define preempt_enable_no_resched() sched_preempt_enable_no_resched() ++#ifdef CONFIG_PREEMPT_RT_BASE ++# define preempt_enable_no_resched() sched_preempt_enable_no_resched() ++# define preempt_check_resched_rt() preempt_check_resched() ++#else ++# define preempt_enable_no_resched() preempt_enable() ++# define preempt_check_resched_rt() barrier(); ++#endif + + #ifdef CONFIG_PREEMPT + #define preempt_enable() \ +@@ -63,6 +89,13 @@ + __preempt_schedule(); \ + } while (0) + ++#define preempt_lazy_enable() \ ++do { \ ++ dec_preempt_lazy_count(); \ ++ barrier(); \ ++ preempt_check_resched(); \ ++} while (0) ++ + #else + #define preempt_enable() \ + do { \ +@@ -121,6 +154,7 @@ + #define preempt_disable_notrace() barrier() + #define preempt_enable_no_resched_notrace() barrier() + #define preempt_enable_notrace() barrier() ++#define preempt_check_resched_rt() barrier() + + #endif /* CONFIG_PREEMPT_COUNT */ + +@@ -140,10 +174,31 @@ + } while (0) + #define preempt_fold_need_resched() \ + do { \ +- if (tif_need_resched()) \ ++ if (tif_need_resched_now()) \ + set_preempt_need_resched(); \ + } while (0) + ++#ifdef CONFIG_PREEMPT_RT_FULL ++# define preempt_disable_rt() preempt_disable() ++# define preempt_enable_rt() preempt_enable() ++# define preempt_disable_nort() barrier() ++# define preempt_enable_nort() barrier() ++# ifdef CONFIG_SMP ++ extern void migrate_disable(void); ++ extern void migrate_enable(void); ++# else /* CONFIG_SMP */ ++# define migrate_disable() barrier() ++# define migrate_enable() barrier() ++# endif /* CONFIG_SMP */ ++#else ++# define preempt_disable_rt() barrier() ++# define preempt_enable_rt() barrier() ++# define preempt_disable_nort() preempt_disable() ++# define preempt_enable_nort() preempt_enable() ++# define migrate_disable() preempt_disable() ++# define migrate_enable() preempt_enable() ++#endif ++ + #ifdef CONFIG_PREEMPT_NOTIFIERS + + struct preempt_notifier; +diff -Nur linux-3.18.12.orig/include/linux/preempt_mask.h linux-3.18.12/include/linux/preempt_mask.h +--- linux-3.18.12.orig/include/linux/preempt_mask.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/preempt_mask.h 2015-04-26 13:32:22.419684003 -0500 +@@ -44,16 +44,26 @@ + #define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) + #define NMI_OFFSET (1UL << NMI_SHIFT) + +-#define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) ++#ifndef CONFIG_PREEMPT_RT_FULL ++# define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) ++#else ++# define SOFTIRQ_DISABLE_OFFSET (0) ++#endif + + #define PREEMPT_ACTIVE_BITS 1 + #define PREEMPT_ACTIVE_SHIFT (NMI_SHIFT + NMI_BITS) + #define PREEMPT_ACTIVE (__IRQ_MASK(PREEMPT_ACTIVE_BITS) << PREEMPT_ACTIVE_SHIFT) + + #define hardirq_count() (preempt_count() & HARDIRQ_MASK) +-#define softirq_count() (preempt_count() & SOFTIRQ_MASK) + #define irq_count() (preempt_count() & (HARDIRQ_MASK | SOFTIRQ_MASK \ + | NMI_MASK)) ++#ifndef CONFIG_PREEMPT_RT_FULL ++# define softirq_count() (preempt_count() & SOFTIRQ_MASK) ++# define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) ++#else ++# define softirq_count() (0UL) ++extern int in_serving_softirq(void); ++#endif + + /* + * Are we doing bottom half or hardware interrupt processing? +@@ -64,7 +74,6 @@ + #define in_irq() (hardirq_count()) + #define in_softirq() (softirq_count()) + #define in_interrupt() (irq_count()) +-#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) + + /* + * Are we in NMI context? +diff -Nur linux-3.18.12.orig/include/linux/printk.h linux-3.18.12/include/linux/printk.h +--- linux-3.18.12.orig/include/linux/printk.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/printk.h 2015-04-26 13:32:22.419684003 -0500 +@@ -119,9 +119,11 @@ + extern asmlinkage __printf(1, 2) + void early_printk(const char *fmt, ...); + void early_vprintk(const char *fmt, va_list ap); ++extern void printk_kill(void); + #else + static inline __printf(1, 2) __cold + void early_printk(const char *s, ...) { } ++static inline void printk_kill(void) { } + #endif + + #ifdef CONFIG_PRINTK +@@ -155,7 +157,6 @@ + #define printk_ratelimit() __printk_ratelimit(__func__) + extern bool printk_timed_ratelimit(unsigned long *caller_jiffies, + unsigned int interval_msec); +- + extern int printk_delay_msec; + extern int dmesg_restrict; + extern int kptr_restrict; +diff -Nur linux-3.18.12.orig/include/linux/radix-tree.h linux-3.18.12/include/linux/radix-tree.h +--- linux-3.18.12.orig/include/linux/radix-tree.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/radix-tree.h 2015-04-26 13:32:22.419684003 -0500 +@@ -277,8 +277,13 @@ + unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root, + void ***results, unsigned long *indices, + unsigned long first_index, unsigned int max_items); ++#ifndef CONFIG_PREEMPT_RT_FULL + int radix_tree_preload(gfp_t gfp_mask); + int radix_tree_maybe_preload(gfp_t gfp_mask); ++#else ++static inline int radix_tree_preload(gfp_t gm) { return 0; } ++static inline int radix_tree_maybe_preload(gfp_t gfp_mask) { return 0; } ++#endif + void radix_tree_init(void); + void *radix_tree_tag_set(struct radix_tree_root *root, + unsigned long index, unsigned int tag); +@@ -303,7 +308,7 @@ + + static inline void radix_tree_preload_end(void) + { +- preempt_enable(); ++ preempt_enable_nort(); + } + + /** +diff -Nur linux-3.18.12.orig/include/linux/random.h linux-3.18.12/include/linux/random.h +--- linux-3.18.12.orig/include/linux/random.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/random.h 2015-04-26 13:32:22.423684003 -0500 +@@ -11,7 +11,7 @@ + extern void add_device_randomness(const void *, unsigned int); + extern void add_input_randomness(unsigned int type, unsigned int code, + unsigned int value); +-extern void add_interrupt_randomness(int irq, int irq_flags); ++extern void add_interrupt_randomness(int irq, int irq_flags, __u64 ip); + + extern void get_random_bytes(void *buf, int nbytes); + extern void get_random_bytes_arch(void *buf, int nbytes); +diff -Nur linux-3.18.12.orig/include/linux/rcupdate.h linux-3.18.12/include/linux/rcupdate.h +--- linux-3.18.12.orig/include/linux/rcupdate.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/rcupdate.h 2015-04-26 13:32:22.423684003 -0500 +@@ -147,6 +147,9 @@ + + #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ + ++#ifdef CONFIG_PREEMPT_RT_FULL ++#define call_rcu_bh call_rcu ++#else + /** + * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. + * @head: structure to be used for queueing the RCU updates. +@@ -170,6 +173,7 @@ + */ + void call_rcu_bh(struct rcu_head *head, + void (*func)(struct rcu_head *head)); ++#endif + + /** + * call_rcu_sched() - Queue an RCU for invocation after sched grace period. +@@ -231,6 +235,11 @@ + * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. + */ + #define rcu_preempt_depth() (current->rcu_read_lock_nesting) ++#ifndef CONFIG_PREEMPT_RT_FULL ++#define sched_rcu_preempt_depth() rcu_preempt_depth() ++#else ++static inline int sched_rcu_preempt_depth(void) { return 0; } ++#endif + + #else /* #ifdef CONFIG_PREEMPT_RCU */ + +@@ -254,6 +263,8 @@ + return 0; + } + ++#define sched_rcu_preempt_depth() rcu_preempt_depth() ++ + #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ + + /* Internal to kernel */ +@@ -430,7 +441,14 @@ + int debug_lockdep_rcu_enabled(void); + + int rcu_read_lock_held(void); ++#ifdef CONFIG_PREEMPT_RT_FULL ++static inline int rcu_read_lock_bh_held(void) ++{ ++ return rcu_read_lock_held(); ++} ++#else + int rcu_read_lock_bh_held(void); ++#endif + + /** + * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? +@@ -955,10 +973,14 @@ + static inline void rcu_read_lock_bh(void) + { + local_bh_disable(); ++#ifdef CONFIG_PREEMPT_RT_FULL ++ rcu_read_lock(); ++#else + __acquire(RCU_BH); + rcu_lock_acquire(&rcu_bh_lock_map); + rcu_lockdep_assert(rcu_is_watching(), + "rcu_read_lock_bh() used illegally while idle"); ++#endif + } + + /* +@@ -968,10 +990,14 @@ + */ + static inline void rcu_read_unlock_bh(void) + { ++#ifdef CONFIG_PREEMPT_RT_FULL ++ rcu_read_unlock(); ++#else + rcu_lockdep_assert(rcu_is_watching(), + "rcu_read_unlock_bh() used illegally while idle"); + rcu_lock_release(&rcu_bh_lock_map); + __release(RCU_BH); ++#endif + local_bh_enable(); + } + +diff -Nur linux-3.18.12.orig/include/linux/rcutree.h linux-3.18.12/include/linux/rcutree.h +--- linux-3.18.12.orig/include/linux/rcutree.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/rcutree.h 2015-04-26 13:32:22.423684003 -0500 +@@ -46,7 +46,11 @@ + rcu_note_context_switch(cpu); + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++# define synchronize_rcu_bh synchronize_rcu ++#else + void synchronize_rcu_bh(void); ++#endif + void synchronize_sched_expedited(void); + void synchronize_rcu_expedited(void); + +@@ -74,7 +78,11 @@ + } + + void rcu_barrier(void); ++#ifdef CONFIG_PREEMPT_RT_FULL ++# define rcu_barrier_bh rcu_barrier ++#else + void rcu_barrier_bh(void); ++#endif + void rcu_barrier_sched(void); + unsigned long get_state_synchronize_rcu(void); + void cond_synchronize_rcu(unsigned long oldstate); +@@ -82,12 +90,10 @@ + extern unsigned long rcutorture_testseq; + extern unsigned long rcutorture_vernum; + long rcu_batches_completed(void); +-long rcu_batches_completed_bh(void); + long rcu_batches_completed_sched(void); + void show_rcu_gp_kthreads(void); + + void rcu_force_quiescent_state(void); +-void rcu_bh_force_quiescent_state(void); + void rcu_sched_force_quiescent_state(void); + + void exit_rcu(void); +@@ -97,4 +103,12 @@ + + bool rcu_is_watching(void); + ++#ifndef CONFIG_PREEMPT_RT_FULL ++void rcu_bh_force_quiescent_state(void); ++long rcu_batches_completed_bh(void); ++#else ++# define rcu_bh_force_quiescent_state rcu_force_quiescent_state ++# define rcu_batches_completed_bh rcu_batches_completed ++#endif ++ + #endif /* __LINUX_RCUTREE_H */ +diff -Nur linux-3.18.12.orig/include/linux/rtmutex.h linux-3.18.12/include/linux/rtmutex.h +--- linux-3.18.12.orig/include/linux/rtmutex.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/rtmutex.h 2015-04-26 13:32:22.423684003 -0500 +@@ -14,10 +14,14 @@ + + #include + #include +-#include ++#include + + extern int max_lock_depth; /* for sysctl */ + ++#ifdef CONFIG_DEBUG_MUTEXES ++#include ++#endif ++ + /** + * The rt_mutex structure + * +@@ -31,8 +35,8 @@ + struct rb_root waiters; + struct rb_node *waiters_leftmost; + struct task_struct *owner; +-#ifdef CONFIG_DEBUG_RT_MUTEXES + int save_state; ++#ifdef CONFIG_DEBUG_RT_MUTEXES + const char *name, *file; + int line; + void *magic; +@@ -55,22 +59,33 @@ + # define rt_mutex_debug_check_no_locks_held(task) do { } while (0) + #endif + ++# define rt_mutex_init(mutex) \ ++ do { \ ++ raw_spin_lock_init(&(mutex)->wait_lock); \ ++ __rt_mutex_init(mutex, #mutex); \ ++ } while (0) ++ + #ifdef CONFIG_DEBUG_RT_MUTEXES + # define __DEBUG_RT_MUTEX_INITIALIZER(mutexname) \ + , .name = #mutexname, .file = __FILE__, .line = __LINE__ +-# define rt_mutex_init(mutex) __rt_mutex_init(mutex, __func__) + extern void rt_mutex_debug_task_free(struct task_struct *tsk); + #else + # define __DEBUG_RT_MUTEX_INITIALIZER(mutexname) +-# define rt_mutex_init(mutex) __rt_mutex_init(mutex, NULL) + # define rt_mutex_debug_task_free(t) do { } while (0) + #endif + +-#define __RT_MUTEX_INITIALIZER(mutexname) \ +- { .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(mutexname.wait_lock) \ ++#define __RT_MUTEX_INITIALIZER_PLAIN(mutexname) \ ++ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(mutexname.wait_lock) \ + , .waiters = RB_ROOT \ + , .owner = NULL \ +- __DEBUG_RT_MUTEX_INITIALIZER(mutexname)} ++ __DEBUG_RT_MUTEX_INITIALIZER(mutexname) ++ ++#define __RT_MUTEX_INITIALIZER(mutexname) \ ++ { __RT_MUTEX_INITIALIZER_PLAIN(mutexname) } ++ ++#define __RT_MUTEX_INITIALIZER_SAVE_STATE(mutexname) \ ++ { __RT_MUTEX_INITIALIZER_PLAIN(mutexname) \ ++ , .save_state = 1 } + + #define DEFINE_RT_MUTEX(mutexname) \ + struct rt_mutex mutexname = __RT_MUTEX_INITIALIZER(mutexname) +@@ -91,6 +106,7 @@ + + extern void rt_mutex_lock(struct rt_mutex *lock); + extern int rt_mutex_lock_interruptible(struct rt_mutex *lock); ++extern int rt_mutex_lock_killable(struct rt_mutex *lock); + extern int rt_mutex_timed_lock(struct rt_mutex *lock, + struct hrtimer_sleeper *timeout); + +diff -Nur linux-3.18.12.orig/include/linux/rwlock_rt.h linux-3.18.12/include/linux/rwlock_rt.h +--- linux-3.18.12.orig/include/linux/rwlock_rt.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/rwlock_rt.h 2015-04-26 13:32:22.423684003 -0500 +@@ -0,0 +1,99 @@ ++#ifndef __LINUX_RWLOCK_RT_H ++#define __LINUX_RWLOCK_RT_H ++ ++#ifndef __LINUX_SPINLOCK_H ++#error Do not include directly. Use spinlock.h ++#endif ++ ++#define rwlock_init(rwl) \ ++do { \ ++ static struct lock_class_key __key; \ ++ \ ++ rt_mutex_init(&(rwl)->lock); \ ++ __rt_rwlock_init(rwl, #rwl, &__key); \ ++} while (0) ++ ++extern void __lockfunc rt_write_lock(rwlock_t *rwlock); ++extern void __lockfunc rt_read_lock(rwlock_t *rwlock); ++extern int __lockfunc rt_write_trylock(rwlock_t *rwlock); ++extern int __lockfunc rt_write_trylock_irqsave(rwlock_t *trylock, unsigned long *flags); ++extern int __lockfunc rt_read_trylock(rwlock_t *rwlock); ++extern void __lockfunc rt_write_unlock(rwlock_t *rwlock); ++extern void __lockfunc rt_read_unlock(rwlock_t *rwlock); ++extern unsigned long __lockfunc rt_write_lock_irqsave(rwlock_t *rwlock); ++extern unsigned long __lockfunc rt_read_lock_irqsave(rwlock_t *rwlock); ++extern void __rt_rwlock_init(rwlock_t *rwlock, char *name, struct lock_class_key *key); ++ ++#define read_trylock(lock) __cond_lock(lock, rt_read_trylock(lock)) ++#define write_trylock(lock) __cond_lock(lock, rt_write_trylock(lock)) ++ ++#define write_trylock_irqsave(lock, flags) \ ++ __cond_lock(lock, rt_write_trylock_irqsave(lock, &flags)) ++ ++#define read_lock_irqsave(lock, flags) \ ++ do { \ ++ typecheck(unsigned long, flags); \ ++ flags = rt_read_lock_irqsave(lock); \ ++ } while (0) ++ ++#define write_lock_irqsave(lock, flags) \ ++ do { \ ++ typecheck(unsigned long, flags); \ ++ flags = rt_write_lock_irqsave(lock); \ ++ } while (0) ++ ++#define read_lock(lock) rt_read_lock(lock) ++ ++#define read_lock_bh(lock) \ ++ do { \ ++ local_bh_disable(); \ ++ rt_read_lock(lock); \ ++ } while (0) ++ ++#define read_lock_irq(lock) read_lock(lock) ++ ++#define write_lock(lock) rt_write_lock(lock) ++ ++#define write_lock_bh(lock) \ ++ do { \ ++ local_bh_disable(); \ ++ rt_write_lock(lock); \ ++ } while (0) ++ ++#define write_lock_irq(lock) write_lock(lock) ++ ++#define read_unlock(lock) rt_read_unlock(lock) ++ ++#define read_unlock_bh(lock) \ ++ do { \ ++ rt_read_unlock(lock); \ ++ local_bh_enable(); \ ++ } while (0) ++ ++#define read_unlock_irq(lock) read_unlock(lock) ++ ++#define write_unlock(lock) rt_write_unlock(lock) ++ ++#define write_unlock_bh(lock) \ ++ do { \ ++ rt_write_unlock(lock); \ ++ local_bh_enable(); \ ++ } while (0) ++ ++#define write_unlock_irq(lock) write_unlock(lock) ++ ++#define read_unlock_irqrestore(lock, flags) \ ++ do { \ ++ typecheck(unsigned long, flags); \ ++ (void) flags; \ ++ rt_read_unlock(lock); \ ++ } while (0) ++ ++#define write_unlock_irqrestore(lock, flags) \ ++ do { \ ++ typecheck(unsigned long, flags); \ ++ (void) flags; \ ++ rt_write_unlock(lock); \ ++ } while (0) ++ ++#endif +diff -Nur linux-3.18.12.orig/include/linux/rwlock_types.h linux-3.18.12/include/linux/rwlock_types.h +--- linux-3.18.12.orig/include/linux/rwlock_types.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/rwlock_types.h 2015-04-26 13:32:22.423684003 -0500 +@@ -1,6 +1,10 @@ + #ifndef __LINUX_RWLOCK_TYPES_H + #define __LINUX_RWLOCK_TYPES_H + ++#if !defined(__LINUX_SPINLOCK_TYPES_H) ++# error "Do not include directly, include spinlock_types.h" ++#endif ++ + /* + * include/linux/rwlock_types.h - generic rwlock type definitions + * and initializers +@@ -43,6 +47,7 @@ + RW_DEP_MAP_INIT(lockname) } + #endif + +-#define DEFINE_RWLOCK(x) rwlock_t x = __RW_LOCK_UNLOCKED(x) ++#define DEFINE_RWLOCK(name) \ ++ rwlock_t name __cacheline_aligned_in_smp = __RW_LOCK_UNLOCKED(name) + + #endif /* __LINUX_RWLOCK_TYPES_H */ +diff -Nur linux-3.18.12.orig/include/linux/rwlock_types_rt.h linux-3.18.12/include/linux/rwlock_types_rt.h +--- linux-3.18.12.orig/include/linux/rwlock_types_rt.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/rwlock_types_rt.h 2015-04-26 13:32:22.423684003 -0500 +@@ -0,0 +1,33 @@ ++#ifndef __LINUX_RWLOCK_TYPES_RT_H ++#define __LINUX_RWLOCK_TYPES_RT_H ++ ++#ifndef __LINUX_SPINLOCK_TYPES_H ++#error "Do not include directly. Include spinlock_types.h instead" ++#endif ++ ++/* ++ * rwlocks - rtmutex which allows single reader recursion ++ */ ++typedef struct { ++ struct rt_mutex lock; ++ int read_depth; ++ unsigned int break_lock; ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ struct lockdep_map dep_map; ++#endif ++} rwlock_t; ++ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++# define RW_DEP_MAP_INIT(lockname) .dep_map = { .name = #lockname } ++#else ++# define RW_DEP_MAP_INIT(lockname) ++#endif ++ ++#define __RW_LOCK_UNLOCKED(name) \ ++ { .lock = __RT_MUTEX_INITIALIZER_SAVE_STATE(name.lock), \ ++ RW_DEP_MAP_INIT(name) } ++ ++#define DEFINE_RWLOCK(name) \ ++ rwlock_t name __cacheline_aligned_in_smp = __RW_LOCK_UNLOCKED(name) ++ ++#endif +diff -Nur linux-3.18.12.orig/include/linux/rwsem.h linux-3.18.12/include/linux/rwsem.h +--- linux-3.18.12.orig/include/linux/rwsem.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/rwsem.h 2015-04-26 13:32:22.423684003 -0500 +@@ -18,6 +18,10 @@ + #include + #endif + ++#ifdef CONFIG_PREEMPT_RT_FULL ++#include ++#else /* PREEMPT_RT_FULL */ ++ + struct rw_semaphore; + + #ifdef CONFIG_RWSEM_GENERIC_SPINLOCK +@@ -177,4 +181,6 @@ + # define up_read_non_owner(sem) up_read(sem) + #endif + ++#endif /* !PREEMPT_RT_FULL */ ++ + #endif /* _LINUX_RWSEM_H */ +diff -Nur linux-3.18.12.orig/include/linux/rwsem_rt.h linux-3.18.12/include/linux/rwsem_rt.h +--- linux-3.18.12.orig/include/linux/rwsem_rt.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/rwsem_rt.h 2015-04-26 13:32:22.423684003 -0500 +@@ -0,0 +1,134 @@ ++#ifndef _LINUX_RWSEM_RT_H ++#define _LINUX_RWSEM_RT_H ++ ++#ifndef _LINUX_RWSEM_H ++#error "Include rwsem.h" ++#endif ++ ++/* ++ * RW-semaphores are a spinlock plus a reader-depth count. ++ * ++ * Note that the semantics are different from the usual ++ * Linux rw-sems, in PREEMPT_RT mode we do not allow ++ * multiple readers to hold the lock at once, we only allow ++ * a read-lock owner to read-lock recursively. This is ++ * better for latency, makes the implementation inherently ++ * fair and makes it simpler as well. ++ */ ++ ++#include ++ ++struct rw_semaphore { ++ struct rt_mutex lock; ++ int read_depth; ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ struct lockdep_map dep_map; ++#endif ++}; ++ ++#define __RWSEM_INITIALIZER(name) \ ++ { .lock = __RT_MUTEX_INITIALIZER(name.lock), \ ++ RW_DEP_MAP_INIT(name) } ++ ++#define DECLARE_RWSEM(lockname) \ ++ struct rw_semaphore lockname = __RWSEM_INITIALIZER(lockname) ++ ++extern void __rt_rwsem_init(struct rw_semaphore *rwsem, const char *name, ++ struct lock_class_key *key); ++ ++#define __rt_init_rwsem(sem, name, key) \ ++ do { \ ++ rt_mutex_init(&(sem)->lock); \ ++ __rt_rwsem_init((sem), (name), (key));\ ++ } while (0) ++ ++#define __init_rwsem(sem, name, key) __rt_init_rwsem(sem, name, key) ++ ++# define rt_init_rwsem(sem) \ ++do { \ ++ static struct lock_class_key __key; \ ++ \ ++ __rt_init_rwsem((sem), #sem, &__key); \ ++} while (0) ++ ++extern void rt_down_write(struct rw_semaphore *rwsem); ++extern void rt_down_read_nested(struct rw_semaphore *rwsem, int subclass); ++extern void rt_down_write_nested(struct rw_semaphore *rwsem, int subclass); ++extern void rt_down_write_nested_lock(struct rw_semaphore *rwsem, ++ struct lockdep_map *nest); ++extern void rt_down_read(struct rw_semaphore *rwsem); ++extern int rt_down_write_trylock(struct rw_semaphore *rwsem); ++extern int rt_down_read_trylock(struct rw_semaphore *rwsem); ++extern void rt_up_read(struct rw_semaphore *rwsem); ++extern void rt_up_write(struct rw_semaphore *rwsem); ++extern void rt_downgrade_write(struct rw_semaphore *rwsem); ++ ++#define init_rwsem(sem) rt_init_rwsem(sem) ++#define rwsem_is_locked(s) rt_mutex_is_locked(&(s)->lock) ++ ++static inline int rwsem_is_contended(struct rw_semaphore *sem) ++{ ++ /* rt_mutex_has_waiters() */ ++ return !RB_EMPTY_ROOT(&sem->lock.waiters); ++} ++ ++static inline void down_read(struct rw_semaphore *sem) ++{ ++ rt_down_read(sem); ++} ++ ++static inline int down_read_trylock(struct rw_semaphore *sem) ++{ ++ return rt_down_read_trylock(sem); ++} ++ ++static inline void down_write(struct rw_semaphore *sem) ++{ ++ rt_down_write(sem); ++} ++ ++static inline int down_write_trylock(struct rw_semaphore *sem) ++{ ++ return rt_down_write_trylock(sem); ++} ++ ++static inline void up_read(struct rw_semaphore *sem) ++{ ++ rt_up_read(sem); ++} ++ ++static inline void up_write(struct rw_semaphore *sem) ++{ ++ rt_up_write(sem); ++} ++ ++static inline void downgrade_write(struct rw_semaphore *sem) ++{ ++ rt_downgrade_write(sem); ++} ++ ++static inline void down_read_nested(struct rw_semaphore *sem, int subclass) ++{ ++ return rt_down_read_nested(sem, subclass); ++} ++ ++static inline void down_write_nested(struct rw_semaphore *sem, int subclass) ++{ ++ rt_down_write_nested(sem, subclass); ++} ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++static inline void down_write_nest_lock(struct rw_semaphore *sem, ++ struct rw_semaphore *nest_lock) ++{ ++ rt_down_write_nested_lock(sem, &nest_lock->dep_map); ++} ++ ++#else ++ ++static inline void down_write_nest_lock(struct rw_semaphore *sem, ++ struct rw_semaphore *nest_lock) ++{ ++ rt_down_write_nested_lock(sem, NULL); ++} ++#endif ++#endif +diff -Nur linux-3.18.12.orig/include/linux/sched.h linux-3.18.12/include/linux/sched.h +--- linux-3.18.12.orig/include/linux/sched.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/sched.h 2015-04-26 13:32:22.423684003 -0500 +@@ -26,6 +26,7 @@ + #include + #include + #include ++#include + + #include + #include +@@ -56,6 +57,7 @@ + #include + #include + #include ++#include + #include + #include + +@@ -235,10 +237,7 @@ + TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ + __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) + +-#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) + #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) +-#define task_is_stopped_or_traced(task) \ +- ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) + #define task_contributes_to_load(task) \ + ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ + (task->flags & PF_FROZEN) == 0) +@@ -1234,6 +1233,7 @@ + + struct task_struct { + volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ ++ volatile long saved_state; /* saved state for "spinlock sleepers" */ + void *stack; + atomic_t usage; + unsigned int flags; /* per process flags, defined below */ +@@ -1270,6 +1270,12 @@ + #endif + + unsigned int policy; ++#ifdef CONFIG_PREEMPT_RT_FULL ++ int migrate_disable; ++# ifdef CONFIG_SCHED_DEBUG ++ int migrate_disable_atomic; ++# endif ++#endif + int nr_cpus_allowed; + cpumask_t cpus_allowed; + +@@ -1371,7 +1377,8 @@ + struct cputime prev_cputime; + #endif + #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN +- seqlock_t vtime_seqlock; ++ raw_spinlock_t vtime_lock; ++ seqcount_t vtime_seq; + unsigned long long vtime_snap; + enum { + VTIME_SLEEPING = 0, +@@ -1387,6 +1394,9 @@ + + struct task_cputime cputime_expires; + struct list_head cpu_timers[3]; ++#ifdef CONFIG_PREEMPT_RT_BASE ++ struct task_struct *posix_timer_list; ++#endif + + /* process credentials */ + const struct cred __rcu *real_cred; /* objective and real subjective task +@@ -1419,10 +1429,15 @@ + /* signal handlers */ + struct signal_struct *signal; + struct sighand_struct *sighand; ++ struct sigqueue *sigqueue_cache; + + sigset_t blocked, real_blocked; + sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ + struct sigpending pending; ++#ifdef CONFIG_PREEMPT_RT_FULL ++ /* TODO: move me into ->restart_block ? */ ++ struct siginfo forced_info; ++#endif + + unsigned long sas_ss_sp; + size_t sas_ss_size; +@@ -1460,6 +1475,9 @@ + /* mutex deadlock detection */ + struct mutex_waiter *blocked_on; + #endif ++#ifdef CONFIG_PREEMPT_RT_FULL ++ int pagefault_disabled; ++#endif + #ifdef CONFIG_TRACE_IRQFLAGS + unsigned int irq_events; + unsigned long hardirq_enable_ip; +@@ -1644,6 +1662,12 @@ + unsigned long trace; + /* bitmask and counter of trace recursion */ + unsigned long trace_recursion; ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++ u64 preempt_timestamp_hist; ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ long timer_offset; ++#endif ++#endif + #endif /* CONFIG_TRACING */ + #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ + unsigned int memcg_kmem_skip_account; +@@ -1661,11 +1685,19 @@ + unsigned int sequential_io; + unsigned int sequential_io_avg; + #endif ++#ifdef CONFIG_PREEMPT_RT_BASE ++ struct rcu_head put_rcu; ++ int softirq_nestcnt; ++ unsigned int softirqs_raised; ++#endif ++#ifdef CONFIG_PREEMPT_RT_FULL ++# if defined CONFIG_HIGHMEM || defined CONFIG_X86_32 ++ int kmap_idx; ++ pte_t kmap_pte[KM_TYPE_NR]; ++# endif ++#endif + }; + +-/* Future-safe accessor for struct task_struct's cpus_allowed. */ +-#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) +- + #define TNF_MIGRATED 0x01 + #define TNF_NO_GROUP 0x02 + #define TNF_SHARED 0x04 +@@ -1700,6 +1732,17 @@ + } + #endif + ++#ifdef CONFIG_PREEMPT_RT_FULL ++static inline bool cur_pf_disabled(void) { return current->pagefault_disabled; } ++#else ++static inline bool cur_pf_disabled(void) { return false; } ++#endif ++ ++static inline bool pagefault_disabled(void) ++{ ++ return in_atomic() || cur_pf_disabled(); ++} ++ + static inline struct pid *task_pid(struct task_struct *task) + { + return task->pids[PIDTYPE_PID].pid; +@@ -1853,6 +1896,15 @@ + extern void free_task(struct task_struct *tsk); + #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) + ++#ifdef CONFIG_PREEMPT_RT_BASE ++extern void __put_task_struct_cb(struct rcu_head *rhp); ++ ++static inline void put_task_struct(struct task_struct *t) ++{ ++ if (atomic_dec_and_test(&t->usage)) ++ call_rcu(&t->put_rcu, __put_task_struct_cb); ++} ++#else + extern void __put_task_struct(struct task_struct *t); + + static inline void put_task_struct(struct task_struct *t) +@@ -1860,6 +1912,7 @@ + if (atomic_dec_and_test(&t->usage)) + __put_task_struct(t); + } ++#endif + + #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN + extern void task_cputime(struct task_struct *t, +@@ -1898,6 +1951,7 @@ + /* + * Per process flags + */ ++#define PF_IN_SOFTIRQ 0x00000001 /* Task is serving softirq */ + #define PF_EXITING 0x00000004 /* getting shut down */ + #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ + #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ +@@ -2058,6 +2112,10 @@ + + extern int set_cpus_allowed_ptr(struct task_struct *p, + const struct cpumask *new_mask); ++int migrate_me(void); ++void tell_sched_cpu_down_begin(int cpu); ++void tell_sched_cpu_down_done(int cpu); ++ + #else + static inline void do_set_cpus_allowed(struct task_struct *p, + const struct cpumask *new_mask) +@@ -2070,6 +2128,9 @@ + return -EINVAL; + return 0; + } ++static inline int migrate_me(void) { return 0; } ++static inline void tell_sched_cpu_down_begin(int cpu) { } ++static inline void tell_sched_cpu_down_done(int cpu) { } + #endif + + #ifdef CONFIG_NO_HZ_COMMON +@@ -2290,6 +2351,7 @@ + + extern int wake_up_state(struct task_struct *tsk, unsigned int state); + extern int wake_up_process(struct task_struct *tsk); ++extern int wake_up_lock_sleeper(struct task_struct * tsk); + extern void wake_up_new_task(struct task_struct *tsk); + #ifdef CONFIG_SMP + extern void kick_process(struct task_struct *tsk); +@@ -2406,12 +2468,24 @@ + + /* mmdrop drops the mm and the page tables */ + extern void __mmdrop(struct mm_struct *); ++ + static inline void mmdrop(struct mm_struct * mm) + { + if (unlikely(atomic_dec_and_test(&mm->mm_count))) + __mmdrop(mm); + } + ++#ifdef CONFIG_PREEMPT_RT_BASE ++extern void __mmdrop_delayed(struct rcu_head *rhp); ++static inline void mmdrop_delayed(struct mm_struct *mm) ++{ ++ if (atomic_dec_and_test(&mm->mm_count)) ++ call_rcu(&mm->delayed_drop, __mmdrop_delayed); ++} ++#else ++# define mmdrop_delayed(mm) mmdrop(mm) ++#endif ++ + /* mmput gets rid of the mappings and all user-space */ + extern void mmput(struct mm_struct *); + /* Grab a reference to a task's mm, if it is not already going away */ +@@ -2719,6 +2793,43 @@ + return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); + } + ++#ifdef CONFIG_PREEMPT_LAZY ++static inline void set_tsk_need_resched_lazy(struct task_struct *tsk) ++{ ++ set_tsk_thread_flag(tsk,TIF_NEED_RESCHED_LAZY); ++} ++ ++static inline void clear_tsk_need_resched_lazy(struct task_struct *tsk) ++{ ++ clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED_LAZY); ++} ++ ++static inline int test_tsk_need_resched_lazy(struct task_struct *tsk) ++{ ++ return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED_LAZY)); ++} ++ ++static inline int need_resched_lazy(void) ++{ ++ return test_thread_flag(TIF_NEED_RESCHED_LAZY); ++} ++ ++static inline int need_resched_now(void) ++{ ++ return test_thread_flag(TIF_NEED_RESCHED); ++} ++ ++#else ++static inline void clear_tsk_need_resched_lazy(struct task_struct *tsk) { } ++static inline int need_resched_lazy(void) { return 0; } ++ ++static inline int need_resched_now(void) ++{ ++ return test_thread_flag(TIF_NEED_RESCHED); ++} ++ ++#endif ++ + static inline int restart_syscall(void) + { + set_tsk_thread_flag(current, TIF_SIGPENDING); +@@ -2750,6 +2861,51 @@ + return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); + } + ++static inline bool __task_is_stopped_or_traced(struct task_struct *task) ++{ ++ if (task->state & (__TASK_STOPPED | __TASK_TRACED)) ++ return true; ++#ifdef CONFIG_PREEMPT_RT_FULL ++ if (task->saved_state & (__TASK_STOPPED | __TASK_TRACED)) ++ return true; ++#endif ++ return false; ++} ++ ++static inline bool task_is_stopped_or_traced(struct task_struct *task) ++{ ++ bool traced_stopped; ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++ unsigned long flags; ++ ++ raw_spin_lock_irqsave(&task->pi_lock, flags); ++ traced_stopped = __task_is_stopped_or_traced(task); ++ raw_spin_unlock_irqrestore(&task->pi_lock, flags); ++#else ++ traced_stopped = __task_is_stopped_or_traced(task); ++#endif ++ return traced_stopped; ++} ++ ++static inline bool task_is_traced(struct task_struct *task) ++{ ++ bool traced = false; ++ ++ if (task->state & __TASK_TRACED) ++ return true; ++#ifdef CONFIG_PREEMPT_RT_FULL ++ /* in case the task is sleeping on tasklist_lock */ ++ raw_spin_lock_irq(&task->pi_lock); ++ if (task->state & __TASK_TRACED) ++ traced = true; ++ else if (task->saved_state & __TASK_TRACED) ++ traced = true; ++ raw_spin_unlock_irq(&task->pi_lock); ++#endif ++ return traced; ++} ++ + /* + * cond_resched() and cond_resched_lock(): latency reduction via + * explicit rescheduling in places that are safe. The return +@@ -2766,7 +2922,7 @@ + + extern int __cond_resched_lock(spinlock_t *lock); + +-#ifdef CONFIG_PREEMPT_COUNT ++#if defined(CONFIG_PREEMPT_COUNT) && !defined(CONFIG_PREEMPT_RT_FULL) + #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET + #else + #define PREEMPT_LOCK_OFFSET 0 +@@ -2777,12 +2933,16 @@ + __cond_resched_lock(lock); \ + }) + ++#ifndef CONFIG_PREEMPT_RT_FULL + extern int __cond_resched_softirq(void); + + #define cond_resched_softirq() ({ \ + __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ + __cond_resched_softirq(); \ + }) ++#else ++# define cond_resched_softirq() cond_resched() ++#endif + + static inline void cond_resched_rcu(void) + { +@@ -2949,6 +3109,26 @@ + + #endif /* CONFIG_SMP */ + ++static inline int __migrate_disabled(struct task_struct *p) ++{ ++#ifdef CONFIG_PREEMPT_RT_FULL ++ return p->migrate_disable; ++#else ++ return 0; ++#endif ++} ++ ++/* Future-safe accessor for struct task_struct's cpus_allowed. */ ++static inline const struct cpumask *tsk_cpus_allowed(struct task_struct *p) ++{ ++#ifdef CONFIG_PREEMPT_RT_FULL ++ if (p->migrate_disable) ++ return cpumask_of(task_cpu(p)); ++#endif ++ ++ return &p->cpus_allowed; ++} ++ + extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); + extern long sched_getaffinity(pid_t pid, struct cpumask *mask); + +diff -Nur linux-3.18.12.orig/include/linux/seqlock.h linux-3.18.12/include/linux/seqlock.h +--- linux-3.18.12.orig/include/linux/seqlock.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/seqlock.h 2015-04-26 13:32:22.423684003 -0500 +@@ -219,20 +219,30 @@ + return __read_seqcount_retry(s, start); + } + +- +- +-static inline void raw_write_seqcount_begin(seqcount_t *s) ++static inline void __raw_write_seqcount_begin(seqcount_t *s) + { + s->sequence++; + smp_wmb(); + } + +-static inline void raw_write_seqcount_end(seqcount_t *s) ++static inline void raw_write_seqcount_begin(seqcount_t *s) ++{ ++ preempt_disable_rt(); ++ __raw_write_seqcount_begin(s); ++} ++ ++static inline void __raw_write_seqcount_end(seqcount_t *s) + { + smp_wmb(); + s->sequence++; + } + ++static inline void raw_write_seqcount_end(seqcount_t *s) ++{ ++ __raw_write_seqcount_end(s); ++ preempt_enable_rt(); ++} ++ + /* + * raw_write_seqcount_latch - redirect readers to even/odd copy + * @s: pointer to seqcount_t +@@ -305,10 +315,32 @@ + /* + * Read side functions for starting and finalizing a read side section. + */ ++#ifndef CONFIG_PREEMPT_RT_FULL + static inline unsigned read_seqbegin(const seqlock_t *sl) + { + return read_seqcount_begin(&sl->seqcount); + } ++#else ++/* ++ * Starvation safe read side for RT ++ */ ++static inline unsigned read_seqbegin(seqlock_t *sl) ++{ ++ unsigned ret; ++ ++repeat: ++ ret = ACCESS_ONCE(sl->seqcount.sequence); ++ if (unlikely(ret & 1)) { ++ /* ++ * Take the lock and let the writer proceed (i.e. evtl ++ * boost it), otherwise we could loop here forever. ++ */ ++ spin_unlock_wait(&sl->lock); ++ goto repeat; ++ } ++ return ret; ++} ++#endif + + static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) + { +@@ -323,36 +355,36 @@ + static inline void write_seqlock(seqlock_t *sl) + { + spin_lock(&sl->lock); +- write_seqcount_begin(&sl->seqcount); ++ __raw_write_seqcount_begin(&sl->seqcount); + } + + static inline void write_sequnlock(seqlock_t *sl) + { +- write_seqcount_end(&sl->seqcount); ++ __raw_write_seqcount_end(&sl->seqcount); + spin_unlock(&sl->lock); + } + + static inline void write_seqlock_bh(seqlock_t *sl) + { + spin_lock_bh(&sl->lock); +- write_seqcount_begin(&sl->seqcount); ++ __raw_write_seqcount_begin(&sl->seqcount); + } + + static inline void write_sequnlock_bh(seqlock_t *sl) + { +- write_seqcount_end(&sl->seqcount); ++ __raw_write_seqcount_end(&sl->seqcount); + spin_unlock_bh(&sl->lock); + } + + static inline void write_seqlock_irq(seqlock_t *sl) + { + spin_lock_irq(&sl->lock); +- write_seqcount_begin(&sl->seqcount); ++ __raw_write_seqcount_begin(&sl->seqcount); + } + + static inline void write_sequnlock_irq(seqlock_t *sl) + { +- write_seqcount_end(&sl->seqcount); ++ __raw_write_seqcount_end(&sl->seqcount); + spin_unlock_irq(&sl->lock); + } + +@@ -361,7 +393,7 @@ + unsigned long flags; + + spin_lock_irqsave(&sl->lock, flags); +- write_seqcount_begin(&sl->seqcount); ++ __raw_write_seqcount_begin(&sl->seqcount); + return flags; + } + +@@ -371,7 +403,7 @@ + static inline void + write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) + { +- write_seqcount_end(&sl->seqcount); ++ __raw_write_seqcount_end(&sl->seqcount); + spin_unlock_irqrestore(&sl->lock, flags); + } + +diff -Nur linux-3.18.12.orig/include/linux/signal.h linux-3.18.12/include/linux/signal.h +--- linux-3.18.12.orig/include/linux/signal.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/signal.h 2015-04-26 13:32:22.423684003 -0500 +@@ -218,6 +218,7 @@ + } + + extern void flush_sigqueue(struct sigpending *queue); ++extern void flush_task_sigqueue(struct task_struct *tsk); + + /* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */ + static inline int valid_signal(unsigned long sig) +diff -Nur linux-3.18.12.orig/include/linux/skbuff.h linux-3.18.12/include/linux/skbuff.h +--- linux-3.18.12.orig/include/linux/skbuff.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/skbuff.h 2015-04-26 13:32:22.423684003 -0500 +@@ -172,6 +172,7 @@ + + __u32 qlen; + spinlock_t lock; ++ raw_spinlock_t raw_lock; + }; + + struct sk_buff; +@@ -1327,6 +1328,12 @@ + __skb_queue_head_init(list); + } + ++static inline void skb_queue_head_init_raw(struct sk_buff_head *list) ++{ ++ raw_spin_lock_init(&list->raw_lock); ++ __skb_queue_head_init(list); ++} ++ + static inline void skb_queue_head_init_class(struct sk_buff_head *list, + struct lock_class_key *class) + { +diff -Nur linux-3.18.12.orig/include/linux/smp.h linux-3.18.12/include/linux/smp.h +--- linux-3.18.12.orig/include/linux/smp.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/smp.h 2015-04-26 13:32:22.423684003 -0500 +@@ -178,6 +178,9 @@ + #define get_cpu() ({ preempt_disable(); smp_processor_id(); }) + #define put_cpu() preempt_enable() + ++#define get_cpu_light() ({ migrate_disable(); smp_processor_id(); }) ++#define put_cpu_light() migrate_enable() ++ + /* + * Callback to arch code if there's nosmp or maxcpus=0 on the + * boot command line: +diff -Nur linux-3.18.12.orig/include/linux/spinlock_api_smp.h linux-3.18.12/include/linux/spinlock_api_smp.h +--- linux-3.18.12.orig/include/linux/spinlock_api_smp.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/spinlock_api_smp.h 2015-04-26 13:32:22.423684003 -0500 +@@ -187,6 +187,8 @@ + return 0; + } + +-#include ++#ifndef CONFIG_PREEMPT_RT_FULL ++# include ++#endif + + #endif /* __LINUX_SPINLOCK_API_SMP_H */ +diff -Nur linux-3.18.12.orig/include/linux/spinlock.h linux-3.18.12/include/linux/spinlock.h +--- linux-3.18.12.orig/include/linux/spinlock.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/spinlock.h 2015-04-26 13:32:22.423684003 -0500 +@@ -278,7 +278,11 @@ + #define raw_spin_can_lock(lock) (!raw_spin_is_locked(lock)) + + /* Include rwlock functions */ +-#include ++#ifdef CONFIG_PREEMPT_RT_FULL ++# include ++#else ++# include ++#endif + + /* + * Pull the _spin_*()/_read_*()/_write_*() functions/declarations: +@@ -289,6 +293,10 @@ + # include + #endif + ++#ifdef CONFIG_PREEMPT_RT_FULL ++# include ++#else /* PREEMPT_RT_FULL */ ++ + /* + * Map the spin_lock functions to the raw variants for PREEMPT_RT=n + */ +@@ -418,4 +426,6 @@ + #define atomic_dec_and_lock(atomic, lock) \ + __cond_lock(lock, _atomic_dec_and_lock(atomic, lock)) + ++#endif /* !PREEMPT_RT_FULL */ ++ + #endif /* __LINUX_SPINLOCK_H */ +diff -Nur linux-3.18.12.orig/include/linux/spinlock_rt.h linux-3.18.12/include/linux/spinlock_rt.h +--- linux-3.18.12.orig/include/linux/spinlock_rt.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/spinlock_rt.h 2015-04-26 13:32:22.423684003 -0500 +@@ -0,0 +1,167 @@ ++#ifndef __LINUX_SPINLOCK_RT_H ++#define __LINUX_SPINLOCK_RT_H ++ ++#ifndef __LINUX_SPINLOCK_H ++#error Do not include directly. Use spinlock.h ++#endif ++ ++#include ++ ++extern void ++__rt_spin_lock_init(spinlock_t *lock, char *name, struct lock_class_key *key); ++ ++#define spin_lock_init(slock) \ ++do { \ ++ static struct lock_class_key __key; \ ++ \ ++ rt_mutex_init(&(slock)->lock); \ ++ __rt_spin_lock_init(slock, #slock, &__key); \ ++} while (0) ++ ++extern void __lockfunc rt_spin_lock(spinlock_t *lock); ++extern unsigned long __lockfunc rt_spin_lock_trace_flags(spinlock_t *lock); ++extern void __lockfunc rt_spin_lock_nested(spinlock_t *lock, int subclass); ++extern void __lockfunc rt_spin_unlock(spinlock_t *lock); ++extern void __lockfunc rt_spin_unlock_after_trylock_in_irq(spinlock_t *lock); ++extern void __lockfunc rt_spin_unlock_wait(spinlock_t *lock); ++extern int __lockfunc rt_spin_trylock_irqsave(spinlock_t *lock, unsigned long *flags); ++extern int __lockfunc rt_spin_trylock_bh(spinlock_t *lock); ++extern int __lockfunc rt_spin_trylock(spinlock_t *lock); ++extern int atomic_dec_and_spin_lock(atomic_t *atomic, spinlock_t *lock); ++ ++/* ++ * lockdep-less calls, for derived types like rwlock: ++ * (for trylock they can use rt_mutex_trylock() directly. ++ */ ++extern void __lockfunc __rt_spin_lock(struct rt_mutex *lock); ++extern void __lockfunc __rt_spin_unlock(struct rt_mutex *lock); ++extern int __lockfunc __rt_spin_trylock(struct rt_mutex *lock); ++ ++#define spin_lock(lock) \ ++ do { \ ++ migrate_disable(); \ ++ rt_spin_lock(lock); \ ++ } while (0) ++ ++#define spin_lock_bh(lock) \ ++ do { \ ++ local_bh_disable(); \ ++ migrate_disable(); \ ++ rt_spin_lock(lock); \ ++ } while (0) ++ ++#define spin_lock_irq(lock) spin_lock(lock) ++ ++#define spin_do_trylock(lock) __cond_lock(lock, rt_spin_trylock(lock)) ++ ++#define spin_trylock(lock) \ ++({ \ ++ int __locked; \ ++ migrate_disable(); \ ++ __locked = spin_do_trylock(lock); \ ++ if (!__locked) \ ++ migrate_enable(); \ ++ __locked; \ ++}) ++ ++#ifdef CONFIG_LOCKDEP ++# define spin_lock_nested(lock, subclass) \ ++ do { \ ++ migrate_disable(); \ ++ rt_spin_lock_nested(lock, subclass); \ ++ } while (0) ++ ++# define spin_lock_irqsave_nested(lock, flags, subclass) \ ++ do { \ ++ typecheck(unsigned long, flags); \ ++ flags = 0; \ ++ migrate_disable(); \ ++ rt_spin_lock_nested(lock, subclass); \ ++ } while (0) ++#else ++# define spin_lock_nested(lock, subclass) spin_lock(lock) ++ ++# define spin_lock_irqsave_nested(lock, flags, subclass) \ ++ do { \ ++ typecheck(unsigned long, flags); \ ++ flags = 0; \ ++ spin_lock(lock); \ ++ } while (0) ++#endif ++ ++#define spin_lock_irqsave(lock, flags) \ ++ do { \ ++ typecheck(unsigned long, flags); \ ++ flags = 0; \ ++ spin_lock(lock); \ ++ } while (0) ++ ++static inline unsigned long spin_lock_trace_flags(spinlock_t *lock) ++{ ++ unsigned long flags = 0; ++#ifdef CONFIG_TRACE_IRQFLAGS ++ flags = rt_spin_lock_trace_flags(lock); ++#else ++ spin_lock(lock); /* lock_local */ ++#endif ++ return flags; ++} ++ ++/* FIXME: we need rt_spin_lock_nest_lock */ ++#define spin_lock_nest_lock(lock, nest_lock) spin_lock_nested(lock, 0) ++ ++#define spin_unlock(lock) \ ++ do { \ ++ rt_spin_unlock(lock); \ ++ migrate_enable(); \ ++ } while (0) ++ ++#define spin_unlock_bh(lock) \ ++ do { \ ++ rt_spin_unlock(lock); \ ++ migrate_enable(); \ ++ local_bh_enable(); \ ++ } while (0) ++ ++#define spin_unlock_irq(lock) spin_unlock(lock) ++ ++#define spin_unlock_irqrestore(lock, flags) \ ++ do { \ ++ typecheck(unsigned long, flags); \ ++ (void) flags; \ ++ spin_unlock(lock); \ ++ } while (0) ++ ++#define spin_trylock_bh(lock) __cond_lock(lock, rt_spin_trylock_bh(lock)) ++#define spin_trylock_irq(lock) spin_trylock(lock) ++ ++#define spin_trylock_irqsave(lock, flags) \ ++ rt_spin_trylock_irqsave(lock, &(flags)) ++ ++#define spin_unlock_wait(lock) rt_spin_unlock_wait(lock) ++ ++#ifdef CONFIG_GENERIC_LOCKBREAK ++# define spin_is_contended(lock) ((lock)->break_lock) ++#else ++# define spin_is_contended(lock) (((void)(lock), 0)) ++#endif ++ ++static inline int spin_can_lock(spinlock_t *lock) ++{ ++ return !rt_mutex_is_locked(&lock->lock); ++} ++ ++static inline int spin_is_locked(spinlock_t *lock) ++{ ++ return rt_mutex_is_locked(&lock->lock); ++} ++ ++static inline void assert_spin_locked(spinlock_t *lock) ++{ ++ BUG_ON(!spin_is_locked(lock)); ++} ++ ++#define atomic_dec_and_lock(atomic, lock) \ ++ atomic_dec_and_spin_lock(atomic, lock) ++ ++#endif +diff -Nur linux-3.18.12.orig/include/linux/spinlock_types.h linux-3.18.12/include/linux/spinlock_types.h +--- linux-3.18.12.orig/include/linux/spinlock_types.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/spinlock_types.h 2015-04-26 13:32:22.423684003 -0500 +@@ -9,80 +9,15 @@ + * Released under the General Public License (GPL). + */ + +-#if defined(CONFIG_SMP) +-# include +-#else +-# include +-#endif +- +-#include +- +-typedef struct raw_spinlock { +- arch_spinlock_t raw_lock; +-#ifdef CONFIG_GENERIC_LOCKBREAK +- unsigned int break_lock; +-#endif +-#ifdef CONFIG_DEBUG_SPINLOCK +- unsigned int magic, owner_cpu; +- void *owner; +-#endif +-#ifdef CONFIG_DEBUG_LOCK_ALLOC +- struct lockdep_map dep_map; +-#endif +-} raw_spinlock_t; +- +-#define SPINLOCK_MAGIC 0xdead4ead +- +-#define SPINLOCK_OWNER_INIT ((void *)-1L) +- +-#ifdef CONFIG_DEBUG_LOCK_ALLOC +-# define SPIN_DEP_MAP_INIT(lockname) .dep_map = { .name = #lockname } +-#else +-# define SPIN_DEP_MAP_INIT(lockname) +-#endif ++#include + +-#ifdef CONFIG_DEBUG_SPINLOCK +-# define SPIN_DEBUG_INIT(lockname) \ +- .magic = SPINLOCK_MAGIC, \ +- .owner_cpu = -1, \ +- .owner = SPINLOCK_OWNER_INIT, ++#ifndef CONFIG_PREEMPT_RT_FULL ++# include ++# include + #else +-# define SPIN_DEBUG_INIT(lockname) ++# include ++# include ++# include + #endif + +-#define __RAW_SPIN_LOCK_INITIALIZER(lockname) \ +- { \ +- .raw_lock = __ARCH_SPIN_LOCK_UNLOCKED, \ +- SPIN_DEBUG_INIT(lockname) \ +- SPIN_DEP_MAP_INIT(lockname) } +- +-#define __RAW_SPIN_LOCK_UNLOCKED(lockname) \ +- (raw_spinlock_t) __RAW_SPIN_LOCK_INITIALIZER(lockname) +- +-#define DEFINE_RAW_SPINLOCK(x) raw_spinlock_t x = __RAW_SPIN_LOCK_UNLOCKED(x) +- +-typedef struct spinlock { +- union { +- struct raw_spinlock rlock; +- +-#ifdef CONFIG_DEBUG_LOCK_ALLOC +-# define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map)) +- struct { +- u8 __padding[LOCK_PADSIZE]; +- struct lockdep_map dep_map; +- }; +-#endif +- }; +-} spinlock_t; +- +-#define __SPIN_LOCK_INITIALIZER(lockname) \ +- { { .rlock = __RAW_SPIN_LOCK_INITIALIZER(lockname) } } +- +-#define __SPIN_LOCK_UNLOCKED(lockname) \ +- (spinlock_t ) __SPIN_LOCK_INITIALIZER(lockname) +- +-#define DEFINE_SPINLOCK(x) spinlock_t x = __SPIN_LOCK_UNLOCKED(x) +- +-#include +- + #endif /* __LINUX_SPINLOCK_TYPES_H */ +diff -Nur linux-3.18.12.orig/include/linux/spinlock_types_nort.h linux-3.18.12/include/linux/spinlock_types_nort.h +--- linux-3.18.12.orig/include/linux/spinlock_types_nort.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/spinlock_types_nort.h 2015-04-26 13:32:22.423684003 -0500 +@@ -0,0 +1,33 @@ ++#ifndef __LINUX_SPINLOCK_TYPES_NORT_H ++#define __LINUX_SPINLOCK_TYPES_NORT_H ++ ++#ifndef __LINUX_SPINLOCK_TYPES_H ++#error "Do not include directly. Include spinlock_types.h instead" ++#endif ++ ++/* ++ * The non RT version maps spinlocks to raw_spinlocks ++ */ ++typedef struct spinlock { ++ union { ++ struct raw_spinlock rlock; ++ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++# define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map)) ++ struct { ++ u8 __padding[LOCK_PADSIZE]; ++ struct lockdep_map dep_map; ++ }; ++#endif ++ }; ++} spinlock_t; ++ ++#define __SPIN_LOCK_INITIALIZER(lockname) \ ++ { { .rlock = __RAW_SPIN_LOCK_INITIALIZER(lockname) } } ++ ++#define __SPIN_LOCK_UNLOCKED(lockname) \ ++ (spinlock_t ) __SPIN_LOCK_INITIALIZER(lockname) ++ ++#define DEFINE_SPINLOCK(x) spinlock_t x = __SPIN_LOCK_UNLOCKED(x) ++ ++#endif +diff -Nur linux-3.18.12.orig/include/linux/spinlock_types_raw.h linux-3.18.12/include/linux/spinlock_types_raw.h +--- linux-3.18.12.orig/include/linux/spinlock_types_raw.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/spinlock_types_raw.h 2015-04-26 13:32:22.423684003 -0500 +@@ -0,0 +1,56 @@ ++#ifndef __LINUX_SPINLOCK_TYPES_RAW_H ++#define __LINUX_SPINLOCK_TYPES_RAW_H ++ ++#if defined(CONFIG_SMP) ++# include ++#else ++# include ++#endif ++ ++#include ++ ++typedef struct raw_spinlock { ++ arch_spinlock_t raw_lock; ++#ifdef CONFIG_GENERIC_LOCKBREAK ++ unsigned int break_lock; ++#endif ++#ifdef CONFIG_DEBUG_SPINLOCK ++ unsigned int magic, owner_cpu; ++ void *owner; ++#endif ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ struct lockdep_map dep_map; ++#endif ++} raw_spinlock_t; ++ ++#define SPINLOCK_MAGIC 0xdead4ead ++ ++#define SPINLOCK_OWNER_INIT ((void *)-1L) ++ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++# define SPIN_DEP_MAP_INIT(lockname) .dep_map = { .name = #lockname } ++#else ++# define SPIN_DEP_MAP_INIT(lockname) ++#endif ++ ++#ifdef CONFIG_DEBUG_SPINLOCK ++# define SPIN_DEBUG_INIT(lockname) \ ++ .magic = SPINLOCK_MAGIC, \ ++ .owner_cpu = -1, \ ++ .owner = SPINLOCK_OWNER_INIT, ++#else ++# define SPIN_DEBUG_INIT(lockname) ++#endif ++ ++#define __RAW_SPIN_LOCK_INITIALIZER(lockname) \ ++ { \ ++ .raw_lock = __ARCH_SPIN_LOCK_UNLOCKED, \ ++ SPIN_DEBUG_INIT(lockname) \ ++ SPIN_DEP_MAP_INIT(lockname) } ++ ++#define __RAW_SPIN_LOCK_UNLOCKED(lockname) \ ++ (raw_spinlock_t) __RAW_SPIN_LOCK_INITIALIZER(lockname) ++ ++#define DEFINE_RAW_SPINLOCK(x) raw_spinlock_t x = __RAW_SPIN_LOCK_UNLOCKED(x) ++ ++#endif +diff -Nur linux-3.18.12.orig/include/linux/spinlock_types_rt.h linux-3.18.12/include/linux/spinlock_types_rt.h +--- linux-3.18.12.orig/include/linux/spinlock_types_rt.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/spinlock_types_rt.h 2015-04-26 13:32:22.423684003 -0500 +@@ -0,0 +1,51 @@ ++#ifndef __LINUX_SPINLOCK_TYPES_RT_H ++#define __LINUX_SPINLOCK_TYPES_RT_H ++ ++#ifndef __LINUX_SPINLOCK_TYPES_H ++#error "Do not include directly. Include spinlock_types.h instead" ++#endif ++ ++#include ++ ++/* ++ * PREEMPT_RT: spinlocks - an RT mutex plus lock-break field: ++ */ ++typedef struct spinlock { ++ struct rt_mutex lock; ++ unsigned int break_lock; ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ struct lockdep_map dep_map; ++#endif ++} spinlock_t; ++ ++#ifdef CONFIG_DEBUG_RT_MUTEXES ++# define __RT_SPIN_INITIALIZER(name) \ ++ { \ ++ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock), \ ++ .save_state = 1, \ ++ .file = __FILE__, \ ++ .line = __LINE__ , \ ++ } ++#else ++# define __RT_SPIN_INITIALIZER(name) \ ++ { \ ++ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock), \ ++ .save_state = 1, \ ++ } ++#endif ++ ++/* ++.wait_list = PLIST_HEAD_INIT_RAW((name).lock.wait_list, (name).lock.wait_lock) ++*/ ++ ++#define __SPIN_LOCK_UNLOCKED(name) \ ++ { .lock = __RT_SPIN_INITIALIZER(name.lock), \ ++ SPIN_DEP_MAP_INIT(name) } ++ ++#define __DEFINE_SPINLOCK(name) \ ++ spinlock_t name = __SPIN_LOCK_UNLOCKED(name) ++ ++#define DEFINE_SPINLOCK(name) \ ++ spinlock_t name __cacheline_aligned_in_smp = __SPIN_LOCK_UNLOCKED(name) ++ ++#endif +diff -Nur linux-3.18.12.orig/include/linux/srcu.h linux-3.18.12/include/linux/srcu.h +--- linux-3.18.12.orig/include/linux/srcu.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/srcu.h 2015-04-26 13:32:22.427684003 -0500 +@@ -84,10 +84,10 @@ + + void process_srcu(struct work_struct *work); + +-#define __SRCU_STRUCT_INIT(name) \ ++#define __SRCU_STRUCT_INIT(name, pcpu_name) \ + { \ + .completed = -300, \ +- .per_cpu_ref = &name##_srcu_array, \ ++ .per_cpu_ref = &pcpu_name, \ + .queue_lock = __SPIN_LOCK_UNLOCKED(name.queue_lock), \ + .running = false, \ + .batch_queue = RCU_BATCH_INIT(name.batch_queue), \ +@@ -104,11 +104,12 @@ + */ + #define DEFINE_SRCU(name) \ + static DEFINE_PER_CPU(struct srcu_struct_array, name##_srcu_array);\ +- struct srcu_struct name = __SRCU_STRUCT_INIT(name); ++ struct srcu_struct name = __SRCU_STRUCT_INIT(name, name##_srcu_array); + + #define DEFINE_STATIC_SRCU(name) \ + static DEFINE_PER_CPU(struct srcu_struct_array, name##_srcu_array);\ +- static struct srcu_struct name = __SRCU_STRUCT_INIT(name); ++ static struct srcu_struct name = __SRCU_STRUCT_INIT(\ ++ name, name##_srcu_array); + + /** + * call_srcu() - Queue a callback for invocation after an SRCU grace period +diff -Nur linux-3.18.12.orig/include/linux/swap.h linux-3.18.12/include/linux/swap.h +--- linux-3.18.12.orig/include/linux/swap.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/swap.h 2015-04-26 13:32:22.427684003 -0500 +@@ -11,6 +11,7 @@ + #include + #include + #include ++#include + #include + + struct notifier_block; +@@ -260,7 +261,8 @@ + void *workingset_eviction(struct address_space *mapping, struct page *page); + bool workingset_refault(void *shadow); + void workingset_activation(struct page *page); +-extern struct list_lru workingset_shadow_nodes; ++extern struct list_lru __workingset_shadow_nodes; ++DECLARE_LOCAL_IRQ_LOCK(workingset_shadow_lock); + + static inline unsigned int workingset_node_pages(struct radix_tree_node *node) + { +diff -Nur linux-3.18.12.orig/include/linux/sysctl.h linux-3.18.12/include/linux/sysctl.h +--- linux-3.18.12.orig/include/linux/sysctl.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/sysctl.h 2015-04-26 13:32:22.427684003 -0500 +@@ -25,6 +25,7 @@ + #include + #include + #include ++#include + #include + + /* For the /proc/sys support */ +diff -Nur linux-3.18.12.orig/include/linux/thread_info.h linux-3.18.12/include/linux/thread_info.h +--- linux-3.18.12.orig/include/linux/thread_info.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/thread_info.h 2015-04-26 13:32:22.427684003 -0500 +@@ -102,7 +102,17 @@ + #define test_thread_flag(flag) \ + test_ti_thread_flag(current_thread_info(), flag) + +-#define tif_need_resched() test_thread_flag(TIF_NEED_RESCHED) ++#ifdef CONFIG_PREEMPT_LAZY ++#define tif_need_resched() (test_thread_flag(TIF_NEED_RESCHED) || \ ++ test_thread_flag(TIF_NEED_RESCHED_LAZY)) ++#define tif_need_resched_now() (test_thread_flag(TIF_NEED_RESCHED)) ++#define tif_need_resched_lazy() test_thread_flag(TIF_NEED_RESCHED_LAZY)) ++ ++#else ++#define tif_need_resched() test_thread_flag(TIF_NEED_RESCHED) ++#define tif_need_resched_now() test_thread_flag(TIF_NEED_RESCHED) ++#define tif_need_resched_lazy() 0 ++#endif + + #if defined TIF_RESTORE_SIGMASK && !defined HAVE_SET_RESTORE_SIGMASK + /* +diff -Nur linux-3.18.12.orig/include/linux/timer.h linux-3.18.12/include/linux/timer.h +--- linux-3.18.12.orig/include/linux/timer.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/timer.h 2015-04-26 13:32:22.427684003 -0500 +@@ -241,7 +241,7 @@ + + extern int try_to_del_timer_sync(struct timer_list *timer); + +-#ifdef CONFIG_SMP ++#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT_FULL) + extern int del_timer_sync(struct timer_list *timer); + #else + # define del_timer_sync(t) del_timer(t) +diff -Nur linux-3.18.12.orig/include/linux/uaccess.h linux-3.18.12/include/linux/uaccess.h +--- linux-3.18.12.orig/include/linux/uaccess.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/uaccess.h 2015-04-26 13:32:22.427684003 -0500 +@@ -6,14 +6,9 @@ + + /* + * These routines enable/disable the pagefault handler in that +- * it will not take any locks and go straight to the fixup table. +- * +- * They have great resemblance to the preempt_disable/enable calls +- * and in fact they are identical; this is because currently there is +- * no other way to make the pagefault handlers do this. So we do +- * disable preemption but we don't necessarily care about that. ++ * it will not take any MM locks and go straight to the fixup table. + */ +-static inline void pagefault_disable(void) ++static inline void raw_pagefault_disable(void) + { + preempt_count_inc(); + /* +@@ -23,7 +18,7 @@ + barrier(); + } + +-static inline void pagefault_enable(void) ++static inline void raw_pagefault_enable(void) + { + #ifndef CONFIG_PREEMPT + /* +@@ -37,6 +32,21 @@ + #endif + } + ++#ifndef CONFIG_PREEMPT_RT_FULL ++static inline void pagefault_disable(void) ++{ ++ raw_pagefault_disable(); ++} ++ ++static inline void pagefault_enable(void) ++{ ++ raw_pagefault_enable(); ++} ++#else ++extern void pagefault_disable(void); ++extern void pagefault_enable(void); ++#endif ++ + #ifndef ARCH_HAS_NOCACHE_UACCESS + + static inline unsigned long __copy_from_user_inatomic_nocache(void *to, +@@ -76,9 +86,9 @@ + mm_segment_t old_fs = get_fs(); \ + \ + set_fs(KERNEL_DS); \ +- pagefault_disable(); \ ++ raw_pagefault_disable(); \ + ret = __copy_from_user_inatomic(&(retval), (__force typeof(retval) __user *)(addr), sizeof(retval)); \ +- pagefault_enable(); \ ++ raw_pagefault_enable(); \ + set_fs(old_fs); \ + ret; \ + }) +diff -Nur linux-3.18.12.orig/include/linux/uprobes.h linux-3.18.12/include/linux/uprobes.h +--- linux-3.18.12.orig/include/linux/uprobes.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/uprobes.h 2015-04-26 13:32:22.427684003 -0500 +@@ -27,6 +27,7 @@ + #include + #include + #include ++#include + + struct vm_area_struct; + struct mm_struct; +diff -Nur linux-3.18.12.orig/include/linux/vmstat.h linux-3.18.12/include/linux/vmstat.h +--- linux-3.18.12.orig/include/linux/vmstat.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/vmstat.h 2015-04-26 13:32:22.427684003 -0500 +@@ -33,7 +33,9 @@ + */ + static inline void __count_vm_event(enum vm_event_item item) + { ++ preempt_disable_rt(); + raw_cpu_inc(vm_event_states.event[item]); ++ preempt_enable_rt(); + } + + static inline void count_vm_event(enum vm_event_item item) +@@ -43,7 +45,9 @@ + + static inline void __count_vm_events(enum vm_event_item item, long delta) + { ++ preempt_disable_rt(); + raw_cpu_add(vm_event_states.event[item], delta); ++ preempt_enable_rt(); + } + + static inline void count_vm_events(enum vm_event_item item, long delta) +diff -Nur linux-3.18.12.orig/include/linux/wait.h linux-3.18.12/include/linux/wait.h +--- linux-3.18.12.orig/include/linux/wait.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/linux/wait.h 2015-04-26 13:32:22.427684003 -0500 +@@ -8,6 +8,7 @@ + #include + #include + #include ++#include + + typedef struct __wait_queue wait_queue_t; + typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key); +diff -Nur linux-3.18.12.orig/include/linux/wait-simple.h linux-3.18.12/include/linux/wait-simple.h +--- linux-3.18.12.orig/include/linux/wait-simple.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/wait-simple.h 2015-04-26 13:32:22.427684003 -0500 +@@ -0,0 +1,207 @@ ++#ifndef _LINUX_WAIT_SIMPLE_H ++#define _LINUX_WAIT_SIMPLE_H ++ ++#include ++#include ++ ++#include ++ ++struct swaiter { ++ struct task_struct *task; ++ struct list_head node; ++}; ++ ++#define DEFINE_SWAITER(name) \ ++ struct swaiter name = { \ ++ .task = current, \ ++ .node = LIST_HEAD_INIT((name).node), \ ++ } ++ ++struct swait_head { ++ raw_spinlock_t lock; ++ struct list_head list; ++}; ++ ++#define SWAIT_HEAD_INITIALIZER(name) { \ ++ .lock = __RAW_SPIN_LOCK_UNLOCKED(name.lock), \ ++ .list = LIST_HEAD_INIT((name).list), \ ++ } ++ ++#define DEFINE_SWAIT_HEAD(name) \ ++ struct swait_head name = SWAIT_HEAD_INITIALIZER(name) ++ ++extern void __init_swait_head(struct swait_head *h, struct lock_class_key *key); ++ ++#define init_swait_head(swh) \ ++ do { \ ++ static struct lock_class_key __key; \ ++ \ ++ __init_swait_head((swh), &__key); \ ++ } while (0) ++ ++/* ++ * Waiter functions ++ */ ++extern void swait_prepare_locked(struct swait_head *head, struct swaiter *w); ++extern void swait_prepare(struct swait_head *head, struct swaiter *w, int state); ++extern void swait_finish_locked(struct swait_head *head, struct swaiter *w); ++extern void swait_finish(struct swait_head *head, struct swaiter *w); ++ ++/* Check whether a head has waiters enqueued */ ++static inline bool swaitqueue_active(struct swait_head *h) ++{ ++ /* Make sure the condition is visible before checking list_empty() */ ++ smp_mb(); ++ return !list_empty(&h->list); ++} ++ ++/* ++ * Wakeup functions ++ */ ++extern unsigned int __swait_wake(struct swait_head *head, unsigned int state, unsigned int num); ++extern unsigned int __swait_wake_locked(struct swait_head *head, unsigned int state, unsigned int num); ++ ++#define swait_wake(head) __swait_wake(head, TASK_NORMAL, 1) ++#define swait_wake_interruptible(head) __swait_wake(head, TASK_INTERRUPTIBLE, 1) ++#define swait_wake_all(head) __swait_wake(head, TASK_NORMAL, 0) ++#define swait_wake_all_interruptible(head) __swait_wake(head, TASK_INTERRUPTIBLE, 0) ++ ++/* ++ * Event API ++ */ ++#define __swait_event(wq, condition) \ ++do { \ ++ DEFINE_SWAITER(__wait); \ ++ \ ++ for (;;) { \ ++ swait_prepare(&wq, &__wait, TASK_UNINTERRUPTIBLE); \ ++ if (condition) \ ++ break; \ ++ schedule(); \ ++ } \ ++ swait_finish(&wq, &__wait); \ ++} while (0) ++ ++/** ++ * swait_event - sleep until a condition gets true ++ * @wq: the waitqueue to wait on ++ * @condition: a C expression for the event to wait for ++ * ++ * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the ++ * @condition evaluates to true. The @condition is checked each time ++ * the waitqueue @wq is woken up. ++ * ++ * wake_up() has to be called after changing any variable that could ++ * change the result of the wait condition. ++ */ ++#define swait_event(wq, condition) \ ++do { \ ++ if (condition) \ ++ break; \ ++ __swait_event(wq, condition); \ ++} while (0) ++ ++#define __swait_event_interruptible(wq, condition, ret) \ ++do { \ ++ DEFINE_SWAITER(__wait); \ ++ \ ++ for (;;) { \ ++ swait_prepare(&wq, &__wait, TASK_INTERRUPTIBLE); \ ++ if (condition) \ ++ break; \ ++ if (signal_pending(current)) { \ ++ ret = -ERESTARTSYS; \ ++ break; \ ++ } \ ++ schedule(); \ ++ } \ ++ swait_finish(&wq, &__wait); \ ++} while (0) ++ ++#define __swait_event_interruptible_timeout(wq, condition, ret) \ ++do { \ ++ DEFINE_SWAITER(__wait); \ ++ \ ++ for (;;) { \ ++ swait_prepare(&wq, &__wait, TASK_INTERRUPTIBLE); \ ++ if (condition) \ ++ break; \ ++ if (signal_pending(current)) { \ ++ ret = -ERESTARTSYS; \ ++ break; \ ++ } \ ++ ret = schedule_timeout(ret); \ ++ if (!ret) \ ++ break; \ ++ } \ ++ swait_finish(&wq, &__wait); \ ++} while (0) ++ ++/** ++ * swait_event_interruptible - sleep until a condition gets true ++ * @wq: the waitqueue to wait on ++ * @condition: a C expression for the event to wait for ++ * ++ * The process is put to sleep (TASK_INTERRUPTIBLE) until the ++ * @condition evaluates to true. The @condition is checked each time ++ * the waitqueue @wq is woken up. ++ * ++ * wake_up() has to be called after changing any variable that could ++ * change the result of the wait condition. ++ */ ++#define swait_event_interruptible(wq, condition) \ ++({ \ ++ int __ret = 0; \ ++ if (!(condition)) \ ++ __swait_event_interruptible(wq, condition, __ret); \ ++ __ret; \ ++}) ++ ++#define swait_event_interruptible_timeout(wq, condition, timeout) \ ++({ \ ++ int __ret = timeout; \ ++ if (!(condition)) \ ++ __swait_event_interruptible_timeout(wq, condition, __ret); \ ++ __ret; \ ++}) ++ ++#define __swait_event_timeout(wq, condition, ret) \ ++do { \ ++ DEFINE_SWAITER(__wait); \ ++ \ ++ for (;;) { \ ++ swait_prepare(&wq, &__wait, TASK_UNINTERRUPTIBLE); \ ++ if (condition) \ ++ break; \ ++ ret = schedule_timeout(ret); \ ++ if (!ret) \ ++ break; \ ++ } \ ++ swait_finish(&wq, &__wait); \ ++} while (0) ++ ++/** ++ * swait_event_timeout - sleep until a condition gets true or a timeout elapses ++ * @wq: the waitqueue to wait on ++ * @condition: a C expression for the event to wait for ++ * @timeout: timeout, in jiffies ++ * ++ * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the ++ * @condition evaluates to true. The @condition is checked each time ++ * the waitqueue @wq is woken up. ++ * ++ * wake_up() has to be called after changing any variable that could ++ * change the result of the wait condition. ++ * ++ * The function returns 0 if the @timeout elapsed, and the remaining ++ * jiffies if the condition evaluated to true before the timeout elapsed. ++ */ ++#define swait_event_timeout(wq, condition, timeout) \ ++({ \ ++ long __ret = timeout; \ ++ if (!(condition)) \ ++ __swait_event_timeout(wq, condition, __ret); \ ++ __ret; \ ++}) ++ ++#endif +diff -Nur linux-3.18.12.orig/include/linux/work-simple.h linux-3.18.12/include/linux/work-simple.h +--- linux-3.18.12.orig/include/linux/work-simple.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/linux/work-simple.h 2015-04-26 13:32:22.427684003 -0500 +@@ -0,0 +1,24 @@ ++#ifndef _LINUX_SWORK_H ++#define _LINUX_SWORK_H ++ ++#include ++ ++struct swork_event { ++ struct list_head item; ++ unsigned long flags; ++ void (*func)(struct swork_event *); ++}; ++ ++static inline void INIT_SWORK(struct swork_event *event, ++ void (*func)(struct swork_event *)) ++{ ++ event->flags = 0; ++ event->func = func; ++} ++ ++bool swork_queue(struct swork_event *sev); ++ ++int swork_get(void); ++void swork_put(void); ++ ++#endif /* _LINUX_SWORK_H */ +diff -Nur linux-3.18.12.orig/include/net/dst.h linux-3.18.12/include/net/dst.h +--- linux-3.18.12.orig/include/net/dst.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/net/dst.h 2015-04-26 13:32:22.427684003 -0500 +@@ -403,7 +403,7 @@ + static inline int dst_neigh_output(struct dst_entry *dst, struct neighbour *n, + struct sk_buff *skb) + { +- const struct hh_cache *hh; ++ struct hh_cache *hh; + + if (dst->pending_confirm) { + unsigned long now = jiffies; +diff -Nur linux-3.18.12.orig/include/net/neighbour.h linux-3.18.12/include/net/neighbour.h +--- linux-3.18.12.orig/include/net/neighbour.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/net/neighbour.h 2015-04-26 13:32:22.427684003 -0500 +@@ -387,7 +387,7 @@ + } + #endif + +-static inline int neigh_hh_output(const struct hh_cache *hh, struct sk_buff *skb) ++static inline int neigh_hh_output(struct hh_cache *hh, struct sk_buff *skb) + { + unsigned int seq; + int hh_len; +@@ -442,7 +442,7 @@ + + #define NEIGH_CB(skb) ((struct neighbour_cb *)(skb)->cb) + +-static inline void neigh_ha_snapshot(char *dst, const struct neighbour *n, ++static inline void neigh_ha_snapshot(char *dst, struct neighbour *n, + const struct net_device *dev) + { + unsigned int seq; +diff -Nur linux-3.18.12.orig/include/net/netns/ipv4.h linux-3.18.12/include/net/netns/ipv4.h +--- linux-3.18.12.orig/include/net/netns/ipv4.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/include/net/netns/ipv4.h 2015-04-26 13:32:22.427684003 -0500 +@@ -67,6 +67,7 @@ + + int sysctl_icmp_echo_ignore_all; + int sysctl_icmp_echo_ignore_broadcasts; ++ int sysctl_icmp_echo_sysrq; + int sysctl_icmp_ignore_bogus_error_responses; + int sysctl_icmp_ratelimit; + int sysctl_icmp_ratemask; +diff -Nur linux-3.18.12.orig/include/trace/events/hist.h linux-3.18.12/include/trace/events/hist.h +--- linux-3.18.12.orig/include/trace/events/hist.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/trace/events/hist.h 2015-04-26 13:32:22.427684003 -0500 +@@ -0,0 +1,72 @@ ++#undef TRACE_SYSTEM ++#define TRACE_SYSTEM hist ++ ++#if !defined(_TRACE_HIST_H) || defined(TRACE_HEADER_MULTI_READ) ++#define _TRACE_HIST_H ++ ++#include "latency_hist.h" ++#include ++ ++#if !defined(CONFIG_PREEMPT_OFF_HIST) && !defined(CONFIG_INTERRUPT_OFF_HIST) ++#define trace_preemptirqsoff_hist(a, b) ++#else ++TRACE_EVENT(preemptirqsoff_hist, ++ ++ TP_PROTO(int reason, int starthist), ++ ++ TP_ARGS(reason, starthist), ++ ++ TP_STRUCT__entry( ++ __field(int, reason) ++ __field(int, starthist) ++ ), ++ ++ TP_fast_assign( ++ __entry->reason = reason; ++ __entry->starthist = starthist; ++ ), ++ ++ TP_printk("reason=%s starthist=%s", getaction(__entry->reason), ++ __entry->starthist ? "start" : "stop") ++); ++#endif ++ ++#ifndef CONFIG_MISSED_TIMER_OFFSETS_HIST ++#define trace_hrtimer_interrupt(a, b, c, d) ++#else ++TRACE_EVENT(hrtimer_interrupt, ++ ++ TP_PROTO(int cpu, long long offset, struct task_struct *curr, ++ struct task_struct *task), ++ ++ TP_ARGS(cpu, offset, curr, task), ++ ++ TP_STRUCT__entry( ++ __field(int, cpu) ++ __field(long long, offset) ++ __array(char, ccomm, TASK_COMM_LEN) ++ __field(int, cprio) ++ __array(char, tcomm, TASK_COMM_LEN) ++ __field(int, tprio) ++ ), ++ ++ TP_fast_assign( ++ __entry->cpu = cpu; ++ __entry->offset = offset; ++ memcpy(__entry->ccomm, curr->comm, TASK_COMM_LEN); ++ __entry->cprio = curr->prio; ++ memcpy(__entry->tcomm, task != NULL ? task->comm : "", ++ task != NULL ? TASK_COMM_LEN : 7); ++ __entry->tprio = task != NULL ? task->prio : -1; ++ ), ++ ++ TP_printk("cpu=%d offset=%lld curr=%s[%d] thread=%s[%d]", ++ __entry->cpu, __entry->offset, __entry->ccomm, ++ __entry->cprio, __entry->tcomm, __entry->tprio) ++); ++#endif ++ ++#endif /* _TRACE_HIST_H */ ++ ++/* This part must be outside protection */ ++#include +diff -Nur linux-3.18.12.orig/include/trace/events/latency_hist.h linux-3.18.12/include/trace/events/latency_hist.h +--- linux-3.18.12.orig/include/trace/events/latency_hist.h 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/include/trace/events/latency_hist.h 2015-04-26 13:32:22.427684003 -0500 +@@ -0,0 +1,29 @@ ++#ifndef _LATENCY_HIST_H ++#define _LATENCY_HIST_H ++ ++enum hist_action { ++ IRQS_ON, ++ PREEMPT_ON, ++ TRACE_STOP, ++ IRQS_OFF, ++ PREEMPT_OFF, ++ TRACE_START, ++}; ++ ++static char *actions[] = { ++ "IRQS_ON", ++ "PREEMPT_ON", ++ "TRACE_STOP", ++ "IRQS_OFF", ++ "PREEMPT_OFF", ++ "TRACE_START", ++}; ++ ++static inline char *getaction(int action) ++{ ++ if (action >= 0 && action <= sizeof(actions)/sizeof(actions[0])) ++ return actions[action]; ++ return "unknown"; ++} ++ ++#endif /* _LATENCY_HIST_H */ +diff -Nur linux-3.18.12.orig/init/Kconfig linux-3.18.12/init/Kconfig +--- linux-3.18.12.orig/init/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/init/Kconfig 2015-04-26 13:32:22.427684003 -0500 +@@ -635,7 +635,7 @@ + + config RCU_FAST_NO_HZ + bool "Accelerate last non-dyntick-idle CPU's grace periods" +- depends on NO_HZ_COMMON && SMP ++ depends on NO_HZ_COMMON && SMP && !PREEMPT_RT_FULL + default n + help + This option permits CPUs to enter dynticks-idle state even if +@@ -662,7 +662,7 @@ + config RCU_BOOST + bool "Enable RCU priority boosting" + depends on RT_MUTEXES && PREEMPT_RCU +- default n ++ default y if PREEMPT_RT_FULL + help + This option boosts the priority of preempted RCU readers that + block the current preemptible RCU grace period for too long. +@@ -1106,6 +1106,7 @@ + config RT_GROUP_SCHED + bool "Group scheduling for SCHED_RR/FIFO" + depends on CGROUP_SCHED ++ depends on !PREEMPT_RT_FULL + default n + help + This feature lets you explicitly allocate real CPU bandwidth +@@ -1677,6 +1678,7 @@ + + config SLAB + bool "SLAB" ++ depends on !PREEMPT_RT_FULL + help + The regular slab allocator that is established and known to work + well in all environments. It organizes cache hot objects in +@@ -1695,6 +1697,7 @@ + config SLOB + depends on EXPERT + bool "SLOB (Simple Allocator)" ++ depends on !PREEMPT_RT_FULL + help + SLOB replaces the stock allocator with a drastically simpler + allocator. SLOB is generally more space efficient but +diff -Nur linux-3.18.12.orig/init/main.c linux-3.18.12/init/main.c +--- linux-3.18.12.orig/init/main.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/init/main.c 2015-04-26 13:32:22.427684003 -0500 +@@ -533,6 +533,7 @@ + setup_command_line(command_line); + setup_nr_cpu_ids(); + setup_per_cpu_areas(); ++ softirq_early_init(); + smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */ + + build_all_zonelists(NULL, NULL); +diff -Nur linux-3.18.12.orig/init/Makefile linux-3.18.12/init/Makefile +--- linux-3.18.12.orig/init/Makefile 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/init/Makefile 2015-04-26 13:32:22.427684003 -0500 +@@ -33,4 +33,4 @@ + include/generated/compile.h: FORCE + @$($(quiet)chk_compile.h) + $(Q)$(CONFIG_SHELL) $(srctree)/scripts/mkcompile_h $@ \ +- "$(UTS_MACHINE)" "$(CONFIG_SMP)" "$(CONFIG_PREEMPT)" "$(CC) $(KBUILD_CFLAGS)" ++ "$(UTS_MACHINE)" "$(CONFIG_SMP)" "$(CONFIG_PREEMPT)" "$(CONFIG_PREEMPT_RT_FULL)" "$(CC) $(KBUILD_CFLAGS)" +diff -Nur linux-3.18.12.orig/ipc/mqueue.c linux-3.18.12/ipc/mqueue.c +--- linux-3.18.12.orig/ipc/mqueue.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/ipc/mqueue.c 2015-04-26 13:32:22.427684003 -0500 +@@ -923,12 +923,17 @@ + struct msg_msg *message, + struct ext_wait_queue *receiver) + { ++ /* ++ * Keep them in one critical section for PREEMPT_RT: ++ */ ++ preempt_disable_rt(); + receiver->msg = message; + list_del(&receiver->list); + receiver->state = STATE_PENDING; + wake_up_process(receiver->task); + smp_wmb(); + receiver->state = STATE_READY; ++ preempt_enable_rt(); + } + + /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() +@@ -942,13 +947,18 @@ + wake_up_interruptible(&info->wait_q); + return; + } +- if (msg_insert(sender->msg, info)) +- return; +- list_del(&sender->list); +- sender->state = STATE_PENDING; +- wake_up_process(sender->task); +- smp_wmb(); +- sender->state = STATE_READY; ++ /* ++ * Keep them in one critical section for PREEMPT_RT: ++ */ ++ preempt_disable_rt(); ++ if (!msg_insert(sender->msg, info)) { ++ list_del(&sender->list); ++ sender->state = STATE_PENDING; ++ wake_up_process(sender->task); ++ smp_wmb(); ++ sender->state = STATE_READY; ++ } ++ preempt_enable_rt(); + } + + SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, +diff -Nur linux-3.18.12.orig/ipc/msg.c linux-3.18.12/ipc/msg.c +--- linux-3.18.12.orig/ipc/msg.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/ipc/msg.c 2015-04-26 13:32:22.427684003 -0500 +@@ -188,6 +188,12 @@ + struct msg_receiver *msr, *t; + + list_for_each_entry_safe(msr, t, &msq->q_receivers, r_list) { ++ /* ++ * Make sure that the wakeup doesnt preempt ++ * this CPU prematurely. (on PREEMPT_RT) ++ */ ++ preempt_disable_rt(); ++ + msr->r_msg = NULL; /* initialize expunge ordering */ + wake_up_process(msr->r_tsk); + /* +@@ -198,6 +204,8 @@ + */ + smp_mb(); + msr->r_msg = ERR_PTR(res); ++ ++ preempt_enable_rt(); + } + } + +@@ -574,6 +582,11 @@ + if (testmsg(msg, msr->r_msgtype, msr->r_mode) && + !security_msg_queue_msgrcv(msq, msg, msr->r_tsk, + msr->r_msgtype, msr->r_mode)) { ++ /* ++ * Make sure that the wakeup doesnt preempt ++ * this CPU prematurely. (on PREEMPT_RT) ++ */ ++ preempt_disable_rt(); + + list_del(&msr->r_list); + if (msr->r_maxsize < msg->m_ts) { +@@ -595,12 +608,13 @@ + */ + smp_mb(); + msr->r_msg = msg; ++ preempt_enable_rt(); + + return 1; + } ++ preempt_enable_rt(); + } + } +- + return 0; + } + +diff -Nur linux-3.18.12.orig/ipc/sem.c linux-3.18.12/ipc/sem.c +--- linux-3.18.12.orig/ipc/sem.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/ipc/sem.c 2015-04-26 13:32:22.431684003 -0500 +@@ -673,6 +673,13 @@ + static void wake_up_sem_queue_prepare(struct list_head *pt, + struct sem_queue *q, int error) + { ++#ifdef CONFIG_PREEMPT_RT_BASE ++ struct task_struct *p = q->sleeper; ++ get_task_struct(p); ++ q->status = error; ++ wake_up_process(p); ++ put_task_struct(p); ++#else + if (list_empty(pt)) { + /* + * Hold preempt off so that we don't get preempted and have the +@@ -684,6 +691,7 @@ + q->pid = error; + + list_add_tail(&q->list, pt); ++#endif + } + + /** +@@ -697,6 +705,7 @@ + */ + static void wake_up_sem_queue_do(struct list_head *pt) + { ++#ifndef CONFIG_PREEMPT_RT_BASE + struct sem_queue *q, *t; + int did_something; + +@@ -709,6 +718,7 @@ + } + if (did_something) + preempt_enable(); ++#endif + } + + static void unlink_queue(struct sem_array *sma, struct sem_queue *q) +diff -Nur linux-3.18.12.orig/kernel/cgroup.c linux-3.18.12/kernel/cgroup.c +--- linux-3.18.12.orig/kernel/cgroup.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/cgroup.c 2015-04-26 13:32:22.431684003 -0500 +@@ -4355,10 +4355,10 @@ + queue_work(cgroup_destroy_wq, &css->destroy_work); + } + +-static void css_release_work_fn(struct work_struct *work) ++static void css_release_work_fn(struct swork_event *sev) + { + struct cgroup_subsys_state *css = +- container_of(work, struct cgroup_subsys_state, destroy_work); ++ container_of(sev, struct cgroup_subsys_state, destroy_swork); + struct cgroup_subsys *ss = css->ss; + struct cgroup *cgrp = css->cgroup; + +@@ -4395,8 +4395,8 @@ + struct cgroup_subsys_state *css = + container_of(ref, struct cgroup_subsys_state, refcnt); + +- INIT_WORK(&css->destroy_work, css_release_work_fn); +- queue_work(cgroup_destroy_wq, &css->destroy_work); ++ INIT_SWORK(&css->destroy_swork, css_release_work_fn); ++ swork_queue(&css->destroy_swork); + } + + static void init_and_link_css(struct cgroup_subsys_state *css, +@@ -4997,6 +4997,7 @@ + */ + cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); + BUG_ON(!cgroup_destroy_wq); ++ BUG_ON(swork_get()); + + /* + * Used to destroy pidlists and separate to serve as flush domain. +diff -Nur linux-3.18.12.orig/kernel/cpu.c linux-3.18.12/kernel/cpu.c +--- linux-3.18.12.orig/kernel/cpu.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/cpu.c 2015-04-26 13:32:22.431684003 -0500 +@@ -86,6 +86,290 @@ + #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map) + #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map) + ++/** ++ * hotplug_pcp - per cpu hotplug descriptor ++ * @unplug: set when pin_current_cpu() needs to sync tasks ++ * @sync_tsk: the task that waits for tasks to finish pinned sections ++ * @refcount: counter of tasks in pinned sections ++ * @grab_lock: set when the tasks entering pinned sections should wait ++ * @synced: notifier for @sync_tsk to tell cpu_down it's finished ++ * @mutex: the mutex to make tasks wait (used when @grab_lock is true) ++ * @mutex_init: zero if the mutex hasn't been initialized yet. ++ * ++ * Although @unplug and @sync_tsk may point to the same task, the @unplug ++ * is used as a flag and still exists after @sync_tsk has exited and ++ * @sync_tsk set to NULL. ++ */ ++struct hotplug_pcp { ++ struct task_struct *unplug; ++ struct task_struct *sync_tsk; ++ int refcount; ++ int grab_lock; ++ struct completion synced; ++ struct completion unplug_wait; ++#ifdef CONFIG_PREEMPT_RT_FULL ++ /* ++ * Note, on PREEMPT_RT, the hotplug lock must save the state of ++ * the task, otherwise the mutex will cause the task to fail ++ * to sleep when required. (Because it's called from migrate_disable()) ++ * ++ * The spinlock_t on PREEMPT_RT is a mutex that saves the task's ++ * state. ++ */ ++ spinlock_t lock; ++#else ++ struct mutex mutex; ++#endif ++ int mutex_init; ++}; ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++# define hotplug_lock(hp) rt_spin_lock(&(hp)->lock) ++# define hotplug_unlock(hp) rt_spin_unlock(&(hp)->lock) ++#else ++# define hotplug_lock(hp) mutex_lock(&(hp)->mutex) ++# define hotplug_unlock(hp) mutex_unlock(&(hp)->mutex) ++#endif ++ ++static DEFINE_PER_CPU(struct hotplug_pcp, hotplug_pcp); ++ ++/** ++ * pin_current_cpu - Prevent the current cpu from being unplugged ++ * ++ * Lightweight version of get_online_cpus() to prevent cpu from being ++ * unplugged when code runs in a migration disabled region. ++ * ++ * Must be called with preemption disabled (preempt_count = 1)! ++ */ ++void pin_current_cpu(void) ++{ ++ struct hotplug_pcp *hp; ++ int force = 0; ++ ++retry: ++ hp = &__get_cpu_var(hotplug_pcp); ++ ++ if (!hp->unplug || hp->refcount || force || preempt_count() > 1 || ++ hp->unplug == current) { ++ hp->refcount++; ++ return; ++ } ++ if (hp->grab_lock) { ++ preempt_enable(); ++ hotplug_lock(hp); ++ hotplug_unlock(hp); ++ } else { ++ preempt_enable(); ++ /* ++ * Try to push this task off of this CPU. ++ */ ++ if (!migrate_me()) { ++ preempt_disable(); ++ hp = &__get_cpu_var(hotplug_pcp); ++ if (!hp->grab_lock) { ++ /* ++ * Just let it continue it's already pinned ++ * or about to sleep. ++ */ ++ force = 1; ++ goto retry; ++ } ++ preempt_enable(); ++ } ++ } ++ preempt_disable(); ++ goto retry; ++} ++ ++/** ++ * unpin_current_cpu - Allow unplug of current cpu ++ * ++ * Must be called with preemption or interrupts disabled! ++ */ ++void unpin_current_cpu(void) ++{ ++ struct hotplug_pcp *hp = &__get_cpu_var(hotplug_pcp); ++ ++ WARN_ON(hp->refcount <= 0); ++ ++ /* This is safe. sync_unplug_thread is pinned to this cpu */ ++ if (!--hp->refcount && hp->unplug && hp->unplug != current) ++ wake_up_process(hp->unplug); ++} ++ ++static void wait_for_pinned_cpus(struct hotplug_pcp *hp) ++{ ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ while (hp->refcount) { ++ schedule_preempt_disabled(); ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ } ++} ++ ++static int sync_unplug_thread(void *data) ++{ ++ struct hotplug_pcp *hp = data; ++ ++ wait_for_completion(&hp->unplug_wait); ++ preempt_disable(); ++ hp->unplug = current; ++ wait_for_pinned_cpus(hp); ++ ++ /* ++ * This thread will synchronize the cpu_down() with threads ++ * that have pinned the CPU. When the pinned CPU count reaches ++ * zero, we inform the cpu_down code to continue to the next step. ++ */ ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ preempt_enable(); ++ complete(&hp->synced); ++ ++ /* ++ * If all succeeds, the next step will need tasks to wait till ++ * the CPU is offline before continuing. To do this, the grab_lock ++ * is set and tasks going into pin_current_cpu() will block on the ++ * mutex. But we still need to wait for those that are already in ++ * pinned CPU sections. If the cpu_down() failed, the kthread_should_stop() ++ * will kick this thread out. ++ */ ++ while (!hp->grab_lock && !kthread_should_stop()) { ++ schedule(); ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ } ++ ++ /* Make sure grab_lock is seen before we see a stale completion */ ++ smp_mb(); ++ ++ /* ++ * Now just before cpu_down() enters stop machine, we need to make ++ * sure all tasks that are in pinned CPU sections are out, and new ++ * tasks will now grab the lock, keeping them from entering pinned ++ * CPU sections. ++ */ ++ if (!kthread_should_stop()) { ++ preempt_disable(); ++ wait_for_pinned_cpus(hp); ++ preempt_enable(); ++ complete(&hp->synced); ++ } ++ ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ while (!kthread_should_stop()) { ++ schedule(); ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ } ++ set_current_state(TASK_RUNNING); ++ ++ /* ++ * Force this thread off this CPU as it's going down and ++ * we don't want any more work on this CPU. ++ */ ++ current->flags &= ~PF_NO_SETAFFINITY; ++ set_cpus_allowed_ptr(current, cpu_present_mask); ++ migrate_me(); ++ return 0; ++} ++ ++static void __cpu_unplug_sync(struct hotplug_pcp *hp) ++{ ++ wake_up_process(hp->sync_tsk); ++ wait_for_completion(&hp->synced); ++} ++ ++static void __cpu_unplug_wait(unsigned int cpu) ++{ ++ struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu); ++ ++ complete(&hp->unplug_wait); ++ wait_for_completion(&hp->synced); ++} ++ ++/* ++ * Start the sync_unplug_thread on the target cpu and wait for it to ++ * complete. ++ */ ++static int cpu_unplug_begin(unsigned int cpu) ++{ ++ struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu); ++ int err; ++ ++ /* Protected by cpu_hotplug.lock */ ++ if (!hp->mutex_init) { ++#ifdef CONFIG_PREEMPT_RT_FULL ++ spin_lock_init(&hp->lock); ++#else ++ mutex_init(&hp->mutex); ++#endif ++ hp->mutex_init = 1; ++ } ++ ++ /* Inform the scheduler to migrate tasks off this CPU */ ++ tell_sched_cpu_down_begin(cpu); ++ ++ init_completion(&hp->synced); ++ init_completion(&hp->unplug_wait); ++ ++ hp->sync_tsk = kthread_create(sync_unplug_thread, hp, "sync_unplug/%d", cpu); ++ if (IS_ERR(hp->sync_tsk)) { ++ err = PTR_ERR(hp->sync_tsk); ++ hp->sync_tsk = NULL; ++ return err; ++ } ++ kthread_bind(hp->sync_tsk, cpu); ++ ++ /* ++ * Wait for tasks to get out of the pinned sections, ++ * it's still OK if new tasks enter. Some CPU notifiers will ++ * wait for tasks that are going to enter these sections and ++ * we must not have them block. ++ */ ++ wake_up_process(hp->sync_tsk); ++ return 0; ++} ++ ++static void cpu_unplug_sync(unsigned int cpu) ++{ ++ struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu); ++ ++ init_completion(&hp->synced); ++ /* The completion needs to be initialzied before setting grab_lock */ ++ smp_wmb(); ++ ++ /* Grab the mutex before setting grab_lock */ ++ hotplug_lock(hp); ++ hp->grab_lock = 1; ++ ++ /* ++ * The CPU notifiers have been completed. ++ * Wait for tasks to get out of pinned CPU sections and have new ++ * tasks block until the CPU is completely down. ++ */ ++ __cpu_unplug_sync(hp); ++ ++ /* All done with the sync thread */ ++ kthread_stop(hp->sync_tsk); ++ hp->sync_tsk = NULL; ++} ++ ++static void cpu_unplug_done(unsigned int cpu) ++{ ++ struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu); ++ ++ hp->unplug = NULL; ++ /* Let all tasks know cpu unplug is finished before cleaning up */ ++ smp_wmb(); ++ ++ if (hp->sync_tsk) ++ kthread_stop(hp->sync_tsk); ++ ++ if (hp->grab_lock) { ++ hotplug_unlock(hp); ++ /* protected by cpu_hotplug.lock */ ++ hp->grab_lock = 0; ++ } ++ tell_sched_cpu_down_done(cpu); ++} ++ + void get_online_cpus(void) + { + might_sleep(); +@@ -102,6 +386,7 @@ + { + if (cpu_hotplug.active_writer == current) + return true; ++ + if (!mutex_trylock(&cpu_hotplug.lock)) + return false; + cpuhp_lock_acquire_tryread(); +@@ -349,13 +634,15 @@ + /* Requires cpu_add_remove_lock to be held */ + static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) + { +- int err, nr_calls = 0; ++ int mycpu, err, nr_calls = 0; + void *hcpu = (void *)(long)cpu; + unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; + struct take_cpu_down_param tcd_param = { + .mod = mod, + .hcpu = hcpu, + }; ++ cpumask_var_t cpumask; ++ cpumask_var_t cpumask_org; + + if (num_online_cpus() == 1) + return -EBUSY; +@@ -363,7 +650,34 @@ + if (!cpu_online(cpu)) + return -EINVAL; + ++ /* Move the downtaker off the unplug cpu */ ++ if (!alloc_cpumask_var(&cpumask, GFP_KERNEL)) ++ return -ENOMEM; ++ if (!alloc_cpumask_var(&cpumask_org, GFP_KERNEL)) { ++ free_cpumask_var(cpumask); ++ return -ENOMEM; ++ } ++ ++ cpumask_copy(cpumask_org, tsk_cpus_allowed(current)); ++ cpumask_andnot(cpumask, cpu_online_mask, cpumask_of(cpu)); ++ set_cpus_allowed_ptr(current, cpumask); ++ free_cpumask_var(cpumask); ++ migrate_disable(); ++ mycpu = smp_processor_id(); ++ if (mycpu == cpu) { ++ printk(KERN_ERR "Yuck! Still on unplug CPU\n!"); ++ migrate_enable(); ++ err = -EBUSY; ++ goto restore_cpus; ++ } ++ migrate_enable(); ++ + cpu_hotplug_begin(); ++ err = cpu_unplug_begin(cpu); ++ if (err) { ++ printk("cpu_unplug_begin(%d) failed\n", cpu); ++ goto out_cancel; ++ } + + err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls); + if (err) { +@@ -389,8 +703,12 @@ + #endif + synchronize_rcu(); + ++ __cpu_unplug_wait(cpu); + smpboot_park_threads(cpu); + ++ /* Notifiers are done. Don't let any more tasks pin this CPU. */ ++ cpu_unplug_sync(cpu); ++ + /* + * So now all preempt/rcu users must observe !cpu_active(). + */ +@@ -423,9 +741,14 @@ + check_for_tasks(cpu); + + out_release: ++ cpu_unplug_done(cpu); ++out_cancel: + cpu_hotplug_done(); + if (!err) + cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu); ++restore_cpus: ++ set_cpus_allowed_ptr(current, cpumask_org); ++ free_cpumask_var(cpumask_org); + return err; + } + +diff -Nur linux-3.18.12.orig/kernel/debug/kdb/kdb_io.c linux-3.18.12/kernel/debug/kdb/kdb_io.c +--- linux-3.18.12.orig/kernel/debug/kdb/kdb_io.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/debug/kdb/kdb_io.c 2015-04-26 13:32:22.431684003 -0500 +@@ -554,7 +554,6 @@ + int linecount; + int colcount; + int logging, saved_loglevel = 0; +- int saved_trap_printk; + int got_printf_lock = 0; + int retlen = 0; + int fnd, len; +@@ -565,8 +564,6 @@ + unsigned long uninitialized_var(flags); + + preempt_disable(); +- saved_trap_printk = kdb_trap_printk; +- kdb_trap_printk = 0; + + /* Serialize kdb_printf if multiple cpus try to write at once. + * But if any cpu goes recursive in kdb, just print the output, +@@ -833,7 +830,6 @@ + } else { + __release(kdb_printf_lock); + } +- kdb_trap_printk = saved_trap_printk; + preempt_enable(); + return retlen; + } +@@ -843,9 +839,11 @@ + va_list ap; + int r; + ++ kdb_trap_printk++; + va_start(ap, fmt); + r = vkdb_printf(fmt, ap); + va_end(ap); ++ kdb_trap_printk--; + + return r; + } +diff -Nur linux-3.18.12.orig/kernel/events/core.c linux-3.18.12/kernel/events/core.c +--- linux-3.18.12.orig/kernel/events/core.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/events/core.c 2015-04-26 13:32:22.431684003 -0500 +@@ -6346,6 +6346,7 @@ + + hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + hwc->hrtimer.function = perf_swevent_hrtimer; ++ hwc->hrtimer.irqsafe = 1; + + /* + * Since hrtimers have a fixed rate, we can do a static freq->period +diff -Nur linux-3.18.12.orig/kernel/events/core.c.orig linux-3.18.12/kernel/events/core.c.orig +--- linux-3.18.12.orig/kernel/events/core.c.orig 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/kernel/events/core.c.orig 2015-04-20 14:48:02.000000000 -0500 +@@ -0,0 +1,8339 @@ ++/* ++ * Performance events core code: ++ * ++ * Copyright (C) 2008 Thomas Gleixner ++ * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar ++ * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra ++ * Copyright © 2009 Paul Mackerras, IBM Corp. ++ * ++ * For licensing details see kernel-base/COPYING ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "internal.h" ++ ++#include ++ ++static struct workqueue_struct *perf_wq; ++ ++struct remote_function_call { ++ struct task_struct *p; ++ int (*func)(void *info); ++ void *info; ++ int ret; ++}; ++ ++static void remote_function(void *data) ++{ ++ struct remote_function_call *tfc = data; ++ struct task_struct *p = tfc->p; ++ ++ if (p) { ++ tfc->ret = -EAGAIN; ++ if (task_cpu(p) != smp_processor_id() || !task_curr(p)) ++ return; ++ } ++ ++ tfc->ret = tfc->func(tfc->info); ++} ++ ++/** ++ * task_function_call - call a function on the cpu on which a task runs ++ * @p: the task to evaluate ++ * @func: the function to be called ++ * @info: the function call argument ++ * ++ * Calls the function @func when the task is currently running. This might ++ * be on the current CPU, which just calls the function directly ++ * ++ * returns: @func return value, or ++ * -ESRCH - when the process isn't running ++ * -EAGAIN - when the process moved away ++ */ ++static int ++task_function_call(struct task_struct *p, int (*func) (void *info), void *info) ++{ ++ struct remote_function_call data = { ++ .p = p, ++ .func = func, ++ .info = info, ++ .ret = -ESRCH, /* No such (running) process */ ++ }; ++ ++ if (task_curr(p)) ++ smp_call_function_single(task_cpu(p), remote_function, &data, 1); ++ ++ return data.ret; ++} ++ ++/** ++ * cpu_function_call - call a function on the cpu ++ * @func: the function to be called ++ * @info: the function call argument ++ * ++ * Calls the function @func on the remote cpu. ++ * ++ * returns: @func return value or -ENXIO when the cpu is offline ++ */ ++static int cpu_function_call(int cpu, int (*func) (void *info), void *info) ++{ ++ struct remote_function_call data = { ++ .p = NULL, ++ .func = func, ++ .info = info, ++ .ret = -ENXIO, /* No such CPU */ ++ }; ++ ++ smp_call_function_single(cpu, remote_function, &data, 1); ++ ++ return data.ret; ++} ++ ++#define EVENT_OWNER_KERNEL ((void *) -1) ++ ++static bool is_kernel_event(struct perf_event *event) ++{ ++ return event->owner == EVENT_OWNER_KERNEL; ++} ++ ++#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ ++ PERF_FLAG_FD_OUTPUT |\ ++ PERF_FLAG_PID_CGROUP |\ ++ PERF_FLAG_FD_CLOEXEC) ++ ++/* ++ * branch priv levels that need permission checks ++ */ ++#define PERF_SAMPLE_BRANCH_PERM_PLM \ ++ (PERF_SAMPLE_BRANCH_KERNEL |\ ++ PERF_SAMPLE_BRANCH_HV) ++ ++enum event_type_t { ++ EVENT_FLEXIBLE = 0x1, ++ EVENT_PINNED = 0x2, ++ EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, ++}; ++ ++/* ++ * perf_sched_events : >0 events exist ++ * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu ++ */ ++struct static_key_deferred perf_sched_events __read_mostly; ++static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); ++static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); ++ ++static atomic_t nr_mmap_events __read_mostly; ++static atomic_t nr_comm_events __read_mostly; ++static atomic_t nr_task_events __read_mostly; ++static atomic_t nr_freq_events __read_mostly; ++ ++static LIST_HEAD(pmus); ++static DEFINE_MUTEX(pmus_lock); ++static struct srcu_struct pmus_srcu; ++ ++/* ++ * perf event paranoia level: ++ * -1 - not paranoid at all ++ * 0 - disallow raw tracepoint access for unpriv ++ * 1 - disallow cpu events for unpriv ++ * 2 - disallow kernel profiling for unpriv ++ */ ++int sysctl_perf_event_paranoid __read_mostly = 1; ++ ++/* Minimum for 512 kiB + 1 user control page */ ++int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ ++ ++/* ++ * max perf event sample rate ++ */ ++#define DEFAULT_MAX_SAMPLE_RATE 100000 ++#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) ++#define DEFAULT_CPU_TIME_MAX_PERCENT 25 ++ ++int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; ++ ++static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); ++static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; ++ ++static int perf_sample_allowed_ns __read_mostly = ++ DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; ++ ++void update_perf_cpu_limits(void) ++{ ++ u64 tmp = perf_sample_period_ns; ++ ++ tmp *= sysctl_perf_cpu_time_max_percent; ++ do_div(tmp, 100); ++ ACCESS_ONCE(perf_sample_allowed_ns) = tmp; ++} ++ ++static int perf_rotate_context(struct perf_cpu_context *cpuctx); ++ ++int perf_proc_update_handler(struct ctl_table *table, int write, ++ void __user *buffer, size_t *lenp, ++ loff_t *ppos) ++{ ++ int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); ++ ++ if (ret || !write) ++ return ret; ++ ++ max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); ++ perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; ++ update_perf_cpu_limits(); ++ ++ return 0; ++} ++ ++int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; ++ ++int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, ++ void __user *buffer, size_t *lenp, ++ loff_t *ppos) ++{ ++ int ret = proc_dointvec(table, write, buffer, lenp, ppos); ++ ++ if (ret || !write) ++ return ret; ++ ++ update_perf_cpu_limits(); ++ ++ return 0; ++} ++ ++/* ++ * perf samples are done in some very critical code paths (NMIs). ++ * If they take too much CPU time, the system can lock up and not ++ * get any real work done. This will drop the sample rate when ++ * we detect that events are taking too long. ++ */ ++#define NR_ACCUMULATED_SAMPLES 128 ++static DEFINE_PER_CPU(u64, running_sample_length); ++ ++static void perf_duration_warn(struct irq_work *w) ++{ ++ u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); ++ u64 avg_local_sample_len; ++ u64 local_samples_len; ++ ++ local_samples_len = __this_cpu_read(running_sample_length); ++ avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; ++ ++ printk_ratelimited(KERN_WARNING ++ "perf interrupt took too long (%lld > %lld), lowering " ++ "kernel.perf_event_max_sample_rate to %d\n", ++ avg_local_sample_len, allowed_ns >> 1, ++ sysctl_perf_event_sample_rate); ++} ++ ++static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); ++ ++void perf_sample_event_took(u64 sample_len_ns) ++{ ++ u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); ++ u64 avg_local_sample_len; ++ u64 local_samples_len; ++ ++ if (allowed_ns == 0) ++ return; ++ ++ /* decay the counter by 1 average sample */ ++ local_samples_len = __this_cpu_read(running_sample_length); ++ local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; ++ local_samples_len += sample_len_ns; ++ __this_cpu_write(running_sample_length, local_samples_len); ++ ++ /* ++ * note: this will be biased artifically low until we have ++ * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us ++ * from having to maintain a count. ++ */ ++ avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; ++ ++ if (avg_local_sample_len <= allowed_ns) ++ return; ++ ++ if (max_samples_per_tick <= 1) ++ return; ++ ++ max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); ++ sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; ++ perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; ++ ++ update_perf_cpu_limits(); ++ ++ if (!irq_work_queue(&perf_duration_work)) { ++ early_printk("perf interrupt took too long (%lld > %lld), lowering " ++ "kernel.perf_event_max_sample_rate to %d\n", ++ avg_local_sample_len, allowed_ns >> 1, ++ sysctl_perf_event_sample_rate); ++ } ++} ++ ++static atomic64_t perf_event_id; ++ ++static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, ++ enum event_type_t event_type); ++ ++static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, ++ enum event_type_t event_type, ++ struct task_struct *task); ++ ++static void update_context_time(struct perf_event_context *ctx); ++static u64 perf_event_time(struct perf_event *event); ++ ++void __weak perf_event_print_debug(void) { } ++ ++extern __weak const char *perf_pmu_name(void) ++{ ++ return "pmu"; ++} ++ ++static inline u64 perf_clock(void) ++{ ++ return local_clock(); ++} ++ ++static inline struct perf_cpu_context * ++__get_cpu_context(struct perf_event_context *ctx) ++{ ++ return this_cpu_ptr(ctx->pmu->pmu_cpu_context); ++} ++ ++static void perf_ctx_lock(struct perf_cpu_context *cpuctx, ++ struct perf_event_context *ctx) ++{ ++ raw_spin_lock(&cpuctx->ctx.lock); ++ if (ctx) ++ raw_spin_lock(&ctx->lock); ++} ++ ++static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, ++ struct perf_event_context *ctx) ++{ ++ if (ctx) ++ raw_spin_unlock(&ctx->lock); ++ raw_spin_unlock(&cpuctx->ctx.lock); ++} ++ ++#ifdef CONFIG_CGROUP_PERF ++ ++/* ++ * perf_cgroup_info keeps track of time_enabled for a cgroup. ++ * This is a per-cpu dynamically allocated data structure. ++ */ ++struct perf_cgroup_info { ++ u64 time; ++ u64 timestamp; ++}; ++ ++struct perf_cgroup { ++ struct cgroup_subsys_state css; ++ struct perf_cgroup_info __percpu *info; ++}; ++ ++/* ++ * Must ensure cgroup is pinned (css_get) before calling ++ * this function. In other words, we cannot call this function ++ * if there is no cgroup event for the current CPU context. ++ */ ++static inline struct perf_cgroup * ++perf_cgroup_from_task(struct task_struct *task) ++{ ++ return container_of(task_css(task, perf_event_cgrp_id), ++ struct perf_cgroup, css); ++} ++ ++static inline bool ++perf_cgroup_match(struct perf_event *event) ++{ ++ struct perf_event_context *ctx = event->ctx; ++ struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); ++ ++ /* @event doesn't care about cgroup */ ++ if (!event->cgrp) ++ return true; ++ ++ /* wants specific cgroup scope but @cpuctx isn't associated with any */ ++ if (!cpuctx->cgrp) ++ return false; ++ ++ /* ++ * Cgroup scoping is recursive. An event enabled for a cgroup is ++ * also enabled for all its descendant cgroups. If @cpuctx's ++ * cgroup is a descendant of @event's (the test covers identity ++ * case), it's a match. ++ */ ++ return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, ++ event->cgrp->css.cgroup); ++} ++ ++static inline void perf_detach_cgroup(struct perf_event *event) ++{ ++ css_put(&event->cgrp->css); ++ event->cgrp = NULL; ++} ++ ++static inline int is_cgroup_event(struct perf_event *event) ++{ ++ return event->cgrp != NULL; ++} ++ ++static inline u64 perf_cgroup_event_time(struct perf_event *event) ++{ ++ struct perf_cgroup_info *t; ++ ++ t = per_cpu_ptr(event->cgrp->info, event->cpu); ++ return t->time; ++} ++ ++static inline void __update_cgrp_time(struct perf_cgroup *cgrp) ++{ ++ struct perf_cgroup_info *info; ++ u64 now; ++ ++ now = perf_clock(); ++ ++ info = this_cpu_ptr(cgrp->info); ++ ++ info->time += now - info->timestamp; ++ info->timestamp = now; ++} ++ ++static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) ++{ ++ struct perf_cgroup *cgrp_out = cpuctx->cgrp; ++ if (cgrp_out) ++ __update_cgrp_time(cgrp_out); ++} ++ ++static inline void update_cgrp_time_from_event(struct perf_event *event) ++{ ++ struct perf_cgroup *cgrp; ++ ++ /* ++ * ensure we access cgroup data only when needed and ++ * when we know the cgroup is pinned (css_get) ++ */ ++ if (!is_cgroup_event(event)) ++ return; ++ ++ cgrp = perf_cgroup_from_task(current); ++ /* ++ * Do not update time when cgroup is not active ++ */ ++ if (cgrp == event->cgrp) ++ __update_cgrp_time(event->cgrp); ++} ++ ++static inline void ++perf_cgroup_set_timestamp(struct task_struct *task, ++ struct perf_event_context *ctx) ++{ ++ struct perf_cgroup *cgrp; ++ struct perf_cgroup_info *info; ++ ++ /* ++ * ctx->lock held by caller ++ * ensure we do not access cgroup data ++ * unless we have the cgroup pinned (css_get) ++ */ ++ if (!task || !ctx->nr_cgroups) ++ return; ++ ++ cgrp = perf_cgroup_from_task(task); ++ info = this_cpu_ptr(cgrp->info); ++ info->timestamp = ctx->timestamp; ++} ++ ++#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ ++#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ ++ ++/* ++ * reschedule events based on the cgroup constraint of task. ++ * ++ * mode SWOUT : schedule out everything ++ * mode SWIN : schedule in based on cgroup for next ++ */ ++void perf_cgroup_switch(struct task_struct *task, int mode) ++{ ++ struct perf_cpu_context *cpuctx; ++ struct pmu *pmu; ++ unsigned long flags; ++ ++ /* ++ * disable interrupts to avoid geting nr_cgroup ++ * changes via __perf_event_disable(). Also ++ * avoids preemption. ++ */ ++ local_irq_save(flags); ++ ++ /* ++ * we reschedule only in the presence of cgroup ++ * constrained events. ++ */ ++ rcu_read_lock(); ++ ++ list_for_each_entry_rcu(pmu, &pmus, entry) { ++ cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); ++ if (cpuctx->unique_pmu != pmu) ++ continue; /* ensure we process each cpuctx once */ ++ ++ /* ++ * perf_cgroup_events says at least one ++ * context on this CPU has cgroup events. ++ * ++ * ctx->nr_cgroups reports the number of cgroup ++ * events for a context. ++ */ ++ if (cpuctx->ctx.nr_cgroups > 0) { ++ perf_ctx_lock(cpuctx, cpuctx->task_ctx); ++ perf_pmu_disable(cpuctx->ctx.pmu); ++ ++ if (mode & PERF_CGROUP_SWOUT) { ++ cpu_ctx_sched_out(cpuctx, EVENT_ALL); ++ /* ++ * must not be done before ctxswout due ++ * to event_filter_match() in event_sched_out() ++ */ ++ cpuctx->cgrp = NULL; ++ } ++ ++ if (mode & PERF_CGROUP_SWIN) { ++ WARN_ON_ONCE(cpuctx->cgrp); ++ /* ++ * set cgrp before ctxsw in to allow ++ * event_filter_match() to not have to pass ++ * task around ++ */ ++ cpuctx->cgrp = perf_cgroup_from_task(task); ++ cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); ++ } ++ perf_pmu_enable(cpuctx->ctx.pmu); ++ perf_ctx_unlock(cpuctx, cpuctx->task_ctx); ++ } ++ } ++ ++ rcu_read_unlock(); ++ ++ local_irq_restore(flags); ++} ++ ++static inline void perf_cgroup_sched_out(struct task_struct *task, ++ struct task_struct *next) ++{ ++ struct perf_cgroup *cgrp1; ++ struct perf_cgroup *cgrp2 = NULL; ++ ++ /* ++ * we come here when we know perf_cgroup_events > 0 ++ */ ++ cgrp1 = perf_cgroup_from_task(task); ++ ++ /* ++ * next is NULL when called from perf_event_enable_on_exec() ++ * that will systematically cause a cgroup_switch() ++ */ ++ if (next) ++ cgrp2 = perf_cgroup_from_task(next); ++ ++ /* ++ * only schedule out current cgroup events if we know ++ * that we are switching to a different cgroup. Otherwise, ++ * do no touch the cgroup events. ++ */ ++ if (cgrp1 != cgrp2) ++ perf_cgroup_switch(task, PERF_CGROUP_SWOUT); ++} ++ ++static inline void perf_cgroup_sched_in(struct task_struct *prev, ++ struct task_struct *task) ++{ ++ struct perf_cgroup *cgrp1; ++ struct perf_cgroup *cgrp2 = NULL; ++ ++ /* ++ * we come here when we know perf_cgroup_events > 0 ++ */ ++ cgrp1 = perf_cgroup_from_task(task); ++ ++ /* prev can never be NULL */ ++ cgrp2 = perf_cgroup_from_task(prev); ++ ++ /* ++ * only need to schedule in cgroup events if we are changing ++ * cgroup during ctxsw. Cgroup events were not scheduled ++ * out of ctxsw out if that was not the case. ++ */ ++ if (cgrp1 != cgrp2) ++ perf_cgroup_switch(task, PERF_CGROUP_SWIN); ++} ++ ++static inline int perf_cgroup_connect(int fd, struct perf_event *event, ++ struct perf_event_attr *attr, ++ struct perf_event *group_leader) ++{ ++ struct perf_cgroup *cgrp; ++ struct cgroup_subsys_state *css; ++ struct fd f = fdget(fd); ++ int ret = 0; ++ ++ if (!f.file) ++ return -EBADF; ++ ++ css = css_tryget_online_from_dir(f.file->f_dentry, ++ &perf_event_cgrp_subsys); ++ if (IS_ERR(css)) { ++ ret = PTR_ERR(css); ++ goto out; ++ } ++ ++ cgrp = container_of(css, struct perf_cgroup, css); ++ event->cgrp = cgrp; ++ ++ /* ++ * all events in a group must monitor ++ * the same cgroup because a task belongs ++ * to only one perf cgroup at a time ++ */ ++ if (group_leader && group_leader->cgrp != cgrp) { ++ perf_detach_cgroup(event); ++ ret = -EINVAL; ++ } ++out: ++ fdput(f); ++ return ret; ++} ++ ++static inline void ++perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) ++{ ++ struct perf_cgroup_info *t; ++ t = per_cpu_ptr(event->cgrp->info, event->cpu); ++ event->shadow_ctx_time = now - t->timestamp; ++} ++ ++static inline void ++perf_cgroup_defer_enabled(struct perf_event *event) ++{ ++ /* ++ * when the current task's perf cgroup does not match ++ * the event's, we need to remember to call the ++ * perf_mark_enable() function the first time a task with ++ * a matching perf cgroup is scheduled in. ++ */ ++ if (is_cgroup_event(event) && !perf_cgroup_match(event)) ++ event->cgrp_defer_enabled = 1; ++} ++ ++static inline void ++perf_cgroup_mark_enabled(struct perf_event *event, ++ struct perf_event_context *ctx) ++{ ++ struct perf_event *sub; ++ u64 tstamp = perf_event_time(event); ++ ++ if (!event->cgrp_defer_enabled) ++ return; ++ ++ event->cgrp_defer_enabled = 0; ++ ++ event->tstamp_enabled = tstamp - event->total_time_enabled; ++ list_for_each_entry(sub, &event->sibling_list, group_entry) { ++ if (sub->state >= PERF_EVENT_STATE_INACTIVE) { ++ sub->tstamp_enabled = tstamp - sub->total_time_enabled; ++ sub->cgrp_defer_enabled = 0; ++ } ++ } ++} ++#else /* !CONFIG_CGROUP_PERF */ ++ ++static inline bool ++perf_cgroup_match(struct perf_event *event) ++{ ++ return true; ++} ++ ++static inline void perf_detach_cgroup(struct perf_event *event) ++{} ++ ++static inline int is_cgroup_event(struct perf_event *event) ++{ ++ return 0; ++} ++ ++static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) ++{ ++ return 0; ++} ++ ++static inline void update_cgrp_time_from_event(struct perf_event *event) ++{ ++} ++ ++static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) ++{ ++} ++ ++static inline void perf_cgroup_sched_out(struct task_struct *task, ++ struct task_struct *next) ++{ ++} ++ ++static inline void perf_cgroup_sched_in(struct task_struct *prev, ++ struct task_struct *task) ++{ ++} ++ ++static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, ++ struct perf_event_attr *attr, ++ struct perf_event *group_leader) ++{ ++ return -EINVAL; ++} ++ ++static inline void ++perf_cgroup_set_timestamp(struct task_struct *task, ++ struct perf_event_context *ctx) ++{ ++} ++ ++void ++perf_cgroup_switch(struct task_struct *task, struct task_struct *next) ++{ ++} ++ ++static inline void ++perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) ++{ ++} ++ ++static inline u64 perf_cgroup_event_time(struct perf_event *event) ++{ ++ return 0; ++} ++ ++static inline void ++perf_cgroup_defer_enabled(struct perf_event *event) ++{ ++} ++ ++static inline void ++perf_cgroup_mark_enabled(struct perf_event *event, ++ struct perf_event_context *ctx) ++{ ++} ++#endif ++ ++/* ++ * set default to be dependent on timer tick just ++ * like original code ++ */ ++#define PERF_CPU_HRTIMER (1000 / HZ) ++/* ++ * function must be called with interrupts disbled ++ */ ++static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) ++{ ++ struct perf_cpu_context *cpuctx; ++ enum hrtimer_restart ret = HRTIMER_NORESTART; ++ int rotations = 0; ++ ++ WARN_ON(!irqs_disabled()); ++ ++ cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); ++ ++ rotations = perf_rotate_context(cpuctx); ++ ++ /* ++ * arm timer if needed ++ */ ++ if (rotations) { ++ hrtimer_forward_now(hr, cpuctx->hrtimer_interval); ++ ret = HRTIMER_RESTART; ++ } ++ ++ return ret; ++} ++ ++/* CPU is going down */ ++void perf_cpu_hrtimer_cancel(int cpu) ++{ ++ struct perf_cpu_context *cpuctx; ++ struct pmu *pmu; ++ unsigned long flags; ++ ++ if (WARN_ON(cpu != smp_processor_id())) ++ return; ++ ++ local_irq_save(flags); ++ ++ rcu_read_lock(); ++ ++ list_for_each_entry_rcu(pmu, &pmus, entry) { ++ cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); ++ ++ if (pmu->task_ctx_nr == perf_sw_context) ++ continue; ++ ++ hrtimer_cancel(&cpuctx->hrtimer); ++ } ++ ++ rcu_read_unlock(); ++ ++ local_irq_restore(flags); ++} ++ ++static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) ++{ ++ struct hrtimer *hr = &cpuctx->hrtimer; ++ struct pmu *pmu = cpuctx->ctx.pmu; ++ int timer; ++ ++ /* no multiplexing needed for SW PMU */ ++ if (pmu->task_ctx_nr == perf_sw_context) ++ return; ++ ++ /* ++ * check default is sane, if not set then force to ++ * default interval (1/tick) ++ */ ++ timer = pmu->hrtimer_interval_ms; ++ if (timer < 1) ++ timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; ++ ++ cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); ++ ++ hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); ++ hr->function = perf_cpu_hrtimer_handler; ++} ++ ++static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) ++{ ++ struct hrtimer *hr = &cpuctx->hrtimer; ++ struct pmu *pmu = cpuctx->ctx.pmu; ++ ++ /* not for SW PMU */ ++ if (pmu->task_ctx_nr == perf_sw_context) ++ return; ++ ++ if (hrtimer_active(hr)) ++ return; ++ ++ if (!hrtimer_callback_running(hr)) ++ __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, ++ 0, HRTIMER_MODE_REL_PINNED, 0); ++} ++ ++void perf_pmu_disable(struct pmu *pmu) ++{ ++ int *count = this_cpu_ptr(pmu->pmu_disable_count); ++ if (!(*count)++) ++ pmu->pmu_disable(pmu); ++} ++ ++void perf_pmu_enable(struct pmu *pmu) ++{ ++ int *count = this_cpu_ptr(pmu->pmu_disable_count); ++ if (!--(*count)) ++ pmu->pmu_enable(pmu); ++} ++ ++static DEFINE_PER_CPU(struct list_head, rotation_list); ++ ++/* ++ * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized ++ * because they're strictly cpu affine and rotate_start is called with IRQs ++ * disabled, while rotate_context is called from IRQ context. ++ */ ++static void perf_pmu_rotate_start(struct pmu *pmu) ++{ ++ struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); ++ struct list_head *head = this_cpu_ptr(&rotation_list); ++ ++ WARN_ON(!irqs_disabled()); ++ ++ if (list_empty(&cpuctx->rotation_list)) ++ list_add(&cpuctx->rotation_list, head); ++} ++ ++static void get_ctx(struct perf_event_context *ctx) ++{ ++ WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); ++} ++ ++static void put_ctx(struct perf_event_context *ctx) ++{ ++ if (atomic_dec_and_test(&ctx->refcount)) { ++ if (ctx->parent_ctx) ++ put_ctx(ctx->parent_ctx); ++ if (ctx->task) ++ put_task_struct(ctx->task); ++ kfree_rcu(ctx, rcu_head); ++ } ++} ++ ++/* ++ * This must be done under the ctx->lock, such as to serialize against ++ * context_equiv(), therefore we cannot call put_ctx() since that might end up ++ * calling scheduler related locks and ctx->lock nests inside those. ++ */ ++static __must_check struct perf_event_context * ++unclone_ctx(struct perf_event_context *ctx) ++{ ++ struct perf_event_context *parent_ctx = ctx->parent_ctx; ++ ++ lockdep_assert_held(&ctx->lock); ++ ++ if (parent_ctx) ++ ctx->parent_ctx = NULL; ++ ctx->generation++; ++ ++ return parent_ctx; ++} ++ ++static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) ++{ ++ /* ++ * only top level events have the pid namespace they were created in ++ */ ++ if (event->parent) ++ event = event->parent; ++ ++ return task_tgid_nr_ns(p, event->ns); ++} ++ ++static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) ++{ ++ /* ++ * only top level events have the pid namespace they were created in ++ */ ++ if (event->parent) ++ event = event->parent; ++ ++ return task_pid_nr_ns(p, event->ns); ++} ++ ++/* ++ * If we inherit events we want to return the parent event id ++ * to userspace. ++ */ ++static u64 primary_event_id(struct perf_event *event) ++{ ++ u64 id = event->id; ++ ++ if (event->parent) ++ id = event->parent->id; ++ ++ return id; ++} ++ ++/* ++ * Get the perf_event_context for a task and lock it. ++ * This has to cope with with the fact that until it is locked, ++ * the context could get moved to another task. ++ */ ++static struct perf_event_context * ++perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) ++{ ++ struct perf_event_context *ctx; ++ ++retry: ++ /* ++ * One of the few rules of preemptible RCU is that one cannot do ++ * rcu_read_unlock() while holding a scheduler (or nested) lock when ++ * part of the read side critical section was preemptible -- see ++ * rcu_read_unlock_special(). ++ * ++ * Since ctx->lock nests under rq->lock we must ensure the entire read ++ * side critical section is non-preemptible. ++ */ ++ preempt_disable(); ++ rcu_read_lock(); ++ ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); ++ if (ctx) { ++ /* ++ * If this context is a clone of another, it might ++ * get swapped for another underneath us by ++ * perf_event_task_sched_out, though the ++ * rcu_read_lock() protects us from any context ++ * getting freed. Lock the context and check if it ++ * got swapped before we could get the lock, and retry ++ * if so. If we locked the right context, then it ++ * can't get swapped on us any more. ++ */ ++ raw_spin_lock_irqsave(&ctx->lock, *flags); ++ if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { ++ raw_spin_unlock_irqrestore(&ctx->lock, *flags); ++ rcu_read_unlock(); ++ preempt_enable(); ++ goto retry; ++ } ++ ++ if (!atomic_inc_not_zero(&ctx->refcount)) { ++ raw_spin_unlock_irqrestore(&ctx->lock, *flags); ++ ctx = NULL; ++ } ++ } ++ rcu_read_unlock(); ++ preempt_enable(); ++ return ctx; ++} ++ ++/* ++ * Get the context for a task and increment its pin_count so it ++ * can't get swapped to another task. This also increments its ++ * reference count so that the context can't get freed. ++ */ ++static struct perf_event_context * ++perf_pin_task_context(struct task_struct *task, int ctxn) ++{ ++ struct perf_event_context *ctx; ++ unsigned long flags; ++ ++ ctx = perf_lock_task_context(task, ctxn, &flags); ++ if (ctx) { ++ ++ctx->pin_count; ++ raw_spin_unlock_irqrestore(&ctx->lock, flags); ++ } ++ return ctx; ++} ++ ++static void perf_unpin_context(struct perf_event_context *ctx) ++{ ++ unsigned long flags; ++ ++ raw_spin_lock_irqsave(&ctx->lock, flags); ++ --ctx->pin_count; ++ raw_spin_unlock_irqrestore(&ctx->lock, flags); ++} ++ ++/* ++ * Update the record of the current time in a context. ++ */ ++static void update_context_time(struct perf_event_context *ctx) ++{ ++ u64 now = perf_clock(); ++ ++ ctx->time += now - ctx->timestamp; ++ ctx->timestamp = now; ++} ++ ++static u64 perf_event_time(struct perf_event *event) ++{ ++ struct perf_event_context *ctx = event->ctx; ++ ++ if (is_cgroup_event(event)) ++ return perf_cgroup_event_time(event); ++ ++ return ctx ? ctx->time : 0; ++} ++ ++/* ++ * Update the total_time_enabled and total_time_running fields for a event. ++ * The caller of this function needs to hold the ctx->lock. ++ */ ++static void update_event_times(struct perf_event *event) ++{ ++ struct perf_event_context *ctx = event->ctx; ++ u64 run_end; ++ ++ if (event->state < PERF_EVENT_STATE_INACTIVE || ++ event->group_leader->state < PERF_EVENT_STATE_INACTIVE) ++ return; ++ /* ++ * in cgroup mode, time_enabled represents ++ * the time the event was enabled AND active ++ * tasks were in the monitored cgroup. This is ++ * independent of the activity of the context as ++ * there may be a mix of cgroup and non-cgroup events. ++ * ++ * That is why we treat cgroup events differently ++ * here. ++ */ ++ if (is_cgroup_event(event)) ++ run_end = perf_cgroup_event_time(event); ++ else if (ctx->is_active) ++ run_end = ctx->time; ++ else ++ run_end = event->tstamp_stopped; ++ ++ event->total_time_enabled = run_end - event->tstamp_enabled; ++ ++ if (event->state == PERF_EVENT_STATE_INACTIVE) ++ run_end = event->tstamp_stopped; ++ else ++ run_end = perf_event_time(event); ++ ++ event->total_time_running = run_end - event->tstamp_running; ++ ++} ++ ++/* ++ * Update total_time_enabled and total_time_running for all events in a group. ++ */ ++static void update_group_times(struct perf_event *leader) ++{ ++ struct perf_event *event; ++ ++ update_event_times(leader); ++ list_for_each_entry(event, &leader->sibling_list, group_entry) ++ update_event_times(event); ++} ++ ++static struct list_head * ++ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) ++{ ++ if (event->attr.pinned) ++ return &ctx->pinned_groups; ++ else ++ return &ctx->flexible_groups; ++} ++ ++/* ++ * Add a event from the lists for its context. ++ * Must be called with ctx->mutex and ctx->lock held. ++ */ ++static void ++list_add_event(struct perf_event *event, struct perf_event_context *ctx) ++{ ++ WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); ++ event->attach_state |= PERF_ATTACH_CONTEXT; ++ ++ /* ++ * If we're a stand alone event or group leader, we go to the context ++ * list, group events are kept attached to the group so that ++ * perf_group_detach can, at all times, locate all siblings. ++ */ ++ if (event->group_leader == event) { ++ struct list_head *list; ++ ++ if (is_software_event(event)) ++ event->group_flags |= PERF_GROUP_SOFTWARE; ++ ++ list = ctx_group_list(event, ctx); ++ list_add_tail(&event->group_entry, list); ++ } ++ ++ if (is_cgroup_event(event)) ++ ctx->nr_cgroups++; ++ ++ if (has_branch_stack(event)) ++ ctx->nr_branch_stack++; ++ ++ list_add_rcu(&event->event_entry, &ctx->event_list); ++ if (!ctx->nr_events) ++ perf_pmu_rotate_start(ctx->pmu); ++ ctx->nr_events++; ++ if (event->attr.inherit_stat) ++ ctx->nr_stat++; ++ ++ ctx->generation++; ++} ++ ++/* ++ * Initialize event state based on the perf_event_attr::disabled. ++ */ ++static inline void perf_event__state_init(struct perf_event *event) ++{ ++ event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : ++ PERF_EVENT_STATE_INACTIVE; ++} ++ ++/* ++ * Called at perf_event creation and when events are attached/detached from a ++ * group. ++ */ ++static void perf_event__read_size(struct perf_event *event) ++{ ++ int entry = sizeof(u64); /* value */ ++ int size = 0; ++ int nr = 1; ++ ++ if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) ++ size += sizeof(u64); ++ ++ if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) ++ size += sizeof(u64); ++ ++ if (event->attr.read_format & PERF_FORMAT_ID) ++ entry += sizeof(u64); ++ ++ if (event->attr.read_format & PERF_FORMAT_GROUP) { ++ nr += event->group_leader->nr_siblings; ++ size += sizeof(u64); ++ } ++ ++ size += entry * nr; ++ event->read_size = size; ++} ++ ++static void perf_event__header_size(struct perf_event *event) ++{ ++ struct perf_sample_data *data; ++ u64 sample_type = event->attr.sample_type; ++ u16 size = 0; ++ ++ perf_event__read_size(event); ++ ++ if (sample_type & PERF_SAMPLE_IP) ++ size += sizeof(data->ip); ++ ++ if (sample_type & PERF_SAMPLE_ADDR) ++ size += sizeof(data->addr); ++ ++ if (sample_type & PERF_SAMPLE_PERIOD) ++ size += sizeof(data->period); ++ ++ if (sample_type & PERF_SAMPLE_WEIGHT) ++ size += sizeof(data->weight); ++ ++ if (sample_type & PERF_SAMPLE_READ) ++ size += event->read_size; ++ ++ if (sample_type & PERF_SAMPLE_DATA_SRC) ++ size += sizeof(data->data_src.val); ++ ++ if (sample_type & PERF_SAMPLE_TRANSACTION) ++ size += sizeof(data->txn); ++ ++ event->header_size = size; ++} ++ ++static void perf_event__id_header_size(struct perf_event *event) ++{ ++ struct perf_sample_data *data; ++ u64 sample_type = event->attr.sample_type; ++ u16 size = 0; ++ ++ if (sample_type & PERF_SAMPLE_TID) ++ size += sizeof(data->tid_entry); ++ ++ if (sample_type & PERF_SAMPLE_TIME) ++ size += sizeof(data->time); ++ ++ if (sample_type & PERF_SAMPLE_IDENTIFIER) ++ size += sizeof(data->id); ++ ++ if (sample_type & PERF_SAMPLE_ID) ++ size += sizeof(data->id); ++ ++ if (sample_type & PERF_SAMPLE_STREAM_ID) ++ size += sizeof(data->stream_id); ++ ++ if (sample_type & PERF_SAMPLE_CPU) ++ size += sizeof(data->cpu_entry); ++ ++ event->id_header_size = size; ++} ++ ++static void perf_group_attach(struct perf_event *event) ++{ ++ struct perf_event *group_leader = event->group_leader, *pos; ++ ++ /* ++ * We can have double attach due to group movement in perf_event_open. ++ */ ++ if (event->attach_state & PERF_ATTACH_GROUP) ++ return; ++ ++ event->attach_state |= PERF_ATTACH_GROUP; ++ ++ if (group_leader == event) ++ return; ++ ++ if (group_leader->group_flags & PERF_GROUP_SOFTWARE && ++ !is_software_event(event)) ++ group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; ++ ++ list_add_tail(&event->group_entry, &group_leader->sibling_list); ++ group_leader->nr_siblings++; ++ ++ perf_event__header_size(group_leader); ++ ++ list_for_each_entry(pos, &group_leader->sibling_list, group_entry) ++ perf_event__header_size(pos); ++} ++ ++/* ++ * Remove a event from the lists for its context. ++ * Must be called with ctx->mutex and ctx->lock held. ++ */ ++static void ++list_del_event(struct perf_event *event, struct perf_event_context *ctx) ++{ ++ struct perf_cpu_context *cpuctx; ++ /* ++ * We can have double detach due to exit/hot-unplug + close. ++ */ ++ if (!(event->attach_state & PERF_ATTACH_CONTEXT)) ++ return; ++ ++ event->attach_state &= ~PERF_ATTACH_CONTEXT; ++ ++ if (is_cgroup_event(event)) { ++ ctx->nr_cgroups--; ++ cpuctx = __get_cpu_context(ctx); ++ /* ++ * if there are no more cgroup events ++ * then cler cgrp to avoid stale pointer ++ * in update_cgrp_time_from_cpuctx() ++ */ ++ if (!ctx->nr_cgroups) ++ cpuctx->cgrp = NULL; ++ } ++ ++ if (has_branch_stack(event)) ++ ctx->nr_branch_stack--; ++ ++ ctx->nr_events--; ++ if (event->attr.inherit_stat) ++ ctx->nr_stat--; ++ ++ list_del_rcu(&event->event_entry); ++ ++ if (event->group_leader == event) ++ list_del_init(&event->group_entry); ++ ++ update_group_times(event); ++ ++ /* ++ * If event was in error state, then keep it ++ * that way, otherwise bogus counts will be ++ * returned on read(). The only way to get out ++ * of error state is by explicit re-enabling ++ * of the event ++ */ ++ if (event->state > PERF_EVENT_STATE_OFF) ++ event->state = PERF_EVENT_STATE_OFF; ++ ++ ctx->generation++; ++} ++ ++static void perf_group_detach(struct perf_event *event) ++{ ++ struct perf_event *sibling, *tmp; ++ struct list_head *list = NULL; ++ ++ /* ++ * We can have double detach due to exit/hot-unplug + close. ++ */ ++ if (!(event->attach_state & PERF_ATTACH_GROUP)) ++ return; ++ ++ event->attach_state &= ~PERF_ATTACH_GROUP; ++ ++ /* ++ * If this is a sibling, remove it from its group. ++ */ ++ if (event->group_leader != event) { ++ list_del_init(&event->group_entry); ++ event->group_leader->nr_siblings--; ++ goto out; ++ } ++ ++ if (!list_empty(&event->group_entry)) ++ list = &event->group_entry; ++ ++ /* ++ * If this was a group event with sibling events then ++ * upgrade the siblings to singleton events by adding them ++ * to whatever list we are on. ++ */ ++ list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { ++ if (list) ++ list_move_tail(&sibling->group_entry, list); ++ sibling->group_leader = sibling; ++ ++ /* Inherit group flags from the previous leader */ ++ sibling->group_flags = event->group_flags; ++ } ++ ++out: ++ perf_event__header_size(event->group_leader); ++ ++ list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) ++ perf_event__header_size(tmp); ++} ++ ++/* ++ * User event without the task. ++ */ ++static bool is_orphaned_event(struct perf_event *event) ++{ ++ return event && !is_kernel_event(event) && !event->owner; ++} ++ ++/* ++ * Event has a parent but parent's task finished and it's ++ * alive only because of children holding refference. ++ */ ++static bool is_orphaned_child(struct perf_event *event) ++{ ++ return is_orphaned_event(event->parent); ++} ++ ++static void orphans_remove_work(struct work_struct *work); ++ ++static void schedule_orphans_remove(struct perf_event_context *ctx) ++{ ++ if (!ctx->task || ctx->orphans_remove_sched || !perf_wq) ++ return; ++ ++ if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) { ++ get_ctx(ctx); ++ ctx->orphans_remove_sched = true; ++ } ++} ++ ++static int __init perf_workqueue_init(void) ++{ ++ perf_wq = create_singlethread_workqueue("perf"); ++ WARN(!perf_wq, "failed to create perf workqueue\n"); ++ return perf_wq ? 0 : -1; ++} ++ ++core_initcall(perf_workqueue_init); ++ ++static inline int ++event_filter_match(struct perf_event *event) ++{ ++ return (event->cpu == -1 || event->cpu == smp_processor_id()) ++ && perf_cgroup_match(event); ++} ++ ++static void ++event_sched_out(struct perf_event *event, ++ struct perf_cpu_context *cpuctx, ++ struct perf_event_context *ctx) ++{ ++ u64 tstamp = perf_event_time(event); ++ u64 delta; ++ /* ++ * An event which could not be activated because of ++ * filter mismatch still needs to have its timings ++ * maintained, otherwise bogus information is return ++ * via read() for time_enabled, time_running: ++ */ ++ if (event->state == PERF_EVENT_STATE_INACTIVE ++ && !event_filter_match(event)) { ++ delta = tstamp - event->tstamp_stopped; ++ event->tstamp_running += delta; ++ event->tstamp_stopped = tstamp; ++ } ++ ++ if (event->state != PERF_EVENT_STATE_ACTIVE) ++ return; ++ ++ perf_pmu_disable(event->pmu); ++ ++ event->state = PERF_EVENT_STATE_INACTIVE; ++ if (event->pending_disable) { ++ event->pending_disable = 0; ++ event->state = PERF_EVENT_STATE_OFF; ++ } ++ event->tstamp_stopped = tstamp; ++ event->pmu->del(event, 0); ++ event->oncpu = -1; ++ ++ if (!is_software_event(event)) ++ cpuctx->active_oncpu--; ++ ctx->nr_active--; ++ if (event->attr.freq && event->attr.sample_freq) ++ ctx->nr_freq--; ++ if (event->attr.exclusive || !cpuctx->active_oncpu) ++ cpuctx->exclusive = 0; ++ ++ if (is_orphaned_child(event)) ++ schedule_orphans_remove(ctx); ++ ++ perf_pmu_enable(event->pmu); ++} ++ ++static void ++group_sched_out(struct perf_event *group_event, ++ struct perf_cpu_context *cpuctx, ++ struct perf_event_context *ctx) ++{ ++ struct perf_event *event; ++ int state = group_event->state; ++ ++ event_sched_out(group_event, cpuctx, ctx); ++ ++ /* ++ * Schedule out siblings (if any): ++ */ ++ list_for_each_entry(event, &group_event->sibling_list, group_entry) ++ event_sched_out(event, cpuctx, ctx); ++ ++ if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) ++ cpuctx->exclusive = 0; ++} ++ ++struct remove_event { ++ struct perf_event *event; ++ bool detach_group; ++}; ++ ++/* ++ * Cross CPU call to remove a performance event ++ * ++ * We disable the event on the hardware level first. After that we ++ * remove it from the context list. ++ */ ++static int __perf_remove_from_context(void *info) ++{ ++ struct remove_event *re = info; ++ struct perf_event *event = re->event; ++ struct perf_event_context *ctx = event->ctx; ++ struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); ++ ++ raw_spin_lock(&ctx->lock); ++ event_sched_out(event, cpuctx, ctx); ++ if (re->detach_group) ++ perf_group_detach(event); ++ list_del_event(event, ctx); ++ if (!ctx->nr_events && cpuctx->task_ctx == ctx) { ++ ctx->is_active = 0; ++ cpuctx->task_ctx = NULL; ++ } ++ raw_spin_unlock(&ctx->lock); ++ ++ return 0; ++} ++ ++ ++/* ++ * Remove the event from a task's (or a CPU's) list of events. ++ * ++ * CPU events are removed with a smp call. For task events we only ++ * call when the task is on a CPU. ++ * ++ * If event->ctx is a cloned context, callers must make sure that ++ * every task struct that event->ctx->task could possibly point to ++ * remains valid. This is OK when called from perf_release since ++ * that only calls us on the top-level context, which can't be a clone. ++ * When called from perf_event_exit_task, it's OK because the ++ * context has been detached from its task. ++ */ ++static void perf_remove_from_context(struct perf_event *event, bool detach_group) ++{ ++ struct perf_event_context *ctx = event->ctx; ++ struct task_struct *task = ctx->task; ++ struct remove_event re = { ++ .event = event, ++ .detach_group = detach_group, ++ }; ++ ++ lockdep_assert_held(&ctx->mutex); ++ ++ if (!task) { ++ /* ++ * Per cpu events are removed via an smp call. The removal can ++ * fail if the CPU is currently offline, but in that case we ++ * already called __perf_remove_from_context from ++ * perf_event_exit_cpu. ++ */ ++ cpu_function_call(event->cpu, __perf_remove_from_context, &re); ++ return; ++ } ++ ++retry: ++ if (!task_function_call(task, __perf_remove_from_context, &re)) ++ return; ++ ++ raw_spin_lock_irq(&ctx->lock); ++ /* ++ * If we failed to find a running task, but find the context active now ++ * that we've acquired the ctx->lock, retry. ++ */ ++ if (ctx->is_active) { ++ raw_spin_unlock_irq(&ctx->lock); ++ /* ++ * Reload the task pointer, it might have been changed by ++ * a concurrent perf_event_context_sched_out(). ++ */ ++ task = ctx->task; ++ goto retry; ++ } ++ ++ /* ++ * Since the task isn't running, its safe to remove the event, us ++ * holding the ctx->lock ensures the task won't get scheduled in. ++ */ ++ if (detach_group) ++ perf_group_detach(event); ++ list_del_event(event, ctx); ++ raw_spin_unlock_irq(&ctx->lock); ++} ++ ++/* ++ * Cross CPU call to disable a performance event ++ */ ++int __perf_event_disable(void *info) ++{ ++ struct perf_event *event = info; ++ struct perf_event_context *ctx = event->ctx; ++ struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); ++ ++ /* ++ * If this is a per-task event, need to check whether this ++ * event's task is the current task on this cpu. ++ * ++ * Can trigger due to concurrent perf_event_context_sched_out() ++ * flipping contexts around. ++ */ ++ if (ctx->task && cpuctx->task_ctx != ctx) ++ return -EINVAL; ++ ++ raw_spin_lock(&ctx->lock); ++ ++ /* ++ * If the event is on, turn it off. ++ * If it is in error state, leave it in error state. ++ */ ++ if (event->state >= PERF_EVENT_STATE_INACTIVE) { ++ update_context_time(ctx); ++ update_cgrp_time_from_event(event); ++ update_group_times(event); ++ if (event == event->group_leader) ++ group_sched_out(event, cpuctx, ctx); ++ else ++ event_sched_out(event, cpuctx, ctx); ++ event->state = PERF_EVENT_STATE_OFF; ++ } ++ ++ raw_spin_unlock(&ctx->lock); ++ ++ return 0; ++} ++ ++/* ++ * Disable a event. ++ * ++ * If event->ctx is a cloned context, callers must make sure that ++ * every task struct that event->ctx->task could possibly point to ++ * remains valid. This condition is satisifed when called through ++ * perf_event_for_each_child or perf_event_for_each because they ++ * hold the top-level event's child_mutex, so any descendant that ++ * goes to exit will block in sync_child_event. ++ * When called from perf_pending_event it's OK because event->ctx ++ * is the current context on this CPU and preemption is disabled, ++ * hence we can't get into perf_event_task_sched_out for this context. ++ */ ++void perf_event_disable(struct perf_event *event) ++{ ++ struct perf_event_context *ctx = event->ctx; ++ struct task_struct *task = ctx->task; ++ ++ if (!task) { ++ /* ++ * Disable the event on the cpu that it's on ++ */ ++ cpu_function_call(event->cpu, __perf_event_disable, event); ++ return; ++ } ++ ++retry: ++ if (!task_function_call(task, __perf_event_disable, event)) ++ return; ++ ++ raw_spin_lock_irq(&ctx->lock); ++ /* ++ * If the event is still active, we need to retry the cross-call. ++ */ ++ if (event->state == PERF_EVENT_STATE_ACTIVE) { ++ raw_spin_unlock_irq(&ctx->lock); ++ /* ++ * Reload the task pointer, it might have been changed by ++ * a concurrent perf_event_context_sched_out(). ++ */ ++ task = ctx->task; ++ goto retry; ++ } ++ ++ /* ++ * Since we have the lock this context can't be scheduled ++ * in, so we can change the state safely. ++ */ ++ if (event->state == PERF_EVENT_STATE_INACTIVE) { ++ update_group_times(event); ++ event->state = PERF_EVENT_STATE_OFF; ++ } ++ raw_spin_unlock_irq(&ctx->lock); ++} ++EXPORT_SYMBOL_GPL(perf_event_disable); ++ ++static void perf_set_shadow_time(struct perf_event *event, ++ struct perf_event_context *ctx, ++ u64 tstamp) ++{ ++ /* ++ * use the correct time source for the time snapshot ++ * ++ * We could get by without this by leveraging the ++ * fact that to get to this function, the caller ++ * has most likely already called update_context_time() ++ * and update_cgrp_time_xx() and thus both timestamp ++ * are identical (or very close). Given that tstamp is, ++ * already adjusted for cgroup, we could say that: ++ * tstamp - ctx->timestamp ++ * is equivalent to ++ * tstamp - cgrp->timestamp. ++ * ++ * Then, in perf_output_read(), the calculation would ++ * work with no changes because: ++ * - event is guaranteed scheduled in ++ * - no scheduled out in between ++ * - thus the timestamp would be the same ++ * ++ * But this is a bit hairy. ++ * ++ * So instead, we have an explicit cgroup call to remain ++ * within the time time source all along. We believe it ++ * is cleaner and simpler to understand. ++ */ ++ if (is_cgroup_event(event)) ++ perf_cgroup_set_shadow_time(event, tstamp); ++ else ++ event->shadow_ctx_time = tstamp - ctx->timestamp; ++} ++ ++#define MAX_INTERRUPTS (~0ULL) ++ ++static void perf_log_throttle(struct perf_event *event, int enable); ++ ++static int ++event_sched_in(struct perf_event *event, ++ struct perf_cpu_context *cpuctx, ++ struct perf_event_context *ctx) ++{ ++ u64 tstamp = perf_event_time(event); ++ int ret = 0; ++ ++ lockdep_assert_held(&ctx->lock); ++ ++ if (event->state <= PERF_EVENT_STATE_OFF) ++ return 0; ++ ++ event->state = PERF_EVENT_STATE_ACTIVE; ++ event->oncpu = smp_processor_id(); ++ ++ /* ++ * Unthrottle events, since we scheduled we might have missed several ++ * ticks already, also for a heavily scheduling task there is little ++ * guarantee it'll get a tick in a timely manner. ++ */ ++ if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { ++ perf_log_throttle(event, 1); ++ event->hw.interrupts = 0; ++ } ++ ++ /* ++ * The new state must be visible before we turn it on in the hardware: ++ */ ++ smp_wmb(); ++ ++ perf_pmu_disable(event->pmu); ++ ++ if (event->pmu->add(event, PERF_EF_START)) { ++ event->state = PERF_EVENT_STATE_INACTIVE; ++ event->oncpu = -1; ++ ret = -EAGAIN; ++ goto out; ++ } ++ ++ event->tstamp_running += tstamp - event->tstamp_stopped; ++ ++ perf_set_shadow_time(event, ctx, tstamp); ++ ++ if (!is_software_event(event)) ++ cpuctx->active_oncpu++; ++ ctx->nr_active++; ++ if (event->attr.freq && event->attr.sample_freq) ++ ctx->nr_freq++; ++ ++ if (event->attr.exclusive) ++ cpuctx->exclusive = 1; ++ ++ if (is_orphaned_child(event)) ++ schedule_orphans_remove(ctx); ++ ++out: ++ perf_pmu_enable(event->pmu); ++ ++ return ret; ++} ++ ++static int ++group_sched_in(struct perf_event *group_event, ++ struct perf_cpu_context *cpuctx, ++ struct perf_event_context *ctx) ++{ ++ struct perf_event *event, *partial_group = NULL; ++ struct pmu *pmu = ctx->pmu; ++ u64 now = ctx->time; ++ bool simulate = false; ++ ++ if (group_event->state == PERF_EVENT_STATE_OFF) ++ return 0; ++ ++ pmu->start_txn(pmu); ++ ++ if (event_sched_in(group_event, cpuctx, ctx)) { ++ pmu->cancel_txn(pmu); ++ perf_cpu_hrtimer_restart(cpuctx); ++ return -EAGAIN; ++ } ++ ++ /* ++ * Schedule in siblings as one group (if any): ++ */ ++ list_for_each_entry(event, &group_event->sibling_list, group_entry) { ++ if (event_sched_in(event, cpuctx, ctx)) { ++ partial_group = event; ++ goto group_error; ++ } ++ } ++ ++ if (!pmu->commit_txn(pmu)) ++ return 0; ++ ++group_error: ++ /* ++ * Groups can be scheduled in as one unit only, so undo any ++ * partial group before returning: ++ * The events up to the failed event are scheduled out normally, ++ * tstamp_stopped will be updated. ++ * ++ * The failed events and the remaining siblings need to have ++ * their timings updated as if they had gone thru event_sched_in() ++ * and event_sched_out(). This is required to get consistent timings ++ * across the group. This also takes care of the case where the group ++ * could never be scheduled by ensuring tstamp_stopped is set to mark ++ * the time the event was actually stopped, such that time delta ++ * calculation in update_event_times() is correct. ++ */ ++ list_for_each_entry(event, &group_event->sibling_list, group_entry) { ++ if (event == partial_group) ++ simulate = true; ++ ++ if (simulate) { ++ event->tstamp_running += now - event->tstamp_stopped; ++ event->tstamp_stopped = now; ++ } else { ++ event_sched_out(event, cpuctx, ctx); ++ } ++ } ++ event_sched_out(group_event, cpuctx, ctx); ++ ++ pmu->cancel_txn(pmu); ++ ++ perf_cpu_hrtimer_restart(cpuctx); ++ ++ return -EAGAIN; ++} ++ ++/* ++ * Work out whether we can put this event group on the CPU now. ++ */ ++static int group_can_go_on(struct perf_event *event, ++ struct perf_cpu_context *cpuctx, ++ int can_add_hw) ++{ ++ /* ++ * Groups consisting entirely of software events can always go on. ++ */ ++ if (event->group_flags & PERF_GROUP_SOFTWARE) ++ return 1; ++ /* ++ * If an exclusive group is already on, no other hardware ++ * events can go on. ++ */ ++ if (cpuctx->exclusive) ++ return 0; ++ /* ++ * If this group is exclusive and there are already ++ * events on the CPU, it can't go on. ++ */ ++ if (event->attr.exclusive && cpuctx->active_oncpu) ++ return 0; ++ /* ++ * Otherwise, try to add it if all previous groups were able ++ * to go on. ++ */ ++ return can_add_hw; ++} ++ ++static void add_event_to_ctx(struct perf_event *event, ++ struct perf_event_context *ctx) ++{ ++ u64 tstamp = perf_event_time(event); ++ ++ list_add_event(event, ctx); ++ perf_group_attach(event); ++ event->tstamp_enabled = tstamp; ++ event->tstamp_running = tstamp; ++ event->tstamp_stopped = tstamp; ++} ++ ++static void task_ctx_sched_out(struct perf_event_context *ctx); ++static void ++ctx_sched_in(struct perf_event_context *ctx, ++ struct perf_cpu_context *cpuctx, ++ enum event_type_t event_type, ++ struct task_struct *task); ++ ++static void perf_event_sched_in(struct perf_cpu_context *cpuctx, ++ struct perf_event_context *ctx, ++ struct task_struct *task) ++{ ++ cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); ++ if (ctx) ++ ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); ++ cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); ++ if (ctx) ++ ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); ++} ++ ++/* ++ * Cross CPU call to install and enable a performance event ++ * ++ * Must be called with ctx->mutex held ++ */ ++static int __perf_install_in_context(void *info) ++{ ++ struct perf_event *event = info; ++ struct perf_event_context *ctx = event->ctx; ++ struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); ++ struct perf_event_context *task_ctx = cpuctx->task_ctx; ++ struct task_struct *task = current; ++ ++ perf_ctx_lock(cpuctx, task_ctx); ++ perf_pmu_disable(cpuctx->ctx.pmu); ++ ++ /* ++ * If there was an active task_ctx schedule it out. ++ */ ++ if (task_ctx) ++ task_ctx_sched_out(task_ctx); ++ ++ /* ++ * If the context we're installing events in is not the ++ * active task_ctx, flip them. ++ */ ++ if (ctx->task && task_ctx != ctx) { ++ if (task_ctx) ++ raw_spin_unlock(&task_ctx->lock); ++ raw_spin_lock(&ctx->lock); ++ task_ctx = ctx; ++ } ++ ++ if (task_ctx) { ++ cpuctx->task_ctx = task_ctx; ++ task = task_ctx->task; ++ } ++ ++ cpu_ctx_sched_out(cpuctx, EVENT_ALL); ++ ++ update_context_time(ctx); ++ /* ++ * update cgrp time only if current cgrp ++ * matches event->cgrp. Must be done before ++ * calling add_event_to_ctx() ++ */ ++ update_cgrp_time_from_event(event); ++ ++ add_event_to_ctx(event, ctx); ++ ++ /* ++ * Schedule everything back in ++ */ ++ perf_event_sched_in(cpuctx, task_ctx, task); ++ ++ perf_pmu_enable(cpuctx->ctx.pmu); ++ perf_ctx_unlock(cpuctx, task_ctx); ++ ++ return 0; ++} ++ ++/* ++ * Attach a performance event to a context ++ * ++ * First we add the event to the list with the hardware enable bit ++ * in event->hw_config cleared. ++ * ++ * If the event is attached to a task which is on a CPU we use a smp ++ * call to enable it in the task context. The task might have been ++ * scheduled away, but we check this in the smp call again. ++ */ ++static void ++perf_install_in_context(struct perf_event_context *ctx, ++ struct perf_event *event, ++ int cpu) ++{ ++ struct task_struct *task = ctx->task; ++ ++ lockdep_assert_held(&ctx->mutex); ++ ++ event->ctx = ctx; ++ if (event->cpu != -1) ++ event->cpu = cpu; ++ ++ if (!task) { ++ /* ++ * Per cpu events are installed via an smp call and ++ * the install is always successful. ++ */ ++ cpu_function_call(cpu, __perf_install_in_context, event); ++ return; ++ } ++ ++retry: ++ if (!task_function_call(task, __perf_install_in_context, event)) ++ return; ++ ++ raw_spin_lock_irq(&ctx->lock); ++ /* ++ * If we failed to find a running task, but find the context active now ++ * that we've acquired the ctx->lock, retry. ++ */ ++ if (ctx->is_active) { ++ raw_spin_unlock_irq(&ctx->lock); ++ /* ++ * Reload the task pointer, it might have been changed by ++ * a concurrent perf_event_context_sched_out(). ++ */ ++ task = ctx->task; ++ goto retry; ++ } ++ ++ /* ++ * Since the task isn't running, its safe to add the event, us holding ++ * the ctx->lock ensures the task won't get scheduled in. ++ */ ++ add_event_to_ctx(event, ctx); ++ raw_spin_unlock_irq(&ctx->lock); ++} ++ ++/* ++ * Put a event into inactive state and update time fields. ++ * Enabling the leader of a group effectively enables all ++ * the group members that aren't explicitly disabled, so we ++ * have to update their ->tstamp_enabled also. ++ * Note: this works for group members as well as group leaders ++ * since the non-leader members' sibling_lists will be empty. ++ */ ++static void __perf_event_mark_enabled(struct perf_event *event) ++{ ++ struct perf_event *sub; ++ u64 tstamp = perf_event_time(event); ++ ++ event->state = PERF_EVENT_STATE_INACTIVE; ++ event->tstamp_enabled = tstamp - event->total_time_enabled; ++ list_for_each_entry(sub, &event->sibling_list, group_entry) { ++ if (sub->state >= PERF_EVENT_STATE_INACTIVE) ++ sub->tstamp_enabled = tstamp - sub->total_time_enabled; ++ } ++} ++ ++/* ++ * Cross CPU call to enable a performance event ++ */ ++static int __perf_event_enable(void *info) ++{ ++ struct perf_event *event = info; ++ struct perf_event_context *ctx = event->ctx; ++ struct perf_event *leader = event->group_leader; ++ struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); ++ int err; ++ ++ /* ++ * There's a time window between 'ctx->is_active' check ++ * in perf_event_enable function and this place having: ++ * - IRQs on ++ * - ctx->lock unlocked ++ * ++ * where the task could be killed and 'ctx' deactivated ++ * by perf_event_exit_task. ++ */ ++ if (!ctx->is_active) ++ return -EINVAL; ++ ++ raw_spin_lock(&ctx->lock); ++ update_context_time(ctx); ++ ++ if (event->state >= PERF_EVENT_STATE_INACTIVE) ++ goto unlock; ++ ++ /* ++ * set current task's cgroup time reference point ++ */ ++ perf_cgroup_set_timestamp(current, ctx); ++ ++ __perf_event_mark_enabled(event); ++ ++ if (!event_filter_match(event)) { ++ if (is_cgroup_event(event)) ++ perf_cgroup_defer_enabled(event); ++ goto unlock; ++ } ++ ++ /* ++ * If the event is in a group and isn't the group leader, ++ * then don't put it on unless the group is on. ++ */ ++ if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) ++ goto unlock; ++ ++ if (!group_can_go_on(event, cpuctx, 1)) { ++ err = -EEXIST; ++ } else { ++ if (event == leader) ++ err = group_sched_in(event, cpuctx, ctx); ++ else ++ err = event_sched_in(event, cpuctx, ctx); ++ } ++ ++ if (err) { ++ /* ++ * If this event can't go on and it's part of a ++ * group, then the whole group has to come off. ++ */ ++ if (leader != event) { ++ group_sched_out(leader, cpuctx, ctx); ++ perf_cpu_hrtimer_restart(cpuctx); ++ } ++ if (leader->attr.pinned) { ++ update_group_times(leader); ++ leader->state = PERF_EVENT_STATE_ERROR; ++ } ++ } ++ ++unlock: ++ raw_spin_unlock(&ctx->lock); ++ ++ return 0; ++} ++ ++/* ++ * Enable a event. ++ * ++ * If event->ctx is a cloned context, callers must make sure that ++ * every task struct that event->ctx->task could possibly point to ++ * remains valid. This condition is satisfied when called through ++ * perf_event_for_each_child or perf_event_for_each as described ++ * for perf_event_disable. ++ */ ++void perf_event_enable(struct perf_event *event) ++{ ++ struct perf_event_context *ctx = event->ctx; ++ struct task_struct *task = ctx->task; ++ ++ if (!task) { ++ /* ++ * Enable the event on the cpu that it's on ++ */ ++ cpu_function_call(event->cpu, __perf_event_enable, event); ++ return; ++ } ++ ++ raw_spin_lock_irq(&ctx->lock); ++ if (event->state >= PERF_EVENT_STATE_INACTIVE) ++ goto out; ++ ++ /* ++ * If the event is in error state, clear that first. ++ * That way, if we see the event in error state below, we ++ * know that it has gone back into error state, as distinct ++ * from the task having been scheduled away before the ++ * cross-call arrived. ++ */ ++ if (event->state == PERF_EVENT_STATE_ERROR) ++ event->state = PERF_EVENT_STATE_OFF; ++ ++retry: ++ if (!ctx->is_active) { ++ __perf_event_mark_enabled(event); ++ goto out; ++ } ++ ++ raw_spin_unlock_irq(&ctx->lock); ++ ++ if (!task_function_call(task, __perf_event_enable, event)) ++ return; ++ ++ raw_spin_lock_irq(&ctx->lock); ++ ++ /* ++ * If the context is active and the event is still off, ++ * we need to retry the cross-call. ++ */ ++ if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { ++ /* ++ * task could have been flipped by a concurrent ++ * perf_event_context_sched_out() ++ */ ++ task = ctx->task; ++ goto retry; ++ } ++ ++out: ++ raw_spin_unlock_irq(&ctx->lock); ++} ++EXPORT_SYMBOL_GPL(perf_event_enable); ++ ++int perf_event_refresh(struct perf_event *event, int refresh) ++{ ++ /* ++ * not supported on inherited events ++ */ ++ if (event->attr.inherit || !is_sampling_event(event)) ++ return -EINVAL; ++ ++ atomic_add(refresh, &event->event_limit); ++ perf_event_enable(event); ++ ++ return 0; ++} ++EXPORT_SYMBOL_GPL(perf_event_refresh); ++ ++static void ctx_sched_out(struct perf_event_context *ctx, ++ struct perf_cpu_context *cpuctx, ++ enum event_type_t event_type) ++{ ++ struct perf_event *event; ++ int is_active = ctx->is_active; ++ ++ ctx->is_active &= ~event_type; ++ if (likely(!ctx->nr_events)) ++ return; ++ ++ update_context_time(ctx); ++ update_cgrp_time_from_cpuctx(cpuctx); ++ if (!ctx->nr_active) ++ return; ++ ++ perf_pmu_disable(ctx->pmu); ++ if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { ++ list_for_each_entry(event, &ctx->pinned_groups, group_entry) ++ group_sched_out(event, cpuctx, ctx); ++ } ++ ++ if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { ++ list_for_each_entry(event, &ctx->flexible_groups, group_entry) ++ group_sched_out(event, cpuctx, ctx); ++ } ++ perf_pmu_enable(ctx->pmu); ++} ++ ++/* ++ * Test whether two contexts are equivalent, i.e. whether they have both been ++ * cloned from the same version of the same context. ++ * ++ * Equivalence is measured using a generation number in the context that is ++ * incremented on each modification to it; see unclone_ctx(), list_add_event() ++ * and list_del_event(). ++ */ ++static int context_equiv(struct perf_event_context *ctx1, ++ struct perf_event_context *ctx2) ++{ ++ lockdep_assert_held(&ctx1->lock); ++ lockdep_assert_held(&ctx2->lock); ++ ++ /* Pinning disables the swap optimization */ ++ if (ctx1->pin_count || ctx2->pin_count) ++ return 0; ++ ++ /* If ctx1 is the parent of ctx2 */ ++ if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) ++ return 1; ++ ++ /* If ctx2 is the parent of ctx1 */ ++ if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) ++ return 1; ++ ++ /* ++ * If ctx1 and ctx2 have the same parent; we flatten the parent ++ * hierarchy, see perf_event_init_context(). ++ */ ++ if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && ++ ctx1->parent_gen == ctx2->parent_gen) ++ return 1; ++ ++ /* Unmatched */ ++ return 0; ++} ++ ++static void __perf_event_sync_stat(struct perf_event *event, ++ struct perf_event *next_event) ++{ ++ u64 value; ++ ++ if (!event->attr.inherit_stat) ++ return; ++ ++ /* ++ * Update the event value, we cannot use perf_event_read() ++ * because we're in the middle of a context switch and have IRQs ++ * disabled, which upsets smp_call_function_single(), however ++ * we know the event must be on the current CPU, therefore we ++ * don't need to use it. ++ */ ++ switch (event->state) { ++ case PERF_EVENT_STATE_ACTIVE: ++ event->pmu->read(event); ++ /* fall-through */ ++ ++ case PERF_EVENT_STATE_INACTIVE: ++ update_event_times(event); ++ break; ++ ++ default: ++ break; ++ } ++ ++ /* ++ * In order to keep per-task stats reliable we need to flip the event ++ * values when we flip the contexts. ++ */ ++ value = local64_read(&next_event->count); ++ value = local64_xchg(&event->count, value); ++ local64_set(&next_event->count, value); ++ ++ swap(event->total_time_enabled, next_event->total_time_enabled); ++ swap(event->total_time_running, next_event->total_time_running); ++ ++ /* ++ * Since we swizzled the values, update the user visible data too. ++ */ ++ perf_event_update_userpage(event); ++ perf_event_update_userpage(next_event); ++} ++ ++static void perf_event_sync_stat(struct perf_event_context *ctx, ++ struct perf_event_context *next_ctx) ++{ ++ struct perf_event *event, *next_event; ++ ++ if (!ctx->nr_stat) ++ return; ++ ++ update_context_time(ctx); ++ ++ event = list_first_entry(&ctx->event_list, ++ struct perf_event, event_entry); ++ ++ next_event = list_first_entry(&next_ctx->event_list, ++ struct perf_event, event_entry); ++ ++ while (&event->event_entry != &ctx->event_list && ++ &next_event->event_entry != &next_ctx->event_list) { ++ ++ __perf_event_sync_stat(event, next_event); ++ ++ event = list_next_entry(event, event_entry); ++ next_event = list_next_entry(next_event, event_entry); ++ } ++} ++ ++static void perf_event_context_sched_out(struct task_struct *task, int ctxn, ++ struct task_struct *next) ++{ ++ struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; ++ struct perf_event_context *next_ctx; ++ struct perf_event_context *parent, *next_parent; ++ struct perf_cpu_context *cpuctx; ++ int do_switch = 1; ++ ++ if (likely(!ctx)) ++ return; ++ ++ cpuctx = __get_cpu_context(ctx); ++ if (!cpuctx->task_ctx) ++ return; ++ ++ rcu_read_lock(); ++ next_ctx = next->perf_event_ctxp[ctxn]; ++ if (!next_ctx) ++ goto unlock; ++ ++ parent = rcu_dereference(ctx->parent_ctx); ++ next_parent = rcu_dereference(next_ctx->parent_ctx); ++ ++ /* If neither context have a parent context; they cannot be clones. */ ++ if (!parent && !next_parent) ++ goto unlock; ++ ++ if (next_parent == ctx || next_ctx == parent || next_parent == parent) { ++ /* ++ * Looks like the two contexts are clones, so we might be ++ * able to optimize the context switch. We lock both ++ * contexts and check that they are clones under the ++ * lock (including re-checking that neither has been ++ * uncloned in the meantime). It doesn't matter which ++ * order we take the locks because no other cpu could ++ * be trying to lock both of these tasks. ++ */ ++ raw_spin_lock(&ctx->lock); ++ raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); ++ if (context_equiv(ctx, next_ctx)) { ++ /* ++ * XXX do we need a memory barrier of sorts ++ * wrt to rcu_dereference() of perf_event_ctxp ++ */ ++ task->perf_event_ctxp[ctxn] = next_ctx; ++ next->perf_event_ctxp[ctxn] = ctx; ++ ctx->task = next; ++ next_ctx->task = task; ++ do_switch = 0; ++ ++ perf_event_sync_stat(ctx, next_ctx); ++ } ++ raw_spin_unlock(&next_ctx->lock); ++ raw_spin_unlock(&ctx->lock); ++ } ++unlock: ++ rcu_read_unlock(); ++ ++ if (do_switch) { ++ raw_spin_lock(&ctx->lock); ++ ctx_sched_out(ctx, cpuctx, EVENT_ALL); ++ cpuctx->task_ctx = NULL; ++ raw_spin_unlock(&ctx->lock); ++ } ++} ++ ++#define for_each_task_context_nr(ctxn) \ ++ for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) ++ ++/* ++ * Called from scheduler to remove the events of the current task, ++ * with interrupts disabled. ++ * ++ * We stop each event and update the event value in event->count. ++ * ++ * This does not protect us against NMI, but disable() ++ * sets the disabled bit in the control field of event _before_ ++ * accessing the event control register. If a NMI hits, then it will ++ * not restart the event. ++ */ ++void __perf_event_task_sched_out(struct task_struct *task, ++ struct task_struct *next) ++{ ++ int ctxn; ++ ++ for_each_task_context_nr(ctxn) ++ perf_event_context_sched_out(task, ctxn, next); ++ ++ /* ++ * if cgroup events exist on this CPU, then we need ++ * to check if we have to switch out PMU state. ++ * cgroup event are system-wide mode only ++ */ ++ if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) ++ perf_cgroup_sched_out(task, next); ++} ++ ++static void task_ctx_sched_out(struct perf_event_context *ctx) ++{ ++ struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); ++ ++ if (!cpuctx->task_ctx) ++ return; ++ ++ if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) ++ return; ++ ++ ctx_sched_out(ctx, cpuctx, EVENT_ALL); ++ cpuctx->task_ctx = NULL; ++} ++ ++/* ++ * Called with IRQs disabled ++ */ ++static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, ++ enum event_type_t event_type) ++{ ++ ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); ++} ++ ++static void ++ctx_pinned_sched_in(struct perf_event_context *ctx, ++ struct perf_cpu_context *cpuctx) ++{ ++ struct perf_event *event; ++ ++ list_for_each_entry(event, &ctx->pinned_groups, group_entry) { ++ if (event->state <= PERF_EVENT_STATE_OFF) ++ continue; ++ if (!event_filter_match(event)) ++ continue; ++ ++ /* may need to reset tstamp_enabled */ ++ if (is_cgroup_event(event)) ++ perf_cgroup_mark_enabled(event, ctx); ++ ++ if (group_can_go_on(event, cpuctx, 1)) ++ group_sched_in(event, cpuctx, ctx); ++ ++ /* ++ * If this pinned group hasn't been scheduled, ++ * put it in error state. ++ */ ++ if (event->state == PERF_EVENT_STATE_INACTIVE) { ++ update_group_times(event); ++ event->state = PERF_EVENT_STATE_ERROR; ++ } ++ } ++} ++ ++static void ++ctx_flexible_sched_in(struct perf_event_context *ctx, ++ struct perf_cpu_context *cpuctx) ++{ ++ struct perf_event *event; ++ int can_add_hw = 1; ++ ++ list_for_each_entry(event, &ctx->flexible_groups, group_entry) { ++ /* Ignore events in OFF or ERROR state */ ++ if (event->state <= PERF_EVENT_STATE_OFF) ++ continue; ++ /* ++ * Listen to the 'cpu' scheduling filter constraint ++ * of events: ++ */ ++ if (!event_filter_match(event)) ++ continue; ++ ++ /* may need to reset tstamp_enabled */ ++ if (is_cgroup_event(event)) ++ perf_cgroup_mark_enabled(event, ctx); ++ ++ if (group_can_go_on(event, cpuctx, can_add_hw)) { ++ if (group_sched_in(event, cpuctx, ctx)) ++ can_add_hw = 0; ++ } ++ } ++} ++ ++static void ++ctx_sched_in(struct perf_event_context *ctx, ++ struct perf_cpu_context *cpuctx, ++ enum event_type_t event_type, ++ struct task_struct *task) ++{ ++ u64 now; ++ int is_active = ctx->is_active; ++ ++ ctx->is_active |= event_type; ++ if (likely(!ctx->nr_events)) ++ return; ++ ++ now = perf_clock(); ++ ctx->timestamp = now; ++ perf_cgroup_set_timestamp(task, ctx); ++ /* ++ * First go through the list and put on any pinned groups ++ * in order to give them the best chance of going on. ++ */ ++ if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) ++ ctx_pinned_sched_in(ctx, cpuctx); ++ ++ /* Then walk through the lower prio flexible groups */ ++ if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) ++ ctx_flexible_sched_in(ctx, cpuctx); ++} ++ ++static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, ++ enum event_type_t event_type, ++ struct task_struct *task) ++{ ++ struct perf_event_context *ctx = &cpuctx->ctx; ++ ++ ctx_sched_in(ctx, cpuctx, event_type, task); ++} ++ ++static void perf_event_context_sched_in(struct perf_event_context *ctx, ++ struct task_struct *task) ++{ ++ struct perf_cpu_context *cpuctx; ++ ++ cpuctx = __get_cpu_context(ctx); ++ if (cpuctx->task_ctx == ctx) ++ return; ++ ++ perf_ctx_lock(cpuctx, ctx); ++ perf_pmu_disable(ctx->pmu); ++ /* ++ * We want to keep the following priority order: ++ * cpu pinned (that don't need to move), task pinned, ++ * cpu flexible, task flexible. ++ */ ++ cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); ++ ++ if (ctx->nr_events) ++ cpuctx->task_ctx = ctx; ++ ++ perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); ++ ++ perf_pmu_enable(ctx->pmu); ++ perf_ctx_unlock(cpuctx, ctx); ++ ++ /* ++ * Since these rotations are per-cpu, we need to ensure the ++ * cpu-context we got scheduled on is actually rotating. ++ */ ++ perf_pmu_rotate_start(ctx->pmu); ++} ++ ++/* ++ * When sampling the branck stack in system-wide, it may be necessary ++ * to flush the stack on context switch. This happens when the branch ++ * stack does not tag its entries with the pid of the current task. ++ * Otherwise it becomes impossible to associate a branch entry with a ++ * task. This ambiguity is more likely to appear when the branch stack ++ * supports priv level filtering and the user sets it to monitor only ++ * at the user level (which could be a useful measurement in system-wide ++ * mode). In that case, the risk is high of having a branch stack with ++ * branch from multiple tasks. Flushing may mean dropping the existing ++ * entries or stashing them somewhere in the PMU specific code layer. ++ * ++ * This function provides the context switch callback to the lower code ++ * layer. It is invoked ONLY when there is at least one system-wide context ++ * with at least one active event using taken branch sampling. ++ */ ++static void perf_branch_stack_sched_in(struct task_struct *prev, ++ struct task_struct *task) ++{ ++ struct perf_cpu_context *cpuctx; ++ struct pmu *pmu; ++ unsigned long flags; ++ ++ /* no need to flush branch stack if not changing task */ ++ if (prev == task) ++ return; ++ ++ local_irq_save(flags); ++ ++ rcu_read_lock(); ++ ++ list_for_each_entry_rcu(pmu, &pmus, entry) { ++ cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); ++ ++ /* ++ * check if the context has at least one ++ * event using PERF_SAMPLE_BRANCH_STACK ++ */ ++ if (cpuctx->ctx.nr_branch_stack > 0 ++ && pmu->flush_branch_stack) { ++ ++ perf_ctx_lock(cpuctx, cpuctx->task_ctx); ++ ++ perf_pmu_disable(pmu); ++ ++ pmu->flush_branch_stack(); ++ ++ perf_pmu_enable(pmu); ++ ++ perf_ctx_unlock(cpuctx, cpuctx->task_ctx); ++ } ++ } ++ ++ rcu_read_unlock(); ++ ++ local_irq_restore(flags); ++} ++ ++/* ++ * Called from scheduler to add the events of the current task ++ * with interrupts disabled. ++ * ++ * We restore the event value and then enable it. ++ * ++ * This does not protect us against NMI, but enable() ++ * sets the enabled bit in the control field of event _before_ ++ * accessing the event control register. If a NMI hits, then it will ++ * keep the event running. ++ */ ++void __perf_event_task_sched_in(struct task_struct *prev, ++ struct task_struct *task) ++{ ++ struct perf_event_context *ctx; ++ int ctxn; ++ ++ for_each_task_context_nr(ctxn) { ++ ctx = task->perf_event_ctxp[ctxn]; ++ if (likely(!ctx)) ++ continue; ++ ++ perf_event_context_sched_in(ctx, task); ++ } ++ /* ++ * if cgroup events exist on this CPU, then we need ++ * to check if we have to switch in PMU state. ++ * cgroup event are system-wide mode only ++ */ ++ if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) ++ perf_cgroup_sched_in(prev, task); ++ ++ /* check for system-wide branch_stack events */ ++ if (atomic_read(this_cpu_ptr(&perf_branch_stack_events))) ++ perf_branch_stack_sched_in(prev, task); ++} ++ ++static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) ++{ ++ u64 frequency = event->attr.sample_freq; ++ u64 sec = NSEC_PER_SEC; ++ u64 divisor, dividend; ++ ++ int count_fls, nsec_fls, frequency_fls, sec_fls; ++ ++ count_fls = fls64(count); ++ nsec_fls = fls64(nsec); ++ frequency_fls = fls64(frequency); ++ sec_fls = 30; ++ ++ /* ++ * We got @count in @nsec, with a target of sample_freq HZ ++ * the target period becomes: ++ * ++ * @count * 10^9 ++ * period = ------------------- ++ * @nsec * sample_freq ++ * ++ */ ++ ++ /* ++ * Reduce accuracy by one bit such that @a and @b converge ++ * to a similar magnitude. ++ */ ++#define REDUCE_FLS(a, b) \ ++do { \ ++ if (a##_fls > b##_fls) { \ ++ a >>= 1; \ ++ a##_fls--; \ ++ } else { \ ++ b >>= 1; \ ++ b##_fls--; \ ++ } \ ++} while (0) ++ ++ /* ++ * Reduce accuracy until either term fits in a u64, then proceed with ++ * the other, so that finally we can do a u64/u64 division. ++ */ ++ while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { ++ REDUCE_FLS(nsec, frequency); ++ REDUCE_FLS(sec, count); ++ } ++ ++ if (count_fls + sec_fls > 64) { ++ divisor = nsec * frequency; ++ ++ while (count_fls + sec_fls > 64) { ++ REDUCE_FLS(count, sec); ++ divisor >>= 1; ++ } ++ ++ dividend = count * sec; ++ } else { ++ dividend = count * sec; ++ ++ while (nsec_fls + frequency_fls > 64) { ++ REDUCE_FLS(nsec, frequency); ++ dividend >>= 1; ++ } ++ ++ divisor = nsec * frequency; ++ } ++ ++ if (!divisor) ++ return dividend; ++ ++ return div64_u64(dividend, divisor); ++} ++ ++static DEFINE_PER_CPU(int, perf_throttled_count); ++static DEFINE_PER_CPU(u64, perf_throttled_seq); ++ ++static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) ++{ ++ struct hw_perf_event *hwc = &event->hw; ++ s64 period, sample_period; ++ s64 delta; ++ ++ period = perf_calculate_period(event, nsec, count); ++ ++ delta = (s64)(period - hwc->sample_period); ++ delta = (delta + 7) / 8; /* low pass filter */ ++ ++ sample_period = hwc->sample_period + delta; ++ ++ if (!sample_period) ++ sample_period = 1; ++ ++ hwc->sample_period = sample_period; ++ ++ if (local64_read(&hwc->period_left) > 8*sample_period) { ++ if (disable) ++ event->pmu->stop(event, PERF_EF_UPDATE); ++ ++ local64_set(&hwc->period_left, 0); ++ ++ if (disable) ++ event->pmu->start(event, PERF_EF_RELOAD); ++ } ++} ++ ++/* ++ * combine freq adjustment with unthrottling to avoid two passes over the ++ * events. At the same time, make sure, having freq events does not change ++ * the rate of unthrottling as that would introduce bias. ++ */ ++static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, ++ int needs_unthr) ++{ ++ struct perf_event *event; ++ struct hw_perf_event *hwc; ++ u64 now, period = TICK_NSEC; ++ s64 delta; ++ ++ /* ++ * only need to iterate over all events iff: ++ * - context have events in frequency mode (needs freq adjust) ++ * - there are events to unthrottle on this cpu ++ */ ++ if (!(ctx->nr_freq || needs_unthr)) ++ return; ++ ++ raw_spin_lock(&ctx->lock); ++ perf_pmu_disable(ctx->pmu); ++ ++ list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { ++ if (event->state != PERF_EVENT_STATE_ACTIVE) ++ continue; ++ ++ if (!event_filter_match(event)) ++ continue; ++ ++ perf_pmu_disable(event->pmu); ++ ++ hwc = &event->hw; ++ ++ if (hwc->interrupts == MAX_INTERRUPTS) { ++ hwc->interrupts = 0; ++ perf_log_throttle(event, 1); ++ event->pmu->start(event, 0); ++ } ++ ++ if (!event->attr.freq || !event->attr.sample_freq) ++ goto next; ++ ++ /* ++ * stop the event and update event->count ++ */ ++ event->pmu->stop(event, PERF_EF_UPDATE); ++ ++ now = local64_read(&event->count); ++ delta = now - hwc->freq_count_stamp; ++ hwc->freq_count_stamp = now; ++ ++ /* ++ * restart the event ++ * reload only if value has changed ++ * we have stopped the event so tell that ++ * to perf_adjust_period() to avoid stopping it ++ * twice. ++ */ ++ if (delta > 0) ++ perf_adjust_period(event, period, delta, false); ++ ++ event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); ++ next: ++ perf_pmu_enable(event->pmu); ++ } ++ ++ perf_pmu_enable(ctx->pmu); ++ raw_spin_unlock(&ctx->lock); ++} ++ ++/* ++ * Round-robin a context's events: ++ */ ++static void rotate_ctx(struct perf_event_context *ctx) ++{ ++ /* ++ * Rotate the first entry last of non-pinned groups. Rotation might be ++ * disabled by the inheritance code. ++ */ ++ if (!ctx->rotate_disable) ++ list_rotate_left(&ctx->flexible_groups); ++} ++ ++/* ++ * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized ++ * because they're strictly cpu affine and rotate_start is called with IRQs ++ * disabled, while rotate_context is called from IRQ context. ++ */ ++static int perf_rotate_context(struct perf_cpu_context *cpuctx) ++{ ++ struct perf_event_context *ctx = NULL; ++ int rotate = 0, remove = 1; ++ ++ if (cpuctx->ctx.nr_events) { ++ remove = 0; ++ if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) ++ rotate = 1; ++ } ++ ++ ctx = cpuctx->task_ctx; ++ if (ctx && ctx->nr_events) { ++ remove = 0; ++ if (ctx->nr_events != ctx->nr_active) ++ rotate = 1; ++ } ++ ++ if (!rotate) ++ goto done; ++ ++ perf_ctx_lock(cpuctx, cpuctx->task_ctx); ++ perf_pmu_disable(cpuctx->ctx.pmu); ++ ++ cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); ++ if (ctx) ++ ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); ++ ++ rotate_ctx(&cpuctx->ctx); ++ if (ctx) ++ rotate_ctx(ctx); ++ ++ perf_event_sched_in(cpuctx, ctx, current); ++ ++ perf_pmu_enable(cpuctx->ctx.pmu); ++ perf_ctx_unlock(cpuctx, cpuctx->task_ctx); ++done: ++ if (remove) ++ list_del_init(&cpuctx->rotation_list); ++ ++ return rotate; ++} ++ ++#ifdef CONFIG_NO_HZ_FULL ++bool perf_event_can_stop_tick(void) ++{ ++ if (atomic_read(&nr_freq_events) || ++ __this_cpu_read(perf_throttled_count)) ++ return false; ++ else ++ return true; ++} ++#endif ++ ++void perf_event_task_tick(void) ++{ ++ struct list_head *head = this_cpu_ptr(&rotation_list); ++ struct perf_cpu_context *cpuctx, *tmp; ++ struct perf_event_context *ctx; ++ int throttled; ++ ++ WARN_ON(!irqs_disabled()); ++ ++ __this_cpu_inc(perf_throttled_seq); ++ throttled = __this_cpu_xchg(perf_throttled_count, 0); ++ ++ list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { ++ ctx = &cpuctx->ctx; ++ perf_adjust_freq_unthr_context(ctx, throttled); ++ ++ ctx = cpuctx->task_ctx; ++ if (ctx) ++ perf_adjust_freq_unthr_context(ctx, throttled); ++ } ++} ++ ++static int event_enable_on_exec(struct perf_event *event, ++ struct perf_event_context *ctx) ++{ ++ if (!event->attr.enable_on_exec) ++ return 0; ++ ++ event->attr.enable_on_exec = 0; ++ if (event->state >= PERF_EVENT_STATE_INACTIVE) ++ return 0; ++ ++ __perf_event_mark_enabled(event); ++ ++ return 1; ++} ++ ++/* ++ * Enable all of a task's events that have been marked enable-on-exec. ++ * This expects task == current. ++ */ ++static void perf_event_enable_on_exec(struct perf_event_context *ctx) ++{ ++ struct perf_event_context *clone_ctx = NULL; ++ struct perf_event *event; ++ unsigned long flags; ++ int enabled = 0; ++ int ret; ++ ++ local_irq_save(flags); ++ if (!ctx || !ctx->nr_events) ++ goto out; ++ ++ /* ++ * We must ctxsw out cgroup events to avoid conflict ++ * when invoking perf_task_event_sched_in() later on ++ * in this function. Otherwise we end up trying to ++ * ctxswin cgroup events which are already scheduled ++ * in. ++ */ ++ perf_cgroup_sched_out(current, NULL); ++ ++ raw_spin_lock(&ctx->lock); ++ task_ctx_sched_out(ctx); ++ ++ list_for_each_entry(event, &ctx->event_list, event_entry) { ++ ret = event_enable_on_exec(event, ctx); ++ if (ret) ++ enabled = 1; ++ } ++ ++ /* ++ * Unclone this context if we enabled any event. ++ */ ++ if (enabled) ++ clone_ctx = unclone_ctx(ctx); ++ ++ raw_spin_unlock(&ctx->lock); ++ ++ /* ++ * Also calls ctxswin for cgroup events, if any: ++ */ ++ perf_event_context_sched_in(ctx, ctx->task); ++out: ++ local_irq_restore(flags); ++ ++ if (clone_ctx) ++ put_ctx(clone_ctx); ++} ++ ++void perf_event_exec(void) ++{ ++ struct perf_event_context *ctx; ++ int ctxn; ++ ++ rcu_read_lock(); ++ for_each_task_context_nr(ctxn) { ++ ctx = current->perf_event_ctxp[ctxn]; ++ if (!ctx) ++ continue; ++ ++ perf_event_enable_on_exec(ctx); ++ } ++ rcu_read_unlock(); ++} ++ ++/* ++ * Cross CPU call to read the hardware event ++ */ ++static void __perf_event_read(void *info) ++{ ++ struct perf_event *event = info; ++ struct perf_event_context *ctx = event->ctx; ++ struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); ++ ++ /* ++ * If this is a task context, we need to check whether it is ++ * the current task context of this cpu. If not it has been ++ * scheduled out before the smp call arrived. In that case ++ * event->count would have been updated to a recent sample ++ * when the event was scheduled out. ++ */ ++ if (ctx->task && cpuctx->task_ctx != ctx) ++ return; ++ ++ raw_spin_lock(&ctx->lock); ++ if (ctx->is_active) { ++ update_context_time(ctx); ++ update_cgrp_time_from_event(event); ++ } ++ update_event_times(event); ++ if (event->state == PERF_EVENT_STATE_ACTIVE) ++ event->pmu->read(event); ++ raw_spin_unlock(&ctx->lock); ++} ++ ++static inline u64 perf_event_count(struct perf_event *event) ++{ ++ return local64_read(&event->count) + atomic64_read(&event->child_count); ++} ++ ++static u64 perf_event_read(struct perf_event *event) ++{ ++ /* ++ * If event is enabled and currently active on a CPU, update the ++ * value in the event structure: ++ */ ++ if (event->state == PERF_EVENT_STATE_ACTIVE) { ++ smp_call_function_single(event->oncpu, ++ __perf_event_read, event, 1); ++ } else if (event->state == PERF_EVENT_STATE_INACTIVE) { ++ struct perf_event_context *ctx = event->ctx; ++ unsigned long flags; ++ ++ raw_spin_lock_irqsave(&ctx->lock, flags); ++ /* ++ * may read while context is not active ++ * (e.g., thread is blocked), in that case ++ * we cannot update context time ++ */ ++ if (ctx->is_active) { ++ update_context_time(ctx); ++ update_cgrp_time_from_event(event); ++ } ++ update_event_times(event); ++ raw_spin_unlock_irqrestore(&ctx->lock, flags); ++ } ++ ++ return perf_event_count(event); ++} ++ ++/* ++ * Initialize the perf_event context in a task_struct: ++ */ ++static void __perf_event_init_context(struct perf_event_context *ctx) ++{ ++ raw_spin_lock_init(&ctx->lock); ++ mutex_init(&ctx->mutex); ++ INIT_LIST_HEAD(&ctx->pinned_groups); ++ INIT_LIST_HEAD(&ctx->flexible_groups); ++ INIT_LIST_HEAD(&ctx->event_list); ++ atomic_set(&ctx->refcount, 1); ++ INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work); ++} ++ ++static struct perf_event_context * ++alloc_perf_context(struct pmu *pmu, struct task_struct *task) ++{ ++ struct perf_event_context *ctx; ++ ++ ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); ++ if (!ctx) ++ return NULL; ++ ++ __perf_event_init_context(ctx); ++ if (task) { ++ ctx->task = task; ++ get_task_struct(task); ++ } ++ ctx->pmu = pmu; ++ ++ return ctx; ++} ++ ++static struct task_struct * ++find_lively_task_by_vpid(pid_t vpid) ++{ ++ struct task_struct *task; ++ int err; ++ ++ rcu_read_lock(); ++ if (!vpid) ++ task = current; ++ else ++ task = find_task_by_vpid(vpid); ++ if (task) ++ get_task_struct(task); ++ rcu_read_unlock(); ++ ++ if (!task) ++ return ERR_PTR(-ESRCH); ++ ++ /* Reuse ptrace permission checks for now. */ ++ err = -EACCES; ++ if (!ptrace_may_access(task, PTRACE_MODE_READ)) ++ goto errout; ++ ++ return task; ++errout: ++ put_task_struct(task); ++ return ERR_PTR(err); ++ ++} ++ ++/* ++ * Returns a matching context with refcount and pincount. ++ */ ++static struct perf_event_context * ++find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) ++{ ++ struct perf_event_context *ctx, *clone_ctx = NULL; ++ struct perf_cpu_context *cpuctx; ++ unsigned long flags; ++ int ctxn, err; ++ ++ if (!task) { ++ /* Must be root to operate on a CPU event: */ ++ if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) ++ return ERR_PTR(-EACCES); ++ ++ /* ++ * We could be clever and allow to attach a event to an ++ * offline CPU and activate it when the CPU comes up, but ++ * that's for later. ++ */ ++ if (!cpu_online(cpu)) ++ return ERR_PTR(-ENODEV); ++ ++ cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); ++ ctx = &cpuctx->ctx; ++ get_ctx(ctx); ++ ++ctx->pin_count; ++ ++ return ctx; ++ } ++ ++ err = -EINVAL; ++ ctxn = pmu->task_ctx_nr; ++ if (ctxn < 0) ++ goto errout; ++ ++retry: ++ ctx = perf_lock_task_context(task, ctxn, &flags); ++ if (ctx) { ++ clone_ctx = unclone_ctx(ctx); ++ ++ctx->pin_count; ++ raw_spin_unlock_irqrestore(&ctx->lock, flags); ++ ++ if (clone_ctx) ++ put_ctx(clone_ctx); ++ } else { ++ ctx = alloc_perf_context(pmu, task); ++ err = -ENOMEM; ++ if (!ctx) ++ goto errout; ++ ++ err = 0; ++ mutex_lock(&task->perf_event_mutex); ++ /* ++ * If it has already passed perf_event_exit_task(). ++ * we must see PF_EXITING, it takes this mutex too. ++ */ ++ if (task->flags & PF_EXITING) ++ err = -ESRCH; ++ else if (task->perf_event_ctxp[ctxn]) ++ err = -EAGAIN; ++ else { ++ get_ctx(ctx); ++ ++ctx->pin_count; ++ rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); ++ } ++ mutex_unlock(&task->perf_event_mutex); ++ ++ if (unlikely(err)) { ++ put_ctx(ctx); ++ ++ if (err == -EAGAIN) ++ goto retry; ++ goto errout; ++ } ++ } ++ ++ return ctx; ++ ++errout: ++ return ERR_PTR(err); ++} ++ ++static void perf_event_free_filter(struct perf_event *event); ++ ++static void free_event_rcu(struct rcu_head *head) ++{ ++ struct perf_event *event; ++ ++ event = container_of(head, struct perf_event, rcu_head); ++ if (event->ns) ++ put_pid_ns(event->ns); ++ perf_event_free_filter(event); ++ kfree(event); ++} ++ ++static void ring_buffer_put(struct ring_buffer *rb); ++static void ring_buffer_attach(struct perf_event *event, ++ struct ring_buffer *rb); ++ ++static void unaccount_event_cpu(struct perf_event *event, int cpu) ++{ ++ if (event->parent) ++ return; ++ ++ if (has_branch_stack(event)) { ++ if (!(event->attach_state & PERF_ATTACH_TASK)) ++ atomic_dec(&per_cpu(perf_branch_stack_events, cpu)); ++ } ++ if (is_cgroup_event(event)) ++ atomic_dec(&per_cpu(perf_cgroup_events, cpu)); ++} ++ ++static void unaccount_event(struct perf_event *event) ++{ ++ if (event->parent) ++ return; ++ ++ if (event->attach_state & PERF_ATTACH_TASK) ++ static_key_slow_dec_deferred(&perf_sched_events); ++ if (event->attr.mmap || event->attr.mmap_data) ++ atomic_dec(&nr_mmap_events); ++ if (event->attr.comm) ++ atomic_dec(&nr_comm_events); ++ if (event->attr.task) ++ atomic_dec(&nr_task_events); ++ if (event->attr.freq) ++ atomic_dec(&nr_freq_events); ++ if (is_cgroup_event(event)) ++ static_key_slow_dec_deferred(&perf_sched_events); ++ if (has_branch_stack(event)) ++ static_key_slow_dec_deferred(&perf_sched_events); ++ ++ unaccount_event_cpu(event, event->cpu); ++} ++ ++static void __free_event(struct perf_event *event) ++{ ++ if (!event->parent) { ++ if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ++ put_callchain_buffers(); ++ } ++ ++ if (event->destroy) ++ event->destroy(event); ++ ++ if (event->ctx) ++ put_ctx(event->ctx); ++ ++ if (event->pmu) ++ module_put(event->pmu->module); ++ ++ call_rcu(&event->rcu_head, free_event_rcu); ++} ++ ++static void _free_event(struct perf_event *event) ++{ ++ irq_work_sync(&event->pending); ++ ++ unaccount_event(event); ++ ++ if (event->rb) { ++ /* ++ * Can happen when we close an event with re-directed output. ++ * ++ * Since we have a 0 refcount, perf_mmap_close() will skip ++ * over us; possibly making our ring_buffer_put() the last. ++ */ ++ mutex_lock(&event->mmap_mutex); ++ ring_buffer_attach(event, NULL); ++ mutex_unlock(&event->mmap_mutex); ++ } ++ ++ if (is_cgroup_event(event)) ++ perf_detach_cgroup(event); ++ ++ __free_event(event); ++} ++ ++/* ++ * Used to free events which have a known refcount of 1, such as in error paths ++ * where the event isn't exposed yet and inherited events. ++ */ ++static void free_event(struct perf_event *event) ++{ ++ if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, ++ "unexpected event refcount: %ld; ptr=%p\n", ++ atomic_long_read(&event->refcount), event)) { ++ /* leak to avoid use-after-free */ ++ return; ++ } ++ ++ _free_event(event); ++} ++ ++/* ++ * Remove user event from the owner task. ++ */ ++static void perf_remove_from_owner(struct perf_event *event) ++{ ++ struct task_struct *owner; ++ ++ rcu_read_lock(); ++ owner = ACCESS_ONCE(event->owner); ++ /* ++ * Matches the smp_wmb() in perf_event_exit_task(). If we observe ++ * !owner it means the list deletion is complete and we can indeed ++ * free this event, otherwise we need to serialize on ++ * owner->perf_event_mutex. ++ */ ++ smp_read_barrier_depends(); ++ if (owner) { ++ /* ++ * Since delayed_put_task_struct() also drops the last ++ * task reference we can safely take a new reference ++ * while holding the rcu_read_lock(). ++ */ ++ get_task_struct(owner); ++ } ++ rcu_read_unlock(); ++ ++ if (owner) { ++ mutex_lock(&owner->perf_event_mutex); ++ /* ++ * We have to re-check the event->owner field, if it is cleared ++ * we raced with perf_event_exit_task(), acquiring the mutex ++ * ensured they're done, and we can proceed with freeing the ++ * event. ++ */ ++ if (event->owner) ++ list_del_init(&event->owner_entry); ++ mutex_unlock(&owner->perf_event_mutex); ++ put_task_struct(owner); ++ } ++} ++ ++/* ++ * Called when the last reference to the file is gone. ++ */ ++static void put_event(struct perf_event *event) ++{ ++ struct perf_event_context *ctx = event->ctx; ++ ++ if (!atomic_long_dec_and_test(&event->refcount)) ++ return; ++ ++ if (!is_kernel_event(event)) ++ perf_remove_from_owner(event); ++ ++ WARN_ON_ONCE(ctx->parent_ctx); ++ /* ++ * There are two ways this annotation is useful: ++ * ++ * 1) there is a lock recursion from perf_event_exit_task ++ * see the comment there. ++ * ++ * 2) there is a lock-inversion with mmap_sem through ++ * perf_event_read_group(), which takes faults while ++ * holding ctx->mutex, however this is called after ++ * the last filedesc died, so there is no possibility ++ * to trigger the AB-BA case. ++ */ ++ mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); ++ perf_remove_from_context(event, true); ++ mutex_unlock(&ctx->mutex); ++ ++ _free_event(event); ++} ++ ++int perf_event_release_kernel(struct perf_event *event) ++{ ++ put_event(event); ++ return 0; ++} ++EXPORT_SYMBOL_GPL(perf_event_release_kernel); ++ ++static int perf_release(struct inode *inode, struct file *file) ++{ ++ put_event(file->private_data); ++ return 0; ++} ++ ++/* ++ * Remove all orphanes events from the context. ++ */ ++static void orphans_remove_work(struct work_struct *work) ++{ ++ struct perf_event_context *ctx; ++ struct perf_event *event, *tmp; ++ ++ ctx = container_of(work, struct perf_event_context, ++ orphans_remove.work); ++ ++ mutex_lock(&ctx->mutex); ++ list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) { ++ struct perf_event *parent_event = event->parent; ++ ++ if (!is_orphaned_child(event)) ++ continue; ++ ++ perf_remove_from_context(event, true); ++ ++ mutex_lock(&parent_event->child_mutex); ++ list_del_init(&event->child_list); ++ mutex_unlock(&parent_event->child_mutex); ++ ++ free_event(event); ++ put_event(parent_event); ++ } ++ ++ raw_spin_lock_irq(&ctx->lock); ++ ctx->orphans_remove_sched = false; ++ raw_spin_unlock_irq(&ctx->lock); ++ mutex_unlock(&ctx->mutex); ++ ++ put_ctx(ctx); ++} ++ ++u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) ++{ ++ struct perf_event *child; ++ u64 total = 0; ++ ++ *enabled = 0; ++ *running = 0; ++ ++ mutex_lock(&event->child_mutex); ++ total += perf_event_read(event); ++ *enabled += event->total_time_enabled + ++ atomic64_read(&event->child_total_time_enabled); ++ *running += event->total_time_running + ++ atomic64_read(&event->child_total_time_running); ++ ++ list_for_each_entry(child, &event->child_list, child_list) { ++ total += perf_event_read(child); ++ *enabled += child->total_time_enabled; ++ *running += child->total_time_running; ++ } ++ mutex_unlock(&event->child_mutex); ++ ++ return total; ++} ++EXPORT_SYMBOL_GPL(perf_event_read_value); ++ ++static int perf_event_read_group(struct perf_event *event, ++ u64 read_format, char __user *buf) ++{ ++ struct perf_event *leader = event->group_leader, *sub; ++ int n = 0, size = 0, ret = -EFAULT; ++ struct perf_event_context *ctx = leader->ctx; ++ u64 values[5]; ++ u64 count, enabled, running; ++ ++ mutex_lock(&ctx->mutex); ++ count = perf_event_read_value(leader, &enabled, &running); ++ ++ values[n++] = 1 + leader->nr_siblings; ++ if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) ++ values[n++] = enabled; ++ if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) ++ values[n++] = running; ++ values[n++] = count; ++ if (read_format & PERF_FORMAT_ID) ++ values[n++] = primary_event_id(leader); ++ ++ size = n * sizeof(u64); ++ ++ if (copy_to_user(buf, values, size)) ++ goto unlock; ++ ++ ret = size; ++ ++ list_for_each_entry(sub, &leader->sibling_list, group_entry) { ++ n = 0; ++ ++ values[n++] = perf_event_read_value(sub, &enabled, &running); ++ if (read_format & PERF_FORMAT_ID) ++ values[n++] = primary_event_id(sub); ++ ++ size = n * sizeof(u64); ++ ++ if (copy_to_user(buf + ret, values, size)) { ++ ret = -EFAULT; ++ goto unlock; ++ } ++ ++ ret += size; ++ } ++unlock: ++ mutex_unlock(&ctx->mutex); ++ ++ return ret; ++} ++ ++static int perf_event_read_one(struct perf_event *event, ++ u64 read_format, char __user *buf) ++{ ++ u64 enabled, running; ++ u64 values[4]; ++ int n = 0; ++ ++ values[n++] = perf_event_read_value(event, &enabled, &running); ++ if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) ++ values[n++] = enabled; ++ if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) ++ values[n++] = running; ++ if (read_format & PERF_FORMAT_ID) ++ values[n++] = primary_event_id(event); ++ ++ if (copy_to_user(buf, values, n * sizeof(u64))) ++ return -EFAULT; ++ ++ return n * sizeof(u64); ++} ++ ++static bool is_event_hup(struct perf_event *event) ++{ ++ bool no_children; ++ ++ if (event->state != PERF_EVENT_STATE_EXIT) ++ return false; ++ ++ mutex_lock(&event->child_mutex); ++ no_children = list_empty(&event->child_list); ++ mutex_unlock(&event->child_mutex); ++ return no_children; ++} ++ ++/* ++ * Read the performance event - simple non blocking version for now ++ */ ++static ssize_t ++perf_read_hw(struct perf_event *event, char __user *buf, size_t count) ++{ ++ u64 read_format = event->attr.read_format; ++ int ret; ++ ++ /* ++ * Return end-of-file for a read on a event that is in ++ * error state (i.e. because it was pinned but it couldn't be ++ * scheduled on to the CPU at some point). ++ */ ++ if (event->state == PERF_EVENT_STATE_ERROR) ++ return 0; ++ ++ if (count < event->read_size) ++ return -ENOSPC; ++ ++ WARN_ON_ONCE(event->ctx->parent_ctx); ++ if (read_format & PERF_FORMAT_GROUP) ++ ret = perf_event_read_group(event, read_format, buf); ++ else ++ ret = perf_event_read_one(event, read_format, buf); ++ ++ return ret; ++} ++ ++static ssize_t ++perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) ++{ ++ struct perf_event *event = file->private_data; ++ ++ return perf_read_hw(event, buf, count); ++} ++ ++static unsigned int perf_poll(struct file *file, poll_table *wait) ++{ ++ struct perf_event *event = file->private_data; ++ struct ring_buffer *rb; ++ unsigned int events = POLLHUP; ++ ++ poll_wait(file, &event->waitq, wait); ++ ++ if (is_event_hup(event)) ++ return events; ++ ++ /* ++ * Pin the event->rb by taking event->mmap_mutex; otherwise ++ * perf_event_set_output() can swizzle our rb and make us miss wakeups. ++ */ ++ mutex_lock(&event->mmap_mutex); ++ rb = event->rb; ++ if (rb) ++ events = atomic_xchg(&rb->poll, 0); ++ mutex_unlock(&event->mmap_mutex); ++ return events; ++} ++ ++static void perf_event_reset(struct perf_event *event) ++{ ++ (void)perf_event_read(event); ++ local64_set(&event->count, 0); ++ perf_event_update_userpage(event); ++} ++ ++/* ++ * Holding the top-level event's child_mutex means that any ++ * descendant process that has inherited this event will block ++ * in sync_child_event if it goes to exit, thus satisfying the ++ * task existence requirements of perf_event_enable/disable. ++ */ ++static void perf_event_for_each_child(struct perf_event *event, ++ void (*func)(struct perf_event *)) ++{ ++ struct perf_event *child; ++ ++ WARN_ON_ONCE(event->ctx->parent_ctx); ++ mutex_lock(&event->child_mutex); ++ func(event); ++ list_for_each_entry(child, &event->child_list, child_list) ++ func(child); ++ mutex_unlock(&event->child_mutex); ++} ++ ++static void perf_event_for_each(struct perf_event *event, ++ void (*func)(struct perf_event *)) ++{ ++ struct perf_event_context *ctx = event->ctx; ++ struct perf_event *sibling; ++ ++ WARN_ON_ONCE(ctx->parent_ctx); ++ mutex_lock(&ctx->mutex); ++ event = event->group_leader; ++ ++ perf_event_for_each_child(event, func); ++ list_for_each_entry(sibling, &event->sibling_list, group_entry) ++ perf_event_for_each_child(sibling, func); ++ mutex_unlock(&ctx->mutex); ++} ++ ++static int perf_event_period(struct perf_event *event, u64 __user *arg) ++{ ++ struct perf_event_context *ctx = event->ctx; ++ int ret = 0, active; ++ u64 value; ++ ++ if (!is_sampling_event(event)) ++ return -EINVAL; ++ ++ if (copy_from_user(&value, arg, sizeof(value))) ++ return -EFAULT; ++ ++ if (!value) ++ return -EINVAL; ++ ++ raw_spin_lock_irq(&ctx->lock); ++ if (event->attr.freq) { ++ if (value > sysctl_perf_event_sample_rate) { ++ ret = -EINVAL; ++ goto unlock; ++ } ++ ++ event->attr.sample_freq = value; ++ } else { ++ event->attr.sample_period = value; ++ event->hw.sample_period = value; ++ } ++ ++ active = (event->state == PERF_EVENT_STATE_ACTIVE); ++ if (active) { ++ perf_pmu_disable(ctx->pmu); ++ event->pmu->stop(event, PERF_EF_UPDATE); ++ } ++ ++ local64_set(&event->hw.period_left, 0); ++ ++ if (active) { ++ event->pmu->start(event, PERF_EF_RELOAD); ++ perf_pmu_enable(ctx->pmu); ++ } ++ ++unlock: ++ raw_spin_unlock_irq(&ctx->lock); ++ ++ return ret; ++} ++ ++static const struct file_operations perf_fops; ++ ++static inline int perf_fget_light(int fd, struct fd *p) ++{ ++ struct fd f = fdget(fd); ++ if (!f.file) ++ return -EBADF; ++ ++ if (f.file->f_op != &perf_fops) { ++ fdput(f); ++ return -EBADF; ++ } ++ *p = f; ++ return 0; ++} ++ ++static int perf_event_set_output(struct perf_event *event, ++ struct perf_event *output_event); ++static int perf_event_set_filter(struct perf_event *event, void __user *arg); ++ ++static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) ++{ ++ struct perf_event *event = file->private_data; ++ void (*func)(struct perf_event *); ++ u32 flags = arg; ++ ++ switch (cmd) { ++ case PERF_EVENT_IOC_ENABLE: ++ func = perf_event_enable; ++ break; ++ case PERF_EVENT_IOC_DISABLE: ++ func = perf_event_disable; ++ break; ++ case PERF_EVENT_IOC_RESET: ++ func = perf_event_reset; ++ break; ++ ++ case PERF_EVENT_IOC_REFRESH: ++ return perf_event_refresh(event, arg); ++ ++ case PERF_EVENT_IOC_PERIOD: ++ return perf_event_period(event, (u64 __user *)arg); ++ ++ case PERF_EVENT_IOC_ID: ++ { ++ u64 id = primary_event_id(event); ++ ++ if (copy_to_user((void __user *)arg, &id, sizeof(id))) ++ return -EFAULT; ++ return 0; ++ } ++ ++ case PERF_EVENT_IOC_SET_OUTPUT: ++ { ++ int ret; ++ if (arg != -1) { ++ struct perf_event *output_event; ++ struct fd output; ++ ret = perf_fget_light(arg, &output); ++ if (ret) ++ return ret; ++ output_event = output.file->private_data; ++ ret = perf_event_set_output(event, output_event); ++ fdput(output); ++ } else { ++ ret = perf_event_set_output(event, NULL); ++ } ++ return ret; ++ } ++ ++ case PERF_EVENT_IOC_SET_FILTER: ++ return perf_event_set_filter(event, (void __user *)arg); ++ ++ default: ++ return -ENOTTY; ++ } ++ ++ if (flags & PERF_IOC_FLAG_GROUP) ++ perf_event_for_each(event, func); ++ else ++ perf_event_for_each_child(event, func); ++ ++ return 0; ++} ++ ++#ifdef CONFIG_COMPAT ++static long perf_compat_ioctl(struct file *file, unsigned int cmd, ++ unsigned long arg) ++{ ++ switch (_IOC_NR(cmd)) { ++ case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): ++ case _IOC_NR(PERF_EVENT_IOC_ID): ++ /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ ++ if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { ++ cmd &= ~IOCSIZE_MASK; ++ cmd |= sizeof(void *) << IOCSIZE_SHIFT; ++ } ++ break; ++ } ++ return perf_ioctl(file, cmd, arg); ++} ++#else ++# define perf_compat_ioctl NULL ++#endif ++ ++int perf_event_task_enable(void) ++{ ++ struct perf_event *event; ++ ++ mutex_lock(¤t->perf_event_mutex); ++ list_for_each_entry(event, ¤t->perf_event_list, owner_entry) ++ perf_event_for_each_child(event, perf_event_enable); ++ mutex_unlock(¤t->perf_event_mutex); ++ ++ return 0; ++} ++ ++int perf_event_task_disable(void) ++{ ++ struct perf_event *event; ++ ++ mutex_lock(¤t->perf_event_mutex); ++ list_for_each_entry(event, ¤t->perf_event_list, owner_entry) ++ perf_event_for_each_child(event, perf_event_disable); ++ mutex_unlock(¤t->perf_event_mutex); ++ ++ return 0; ++} ++ ++static int perf_event_index(struct perf_event *event) ++{ ++ if (event->hw.state & PERF_HES_STOPPED) ++ return 0; ++ ++ if (event->state != PERF_EVENT_STATE_ACTIVE) ++ return 0; ++ ++ return event->pmu->event_idx(event); ++} ++ ++static void calc_timer_values(struct perf_event *event, ++ u64 *now, ++ u64 *enabled, ++ u64 *running) ++{ ++ u64 ctx_time; ++ ++ *now = perf_clock(); ++ ctx_time = event->shadow_ctx_time + *now; ++ *enabled = ctx_time - event->tstamp_enabled; ++ *running = ctx_time - event->tstamp_running; ++} ++ ++static void perf_event_init_userpage(struct perf_event *event) ++{ ++ struct perf_event_mmap_page *userpg; ++ struct ring_buffer *rb; ++ ++ rcu_read_lock(); ++ rb = rcu_dereference(event->rb); ++ if (!rb) ++ goto unlock; ++ ++ userpg = rb->user_page; ++ ++ /* Allow new userspace to detect that bit 0 is deprecated */ ++ userpg->cap_bit0_is_deprecated = 1; ++ userpg->size = offsetof(struct perf_event_mmap_page, __reserved); ++ ++unlock: ++ rcu_read_unlock(); ++} ++ ++void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) ++{ ++} ++ ++/* ++ * Callers need to ensure there can be no nesting of this function, otherwise ++ * the seqlock logic goes bad. We can not serialize this because the arch ++ * code calls this from NMI context. ++ */ ++void perf_event_update_userpage(struct perf_event *event) ++{ ++ struct perf_event_mmap_page *userpg; ++ struct ring_buffer *rb; ++ u64 enabled, running, now; ++ ++ rcu_read_lock(); ++ rb = rcu_dereference(event->rb); ++ if (!rb) ++ goto unlock; ++ ++ /* ++ * compute total_time_enabled, total_time_running ++ * based on snapshot values taken when the event ++ * was last scheduled in. ++ * ++ * we cannot simply called update_context_time() ++ * because of locking issue as we can be called in ++ * NMI context ++ */ ++ calc_timer_values(event, &now, &enabled, &running); ++ ++ userpg = rb->user_page; ++ /* ++ * Disable preemption so as to not let the corresponding user-space ++ * spin too long if we get preempted. ++ */ ++ preempt_disable(); ++ ++userpg->lock; ++ barrier(); ++ userpg->index = perf_event_index(event); ++ userpg->offset = perf_event_count(event); ++ if (userpg->index) ++ userpg->offset -= local64_read(&event->hw.prev_count); ++ ++ userpg->time_enabled = enabled + ++ atomic64_read(&event->child_total_time_enabled); ++ ++ userpg->time_running = running + ++ atomic64_read(&event->child_total_time_running); ++ ++ arch_perf_update_userpage(userpg, now); ++ ++ barrier(); ++ ++userpg->lock; ++ preempt_enable(); ++unlock: ++ rcu_read_unlock(); ++} ++ ++static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) ++{ ++ struct perf_event *event = vma->vm_file->private_data; ++ struct ring_buffer *rb; ++ int ret = VM_FAULT_SIGBUS; ++ ++ if (vmf->flags & FAULT_FLAG_MKWRITE) { ++ if (vmf->pgoff == 0) ++ ret = 0; ++ return ret; ++ } ++ ++ rcu_read_lock(); ++ rb = rcu_dereference(event->rb); ++ if (!rb) ++ goto unlock; ++ ++ if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) ++ goto unlock; ++ ++ vmf->page = perf_mmap_to_page(rb, vmf->pgoff); ++ if (!vmf->page) ++ goto unlock; ++ ++ get_page(vmf->page); ++ vmf->page->mapping = vma->vm_file->f_mapping; ++ vmf->page->index = vmf->pgoff; ++ ++ ret = 0; ++unlock: ++ rcu_read_unlock(); ++ ++ return ret; ++} ++ ++static void ring_buffer_attach(struct perf_event *event, ++ struct ring_buffer *rb) ++{ ++ struct ring_buffer *old_rb = NULL; ++ unsigned long flags; ++ ++ if (event->rb) { ++ /* ++ * Should be impossible, we set this when removing ++ * event->rb_entry and wait/clear when adding event->rb_entry. ++ */ ++ WARN_ON_ONCE(event->rcu_pending); ++ ++ old_rb = event->rb; ++ event->rcu_batches = get_state_synchronize_rcu(); ++ event->rcu_pending = 1; ++ ++ spin_lock_irqsave(&old_rb->event_lock, flags); ++ list_del_rcu(&event->rb_entry); ++ spin_unlock_irqrestore(&old_rb->event_lock, flags); ++ } ++ ++ if (event->rcu_pending && rb) { ++ cond_synchronize_rcu(event->rcu_batches); ++ event->rcu_pending = 0; ++ } ++ ++ if (rb) { ++ spin_lock_irqsave(&rb->event_lock, flags); ++ list_add_rcu(&event->rb_entry, &rb->event_list); ++ spin_unlock_irqrestore(&rb->event_lock, flags); ++ } ++ ++ rcu_assign_pointer(event->rb, rb); ++ ++ if (old_rb) { ++ ring_buffer_put(old_rb); ++ /* ++ * Since we detached before setting the new rb, so that we ++ * could attach the new rb, we could have missed a wakeup. ++ * Provide it now. ++ */ ++ wake_up_all(&event->waitq); ++ } ++} ++ ++static void ring_buffer_wakeup(struct perf_event *event) ++{ ++ struct ring_buffer *rb; ++ ++ rcu_read_lock(); ++ rb = rcu_dereference(event->rb); ++ if (rb) { ++ list_for_each_entry_rcu(event, &rb->event_list, rb_entry) ++ wake_up_all(&event->waitq); ++ } ++ rcu_read_unlock(); ++} ++ ++static void rb_free_rcu(struct rcu_head *rcu_head) ++{ ++ struct ring_buffer *rb; ++ ++ rb = container_of(rcu_head, struct ring_buffer, rcu_head); ++ rb_free(rb); ++} ++ ++static struct ring_buffer *ring_buffer_get(struct perf_event *event) ++{ ++ struct ring_buffer *rb; ++ ++ rcu_read_lock(); ++ rb = rcu_dereference(event->rb); ++ if (rb) { ++ if (!atomic_inc_not_zero(&rb->refcount)) ++ rb = NULL; ++ } ++ rcu_read_unlock(); ++ ++ return rb; ++} ++ ++static void ring_buffer_put(struct ring_buffer *rb) ++{ ++ if (!atomic_dec_and_test(&rb->refcount)) ++ return; ++ ++ WARN_ON_ONCE(!list_empty(&rb->event_list)); ++ ++ call_rcu(&rb->rcu_head, rb_free_rcu); ++} ++ ++static void perf_mmap_open(struct vm_area_struct *vma) ++{ ++ struct perf_event *event = vma->vm_file->private_data; ++ ++ atomic_inc(&event->mmap_count); ++ atomic_inc(&event->rb->mmap_count); ++} ++ ++/* ++ * A buffer can be mmap()ed multiple times; either directly through the same ++ * event, or through other events by use of perf_event_set_output(). ++ * ++ * In order to undo the VM accounting done by perf_mmap() we need to destroy ++ * the buffer here, where we still have a VM context. This means we need ++ * to detach all events redirecting to us. ++ */ ++static void perf_mmap_close(struct vm_area_struct *vma) ++{ ++ struct perf_event *event = vma->vm_file->private_data; ++ ++ struct ring_buffer *rb = ring_buffer_get(event); ++ struct user_struct *mmap_user = rb->mmap_user; ++ int mmap_locked = rb->mmap_locked; ++ unsigned long size = perf_data_size(rb); ++ ++ atomic_dec(&rb->mmap_count); ++ ++ if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) ++ goto out_put; ++ ++ ring_buffer_attach(event, NULL); ++ mutex_unlock(&event->mmap_mutex); ++ ++ /* If there's still other mmap()s of this buffer, we're done. */ ++ if (atomic_read(&rb->mmap_count)) ++ goto out_put; ++ ++ /* ++ * No other mmap()s, detach from all other events that might redirect ++ * into the now unreachable buffer. Somewhat complicated by the ++ * fact that rb::event_lock otherwise nests inside mmap_mutex. ++ */ ++again: ++ rcu_read_lock(); ++ list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { ++ if (!atomic_long_inc_not_zero(&event->refcount)) { ++ /* ++ * This event is en-route to free_event() which will ++ * detach it and remove it from the list. ++ */ ++ continue; ++ } ++ rcu_read_unlock(); ++ ++ mutex_lock(&event->mmap_mutex); ++ /* ++ * Check we didn't race with perf_event_set_output() which can ++ * swizzle the rb from under us while we were waiting to ++ * acquire mmap_mutex. ++ * ++ * If we find a different rb; ignore this event, a next ++ * iteration will no longer find it on the list. We have to ++ * still restart the iteration to make sure we're not now ++ * iterating the wrong list. ++ */ ++ if (event->rb == rb) ++ ring_buffer_attach(event, NULL); ++ ++ mutex_unlock(&event->mmap_mutex); ++ put_event(event); ++ ++ /* ++ * Restart the iteration; either we're on the wrong list or ++ * destroyed its integrity by doing a deletion. ++ */ ++ goto again; ++ } ++ rcu_read_unlock(); ++ ++ /* ++ * It could be there's still a few 0-ref events on the list; they'll ++ * get cleaned up by free_event() -- they'll also still have their ++ * ref on the rb and will free it whenever they are done with it. ++ * ++ * Aside from that, this buffer is 'fully' detached and unmapped, ++ * undo the VM accounting. ++ */ ++ ++ atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); ++ vma->vm_mm->pinned_vm -= mmap_locked; ++ free_uid(mmap_user); ++ ++out_put: ++ ring_buffer_put(rb); /* could be last */ ++} ++ ++static const struct vm_operations_struct perf_mmap_vmops = { ++ .open = perf_mmap_open, ++ .close = perf_mmap_close, ++ .fault = perf_mmap_fault, ++ .page_mkwrite = perf_mmap_fault, ++}; ++ ++static int perf_mmap(struct file *file, struct vm_area_struct *vma) ++{ ++ struct perf_event *event = file->private_data; ++ unsigned long user_locked, user_lock_limit; ++ struct user_struct *user = current_user(); ++ unsigned long locked, lock_limit; ++ struct ring_buffer *rb; ++ unsigned long vma_size; ++ unsigned long nr_pages; ++ long user_extra, extra; ++ int ret = 0, flags = 0; ++ ++ /* ++ * Don't allow mmap() of inherited per-task counters. This would ++ * create a performance issue due to all children writing to the ++ * same rb. ++ */ ++ if (event->cpu == -1 && event->attr.inherit) ++ return -EINVAL; ++ ++ if (!(vma->vm_flags & VM_SHARED)) ++ return -EINVAL; ++ ++ vma_size = vma->vm_end - vma->vm_start; ++ nr_pages = (vma_size / PAGE_SIZE) - 1; ++ ++ /* ++ * If we have rb pages ensure they're a power-of-two number, so we ++ * can do bitmasks instead of modulo. ++ */ ++ if (nr_pages != 0 && !is_power_of_2(nr_pages)) ++ return -EINVAL; ++ ++ if (vma_size != PAGE_SIZE * (1 + nr_pages)) ++ return -EINVAL; ++ ++ if (vma->vm_pgoff != 0) ++ return -EINVAL; ++ ++ WARN_ON_ONCE(event->ctx->parent_ctx); ++again: ++ mutex_lock(&event->mmap_mutex); ++ if (event->rb) { ++ if (event->rb->nr_pages != nr_pages) { ++ ret = -EINVAL; ++ goto unlock; ++ } ++ ++ if (!atomic_inc_not_zero(&event->rb->mmap_count)) { ++ /* ++ * Raced against perf_mmap_close() through ++ * perf_event_set_output(). Try again, hope for better ++ * luck. ++ */ ++ mutex_unlock(&event->mmap_mutex); ++ goto again; ++ } ++ ++ goto unlock; ++ } ++ ++ user_extra = nr_pages + 1; ++ user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); ++ ++ /* ++ * Increase the limit linearly with more CPUs: ++ */ ++ user_lock_limit *= num_online_cpus(); ++ ++ user_locked = atomic_long_read(&user->locked_vm) + user_extra; ++ ++ extra = 0; ++ if (user_locked > user_lock_limit) ++ extra = user_locked - user_lock_limit; ++ ++ lock_limit = rlimit(RLIMIT_MEMLOCK); ++ lock_limit >>= PAGE_SHIFT; ++ locked = vma->vm_mm->pinned_vm + extra; ++ ++ if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && ++ !capable(CAP_IPC_LOCK)) { ++ ret = -EPERM; ++ goto unlock; ++ } ++ ++ WARN_ON(event->rb); ++ ++ if (vma->vm_flags & VM_WRITE) ++ flags |= RING_BUFFER_WRITABLE; ++ ++ rb = rb_alloc(nr_pages, ++ event->attr.watermark ? event->attr.wakeup_watermark : 0, ++ event->cpu, flags); ++ ++ if (!rb) { ++ ret = -ENOMEM; ++ goto unlock; ++ } ++ ++ atomic_set(&rb->mmap_count, 1); ++ rb->mmap_locked = extra; ++ rb->mmap_user = get_current_user(); ++ ++ atomic_long_add(user_extra, &user->locked_vm); ++ vma->vm_mm->pinned_vm += extra; ++ ++ ring_buffer_attach(event, rb); ++ ++ perf_event_init_userpage(event); ++ perf_event_update_userpage(event); ++ ++unlock: ++ if (!ret) ++ atomic_inc(&event->mmap_count); ++ mutex_unlock(&event->mmap_mutex); ++ ++ /* ++ * Since pinned accounting is per vm we cannot allow fork() to copy our ++ * vma. ++ */ ++ vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; ++ vma->vm_ops = &perf_mmap_vmops; ++ ++ return ret; ++} ++ ++static int perf_fasync(int fd, struct file *filp, int on) ++{ ++ struct inode *inode = file_inode(filp); ++ struct perf_event *event = filp->private_data; ++ int retval; ++ ++ mutex_lock(&inode->i_mutex); ++ retval = fasync_helper(fd, filp, on, &event->fasync); ++ mutex_unlock(&inode->i_mutex); ++ ++ if (retval < 0) ++ return retval; ++ ++ return 0; ++} ++ ++static const struct file_operations perf_fops = { ++ .llseek = no_llseek, ++ .release = perf_release, ++ .read = perf_read, ++ .poll = perf_poll, ++ .unlocked_ioctl = perf_ioctl, ++ .compat_ioctl = perf_compat_ioctl, ++ .mmap = perf_mmap, ++ .fasync = perf_fasync, ++}; ++ ++/* ++ * Perf event wakeup ++ * ++ * If there's data, ensure we set the poll() state and publish everything ++ * to user-space before waking everybody up. ++ */ ++ ++void perf_event_wakeup(struct perf_event *event) ++{ ++ ring_buffer_wakeup(event); ++ ++ if (event->pending_kill) { ++ kill_fasync(&event->fasync, SIGIO, event->pending_kill); ++ event->pending_kill = 0; ++ } ++} ++ ++static void perf_pending_event(struct irq_work *entry) ++{ ++ struct perf_event *event = container_of(entry, ++ struct perf_event, pending); ++ int rctx; ++ ++ rctx = perf_swevent_get_recursion_context(); ++ /* ++ * If we 'fail' here, that's OK, it means recursion is already disabled ++ * and we won't recurse 'further'. ++ */ ++ ++ if (event->pending_disable) { ++ event->pending_disable = 0; ++ __perf_event_disable(event); ++ } ++ ++ if (event->pending_wakeup) { ++ event->pending_wakeup = 0; ++ perf_event_wakeup(event); ++ } ++ ++ if (rctx >= 0) ++ perf_swevent_put_recursion_context(rctx); ++} ++ ++/* ++ * We assume there is only KVM supporting the callbacks. ++ * Later on, we might change it to a list if there is ++ * another virtualization implementation supporting the callbacks. ++ */ ++struct perf_guest_info_callbacks *perf_guest_cbs; ++ ++int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) ++{ ++ perf_guest_cbs = cbs; ++ return 0; ++} ++EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); ++ ++int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) ++{ ++ perf_guest_cbs = NULL; ++ return 0; ++} ++EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); ++ ++static void ++perf_output_sample_regs(struct perf_output_handle *handle, ++ struct pt_regs *regs, u64 mask) ++{ ++ int bit; ++ ++ for_each_set_bit(bit, (const unsigned long *) &mask, ++ sizeof(mask) * BITS_PER_BYTE) { ++ u64 val; ++ ++ val = perf_reg_value(regs, bit); ++ perf_output_put(handle, val); ++ } ++} ++ ++static void perf_sample_regs_user(struct perf_regs_user *regs_user, ++ struct pt_regs *regs) ++{ ++ if (!user_mode(regs)) { ++ if (current->mm) ++ regs = task_pt_regs(current); ++ else ++ regs = NULL; ++ } ++ ++ if (regs) { ++ regs_user->regs = regs; ++ regs_user->abi = perf_reg_abi(current); ++ } ++} ++ ++/* ++ * Get remaining task size from user stack pointer. ++ * ++ * It'd be better to take stack vma map and limit this more ++ * precisly, but there's no way to get it safely under interrupt, ++ * so using TASK_SIZE as limit. ++ */ ++static u64 perf_ustack_task_size(struct pt_regs *regs) ++{ ++ unsigned long addr = perf_user_stack_pointer(regs); ++ ++ if (!addr || addr >= TASK_SIZE) ++ return 0; ++ ++ return TASK_SIZE - addr; ++} ++ ++static u16 ++perf_sample_ustack_size(u16 stack_size, u16 header_size, ++ struct pt_regs *regs) ++{ ++ u64 task_size; ++ ++ /* No regs, no stack pointer, no dump. */ ++ if (!regs) ++ return 0; ++ ++ /* ++ * Check if we fit in with the requested stack size into the: ++ * - TASK_SIZE ++ * If we don't, we limit the size to the TASK_SIZE. ++ * ++ * - remaining sample size ++ * If we don't, we customize the stack size to ++ * fit in to the remaining sample size. ++ */ ++ ++ task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); ++ stack_size = min(stack_size, (u16) task_size); ++ ++ /* Current header size plus static size and dynamic size. */ ++ header_size += 2 * sizeof(u64); ++ ++ /* Do we fit in with the current stack dump size? */ ++ if ((u16) (header_size + stack_size) < header_size) { ++ /* ++ * If we overflow the maximum size for the sample, ++ * we customize the stack dump size to fit in. ++ */ ++ stack_size = USHRT_MAX - header_size - sizeof(u64); ++ stack_size = round_up(stack_size, sizeof(u64)); ++ } ++ ++ return stack_size; ++} ++ ++static void ++perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, ++ struct pt_regs *regs) ++{ ++ /* Case of a kernel thread, nothing to dump */ ++ if (!regs) { ++ u64 size = 0; ++ perf_output_put(handle, size); ++ } else { ++ unsigned long sp; ++ unsigned int rem; ++ u64 dyn_size; ++ ++ /* ++ * We dump: ++ * static size ++ * - the size requested by user or the best one we can fit ++ * in to the sample max size ++ * data ++ * - user stack dump data ++ * dynamic size ++ * - the actual dumped size ++ */ ++ ++ /* Static size. */ ++ perf_output_put(handle, dump_size); ++ ++ /* Data. */ ++ sp = perf_user_stack_pointer(regs); ++ rem = __output_copy_user(handle, (void *) sp, dump_size); ++ dyn_size = dump_size - rem; ++ ++ perf_output_skip(handle, rem); ++ ++ /* Dynamic size. */ ++ perf_output_put(handle, dyn_size); ++ } ++} ++ ++static void __perf_event_header__init_id(struct perf_event_header *header, ++ struct perf_sample_data *data, ++ struct perf_event *event) ++{ ++ u64 sample_type = event->attr.sample_type; ++ ++ data->type = sample_type; ++ header->size += event->id_header_size; ++ ++ if (sample_type & PERF_SAMPLE_TID) { ++ /* namespace issues */ ++ data->tid_entry.pid = perf_event_pid(event, current); ++ data->tid_entry.tid = perf_event_tid(event, current); ++ } ++ ++ if (sample_type & PERF_SAMPLE_TIME) ++ data->time = perf_clock(); ++ ++ if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) ++ data->id = primary_event_id(event); ++ ++ if (sample_type & PERF_SAMPLE_STREAM_ID) ++ data->stream_id = event->id; ++ ++ if (sample_type & PERF_SAMPLE_CPU) { ++ data->cpu_entry.cpu = raw_smp_processor_id(); ++ data->cpu_entry.reserved = 0; ++ } ++} ++ ++void perf_event_header__init_id(struct perf_event_header *header, ++ struct perf_sample_data *data, ++ struct perf_event *event) ++{ ++ if (event->attr.sample_id_all) ++ __perf_event_header__init_id(header, data, event); ++} ++ ++static void __perf_event__output_id_sample(struct perf_output_handle *handle, ++ struct perf_sample_data *data) ++{ ++ u64 sample_type = data->type; ++ ++ if (sample_type & PERF_SAMPLE_TID) ++ perf_output_put(handle, data->tid_entry); ++ ++ if (sample_type & PERF_SAMPLE_TIME) ++ perf_output_put(handle, data->time); ++ ++ if (sample_type & PERF_SAMPLE_ID) ++ perf_output_put(handle, data->id); ++ ++ if (sample_type & PERF_SAMPLE_STREAM_ID) ++ perf_output_put(handle, data->stream_id); ++ ++ if (sample_type & PERF_SAMPLE_CPU) ++ perf_output_put(handle, data->cpu_entry); ++ ++ if (sample_type & PERF_SAMPLE_IDENTIFIER) ++ perf_output_put(handle, data->id); ++} ++ ++void perf_event__output_id_sample(struct perf_event *event, ++ struct perf_output_handle *handle, ++ struct perf_sample_data *sample) ++{ ++ if (event->attr.sample_id_all) ++ __perf_event__output_id_sample(handle, sample); ++} ++ ++static void perf_output_read_one(struct perf_output_handle *handle, ++ struct perf_event *event, ++ u64 enabled, u64 running) ++{ ++ u64 read_format = event->attr.read_format; ++ u64 values[4]; ++ int n = 0; ++ ++ values[n++] = perf_event_count(event); ++ if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { ++ values[n++] = enabled + ++ atomic64_read(&event->child_total_time_enabled); ++ } ++ if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { ++ values[n++] = running + ++ atomic64_read(&event->child_total_time_running); ++ } ++ if (read_format & PERF_FORMAT_ID) ++ values[n++] = primary_event_id(event); ++ ++ __output_copy(handle, values, n * sizeof(u64)); ++} ++ ++/* ++ * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. ++ */ ++static void perf_output_read_group(struct perf_output_handle *handle, ++ struct perf_event *event, ++ u64 enabled, u64 running) ++{ ++ struct perf_event *leader = event->group_leader, *sub; ++ u64 read_format = event->attr.read_format; ++ u64 values[5]; ++ int n = 0; ++ ++ values[n++] = 1 + leader->nr_siblings; ++ ++ if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) ++ values[n++] = enabled; ++ ++ if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) ++ values[n++] = running; ++ ++ if (leader != event) ++ leader->pmu->read(leader); ++ ++ values[n++] = perf_event_count(leader); ++ if (read_format & PERF_FORMAT_ID) ++ values[n++] = primary_event_id(leader); ++ ++ __output_copy(handle, values, n * sizeof(u64)); ++ ++ list_for_each_entry(sub, &leader->sibling_list, group_entry) { ++ n = 0; ++ ++ if ((sub != event) && ++ (sub->state == PERF_EVENT_STATE_ACTIVE)) ++ sub->pmu->read(sub); ++ ++ values[n++] = perf_event_count(sub); ++ if (read_format & PERF_FORMAT_ID) ++ values[n++] = primary_event_id(sub); ++ ++ __output_copy(handle, values, n * sizeof(u64)); ++ } ++} ++ ++#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ ++ PERF_FORMAT_TOTAL_TIME_RUNNING) ++ ++static void perf_output_read(struct perf_output_handle *handle, ++ struct perf_event *event) ++{ ++ u64 enabled = 0, running = 0, now; ++ u64 read_format = event->attr.read_format; ++ ++ /* ++ * compute total_time_enabled, total_time_running ++ * based on snapshot values taken when the event ++ * was last scheduled in. ++ * ++ * we cannot simply called update_context_time() ++ * because of locking issue as we are called in ++ * NMI context ++ */ ++ if (read_format & PERF_FORMAT_TOTAL_TIMES) ++ calc_timer_values(event, &now, &enabled, &running); ++ ++ if (event->attr.read_format & PERF_FORMAT_GROUP) ++ perf_output_read_group(handle, event, enabled, running); ++ else ++ perf_output_read_one(handle, event, enabled, running); ++} ++ ++void perf_output_sample(struct perf_output_handle *handle, ++ struct perf_event_header *header, ++ struct perf_sample_data *data, ++ struct perf_event *event) ++{ ++ u64 sample_type = data->type; ++ ++ perf_output_put(handle, *header); ++ ++ if (sample_type & PERF_SAMPLE_IDENTIFIER) ++ perf_output_put(handle, data->id); ++ ++ if (sample_type & PERF_SAMPLE_IP) ++ perf_output_put(handle, data->ip); ++ ++ if (sample_type & PERF_SAMPLE_TID) ++ perf_output_put(handle, data->tid_entry); ++ ++ if (sample_type & PERF_SAMPLE_TIME) ++ perf_output_put(handle, data->time); ++ ++ if (sample_type & PERF_SAMPLE_ADDR) ++ perf_output_put(handle, data->addr); ++ ++ if (sample_type & PERF_SAMPLE_ID) ++ perf_output_put(handle, data->id); ++ ++ if (sample_type & PERF_SAMPLE_STREAM_ID) ++ perf_output_put(handle, data->stream_id); ++ ++ if (sample_type & PERF_SAMPLE_CPU) ++ perf_output_put(handle, data->cpu_entry); ++ ++ if (sample_type & PERF_SAMPLE_PERIOD) ++ perf_output_put(handle, data->period); ++ ++ if (sample_type & PERF_SAMPLE_READ) ++ perf_output_read(handle, event); ++ ++ if (sample_type & PERF_SAMPLE_CALLCHAIN) { ++ if (data->callchain) { ++ int size = 1; ++ ++ if (data->callchain) ++ size += data->callchain->nr; ++ ++ size *= sizeof(u64); ++ ++ __output_copy(handle, data->callchain, size); ++ } else { ++ u64 nr = 0; ++ perf_output_put(handle, nr); ++ } ++ } ++ ++ if (sample_type & PERF_SAMPLE_RAW) { ++ if (data->raw) { ++ perf_output_put(handle, data->raw->size); ++ __output_copy(handle, data->raw->data, ++ data->raw->size); ++ } else { ++ struct { ++ u32 size; ++ u32 data; ++ } raw = { ++ .size = sizeof(u32), ++ .data = 0, ++ }; ++ perf_output_put(handle, raw); ++ } ++ } ++ ++ if (sample_type & PERF_SAMPLE_BRANCH_STACK) { ++ if (data->br_stack) { ++ size_t size; ++ ++ size = data->br_stack->nr ++ * sizeof(struct perf_branch_entry); ++ ++ perf_output_put(handle, data->br_stack->nr); ++ perf_output_copy(handle, data->br_stack->entries, size); ++ } else { ++ /* ++ * we always store at least the value of nr ++ */ ++ u64 nr = 0; ++ perf_output_put(handle, nr); ++ } ++ } ++ ++ if (sample_type & PERF_SAMPLE_REGS_USER) { ++ u64 abi = data->regs_user.abi; ++ ++ /* ++ * If there are no regs to dump, notice it through ++ * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). ++ */ ++ perf_output_put(handle, abi); ++ ++ if (abi) { ++ u64 mask = event->attr.sample_regs_user; ++ perf_output_sample_regs(handle, ++ data->regs_user.regs, ++ mask); ++ } ++ } ++ ++ if (sample_type & PERF_SAMPLE_STACK_USER) { ++ perf_output_sample_ustack(handle, ++ data->stack_user_size, ++ data->regs_user.regs); ++ } ++ ++ if (sample_type & PERF_SAMPLE_WEIGHT) ++ perf_output_put(handle, data->weight); ++ ++ if (sample_type & PERF_SAMPLE_DATA_SRC) ++ perf_output_put(handle, data->data_src.val); ++ ++ if (sample_type & PERF_SAMPLE_TRANSACTION) ++ perf_output_put(handle, data->txn); ++ ++ if (!event->attr.watermark) { ++ int wakeup_events = event->attr.wakeup_events; ++ ++ if (wakeup_events) { ++ struct ring_buffer *rb = handle->rb; ++ int events = local_inc_return(&rb->events); ++ ++ if (events >= wakeup_events) { ++ local_sub(wakeup_events, &rb->events); ++ local_inc(&rb->wakeup); ++ } ++ } ++ } ++} ++ ++void perf_prepare_sample(struct perf_event_header *header, ++ struct perf_sample_data *data, ++ struct perf_event *event, ++ struct pt_regs *regs) ++{ ++ u64 sample_type = event->attr.sample_type; ++ ++ header->type = PERF_RECORD_SAMPLE; ++ header->size = sizeof(*header) + event->header_size; ++ ++ header->misc = 0; ++ header->misc |= perf_misc_flags(regs); ++ ++ __perf_event_header__init_id(header, data, event); ++ ++ if (sample_type & PERF_SAMPLE_IP) ++ data->ip = perf_instruction_pointer(regs); ++ ++ if (sample_type & PERF_SAMPLE_CALLCHAIN) { ++ int size = 1; ++ ++ data->callchain = perf_callchain(event, regs); ++ ++ if (data->callchain) ++ size += data->callchain->nr; ++ ++ header->size += size * sizeof(u64); ++ } ++ ++ if (sample_type & PERF_SAMPLE_RAW) { ++ int size = sizeof(u32); ++ ++ if (data->raw) ++ size += data->raw->size; ++ else ++ size += sizeof(u32); ++ ++ WARN_ON_ONCE(size & (sizeof(u64)-1)); ++ header->size += size; ++ } ++ ++ if (sample_type & PERF_SAMPLE_BRANCH_STACK) { ++ int size = sizeof(u64); /* nr */ ++ if (data->br_stack) { ++ size += data->br_stack->nr ++ * sizeof(struct perf_branch_entry); ++ } ++ header->size += size; ++ } ++ ++ if (sample_type & PERF_SAMPLE_REGS_USER) { ++ /* regs dump ABI info */ ++ int size = sizeof(u64); ++ ++ perf_sample_regs_user(&data->regs_user, regs); ++ ++ if (data->regs_user.regs) { ++ u64 mask = event->attr.sample_regs_user; ++ size += hweight64(mask) * sizeof(u64); ++ } ++ ++ header->size += size; ++ } ++ ++ if (sample_type & PERF_SAMPLE_STACK_USER) { ++ /* ++ * Either we need PERF_SAMPLE_STACK_USER bit to be allways ++ * processed as the last one or have additional check added ++ * in case new sample type is added, because we could eat ++ * up the rest of the sample size. ++ */ ++ struct perf_regs_user *uregs = &data->regs_user; ++ u16 stack_size = event->attr.sample_stack_user; ++ u16 size = sizeof(u64); ++ ++ if (!uregs->abi) ++ perf_sample_regs_user(uregs, regs); ++ ++ stack_size = perf_sample_ustack_size(stack_size, header->size, ++ uregs->regs); ++ ++ /* ++ * If there is something to dump, add space for the dump ++ * itself and for the field that tells the dynamic size, ++ * which is how many have been actually dumped. ++ */ ++ if (stack_size) ++ size += sizeof(u64) + stack_size; ++ ++ data->stack_user_size = stack_size; ++ header->size += size; ++ } ++} ++ ++static void perf_event_output(struct perf_event *event, ++ struct perf_sample_data *data, ++ struct pt_regs *regs) ++{ ++ struct perf_output_handle handle; ++ struct perf_event_header header; ++ ++ /* protect the callchain buffers */ ++ rcu_read_lock(); ++ ++ perf_prepare_sample(&header, data, event, regs); ++ ++ if (perf_output_begin(&handle, event, header.size)) ++ goto exit; ++ ++ perf_output_sample(&handle, &header, data, event); ++ ++ perf_output_end(&handle); ++ ++exit: ++ rcu_read_unlock(); ++} ++ ++/* ++ * read event_id ++ */ ++ ++struct perf_read_event { ++ struct perf_event_header header; ++ ++ u32 pid; ++ u32 tid; ++}; ++ ++static void ++perf_event_read_event(struct perf_event *event, ++ struct task_struct *task) ++{ ++ struct perf_output_handle handle; ++ struct perf_sample_data sample; ++ struct perf_read_event read_event = { ++ .header = { ++ .type = PERF_RECORD_READ, ++ .misc = 0, ++ .size = sizeof(read_event) + event->read_size, ++ }, ++ .pid = perf_event_pid(event, task), ++ .tid = perf_event_tid(event, task), ++ }; ++ int ret; ++ ++ perf_event_header__init_id(&read_event.header, &sample, event); ++ ret = perf_output_begin(&handle, event, read_event.header.size); ++ if (ret) ++ return; ++ ++ perf_output_put(&handle, read_event); ++ perf_output_read(&handle, event); ++ perf_event__output_id_sample(event, &handle, &sample); ++ ++ perf_output_end(&handle); ++} ++ ++typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); ++ ++static void ++perf_event_aux_ctx(struct perf_event_context *ctx, ++ perf_event_aux_output_cb output, ++ void *data) ++{ ++ struct perf_event *event; ++ ++ list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { ++ if (event->state < PERF_EVENT_STATE_INACTIVE) ++ continue; ++ if (!event_filter_match(event)) ++ continue; ++ output(event, data); ++ } ++} ++ ++static void ++perf_event_aux(perf_event_aux_output_cb output, void *data, ++ struct perf_event_context *task_ctx) ++{ ++ struct perf_cpu_context *cpuctx; ++ struct perf_event_context *ctx; ++ struct pmu *pmu; ++ int ctxn; ++ ++ rcu_read_lock(); ++ list_for_each_entry_rcu(pmu, &pmus, entry) { ++ cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); ++ if (cpuctx->unique_pmu != pmu) ++ goto next; ++ perf_event_aux_ctx(&cpuctx->ctx, output, data); ++ if (task_ctx) ++ goto next; ++ ctxn = pmu->task_ctx_nr; ++ if (ctxn < 0) ++ goto next; ++ ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); ++ if (ctx) ++ perf_event_aux_ctx(ctx, output, data); ++next: ++ put_cpu_ptr(pmu->pmu_cpu_context); ++ } ++ ++ if (task_ctx) { ++ preempt_disable(); ++ perf_event_aux_ctx(task_ctx, output, data); ++ preempt_enable(); ++ } ++ rcu_read_unlock(); ++} ++ ++/* ++ * task tracking -- fork/exit ++ * ++ * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task ++ */ ++ ++struct perf_task_event { ++ struct task_struct *task; ++ struct perf_event_context *task_ctx; ++ ++ struct { ++ struct perf_event_header header; ++ ++ u32 pid; ++ u32 ppid; ++ u32 tid; ++ u32 ptid; ++ u64 time; ++ } event_id; ++}; ++ ++static int perf_event_task_match(struct perf_event *event) ++{ ++ return event->attr.comm || event->attr.mmap || ++ event->attr.mmap2 || event->attr.mmap_data || ++ event->attr.task; ++} ++ ++static void perf_event_task_output(struct perf_event *event, ++ void *data) ++{ ++ struct perf_task_event *task_event = data; ++ struct perf_output_handle handle; ++ struct perf_sample_data sample; ++ struct task_struct *task = task_event->task; ++ int ret, size = task_event->event_id.header.size; ++ ++ if (!perf_event_task_match(event)) ++ return; ++ ++ perf_event_header__init_id(&task_event->event_id.header, &sample, event); ++ ++ ret = perf_output_begin(&handle, event, ++ task_event->event_id.header.size); ++ if (ret) ++ goto out; ++ ++ task_event->event_id.pid = perf_event_pid(event, task); ++ task_event->event_id.ppid = perf_event_pid(event, current); ++ ++ task_event->event_id.tid = perf_event_tid(event, task); ++ task_event->event_id.ptid = perf_event_tid(event, current); ++ ++ perf_output_put(&handle, task_event->event_id); ++ ++ perf_event__output_id_sample(event, &handle, &sample); ++ ++ perf_output_end(&handle); ++out: ++ task_event->event_id.header.size = size; ++} ++ ++static void perf_event_task(struct task_struct *task, ++ struct perf_event_context *task_ctx, ++ int new) ++{ ++ struct perf_task_event task_event; ++ ++ if (!atomic_read(&nr_comm_events) && ++ !atomic_read(&nr_mmap_events) && ++ !atomic_read(&nr_task_events)) ++ return; ++ ++ task_event = (struct perf_task_event){ ++ .task = task, ++ .task_ctx = task_ctx, ++ .event_id = { ++ .header = { ++ .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, ++ .misc = 0, ++ .size = sizeof(task_event.event_id), ++ }, ++ /* .pid */ ++ /* .ppid */ ++ /* .tid */ ++ /* .ptid */ ++ .time = perf_clock(), ++ }, ++ }; ++ ++ perf_event_aux(perf_event_task_output, ++ &task_event, ++ task_ctx); ++} ++ ++void perf_event_fork(struct task_struct *task) ++{ ++ perf_event_task(task, NULL, 1); ++} ++ ++/* ++ * comm tracking ++ */ ++ ++struct perf_comm_event { ++ struct task_struct *task; ++ char *comm; ++ int comm_size; ++ ++ struct { ++ struct perf_event_header header; ++ ++ u32 pid; ++ u32 tid; ++ } event_id; ++}; ++ ++static int perf_event_comm_match(struct perf_event *event) ++{ ++ return event->attr.comm; ++} ++ ++static void perf_event_comm_output(struct perf_event *event, ++ void *data) ++{ ++ struct perf_comm_event *comm_event = data; ++ struct perf_output_handle handle; ++ struct perf_sample_data sample; ++ int size = comm_event->event_id.header.size; ++ int ret; ++ ++ if (!perf_event_comm_match(event)) ++ return; ++ ++ perf_event_header__init_id(&comm_event->event_id.header, &sample, event); ++ ret = perf_output_begin(&handle, event, ++ comm_event->event_id.header.size); ++ ++ if (ret) ++ goto out; ++ ++ comm_event->event_id.pid = perf_event_pid(event, comm_event->task); ++ comm_event->event_id.tid = perf_event_tid(event, comm_event->task); ++ ++ perf_output_put(&handle, comm_event->event_id); ++ __output_copy(&handle, comm_event->comm, ++ comm_event->comm_size); ++ ++ perf_event__output_id_sample(event, &handle, &sample); ++ ++ perf_output_end(&handle); ++out: ++ comm_event->event_id.header.size = size; ++} ++ ++static void perf_event_comm_event(struct perf_comm_event *comm_event) ++{ ++ char comm[TASK_COMM_LEN]; ++ unsigned int size; ++ ++ memset(comm, 0, sizeof(comm)); ++ strlcpy(comm, comm_event->task->comm, sizeof(comm)); ++ size = ALIGN(strlen(comm)+1, sizeof(u64)); ++ ++ comm_event->comm = comm; ++ comm_event->comm_size = size; ++ ++ comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; ++ ++ perf_event_aux(perf_event_comm_output, ++ comm_event, ++ NULL); ++} ++ ++void perf_event_comm(struct task_struct *task, bool exec) ++{ ++ struct perf_comm_event comm_event; ++ ++ if (!atomic_read(&nr_comm_events)) ++ return; ++ ++ comm_event = (struct perf_comm_event){ ++ .task = task, ++ /* .comm */ ++ /* .comm_size */ ++ .event_id = { ++ .header = { ++ .type = PERF_RECORD_COMM, ++ .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, ++ /* .size */ ++ }, ++ /* .pid */ ++ /* .tid */ ++ }, ++ }; ++ ++ perf_event_comm_event(&comm_event); ++} ++ ++/* ++ * mmap tracking ++ */ ++ ++struct perf_mmap_event { ++ struct vm_area_struct *vma; ++ ++ const char *file_name; ++ int file_size; ++ int maj, min; ++ u64 ino; ++ u64 ino_generation; ++ u32 prot, flags; ++ ++ struct { ++ struct perf_event_header header; ++ ++ u32 pid; ++ u32 tid; ++ u64 start; ++ u64 len; ++ u64 pgoff; ++ } event_id; ++}; ++ ++static int perf_event_mmap_match(struct perf_event *event, ++ void *data) ++{ ++ struct perf_mmap_event *mmap_event = data; ++ struct vm_area_struct *vma = mmap_event->vma; ++ int executable = vma->vm_flags & VM_EXEC; ++ ++ return (!executable && event->attr.mmap_data) || ++ (executable && (event->attr.mmap || event->attr.mmap2)); ++} ++ ++static void perf_event_mmap_output(struct perf_event *event, ++ void *data) ++{ ++ struct perf_mmap_event *mmap_event = data; ++ struct perf_output_handle handle; ++ struct perf_sample_data sample; ++ int size = mmap_event->event_id.header.size; ++ int ret; ++ ++ if (!perf_event_mmap_match(event, data)) ++ return; ++ ++ if (event->attr.mmap2) { ++ mmap_event->event_id.header.type = PERF_RECORD_MMAP2; ++ mmap_event->event_id.header.size += sizeof(mmap_event->maj); ++ mmap_event->event_id.header.size += sizeof(mmap_event->min); ++ mmap_event->event_id.header.size += sizeof(mmap_event->ino); ++ mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); ++ mmap_event->event_id.header.size += sizeof(mmap_event->prot); ++ mmap_event->event_id.header.size += sizeof(mmap_event->flags); ++ } ++ ++ perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); ++ ret = perf_output_begin(&handle, event, ++ mmap_event->event_id.header.size); ++ if (ret) ++ goto out; ++ ++ mmap_event->event_id.pid = perf_event_pid(event, current); ++ mmap_event->event_id.tid = perf_event_tid(event, current); ++ ++ perf_output_put(&handle, mmap_event->event_id); ++ ++ if (event->attr.mmap2) { ++ perf_output_put(&handle, mmap_event->maj); ++ perf_output_put(&handle, mmap_event->min); ++ perf_output_put(&handle, mmap_event->ino); ++ perf_output_put(&handle, mmap_event->ino_generation); ++ perf_output_put(&handle, mmap_event->prot); ++ perf_output_put(&handle, mmap_event->flags); ++ } ++ ++ __output_copy(&handle, mmap_event->file_name, ++ mmap_event->file_size); ++ ++ perf_event__output_id_sample(event, &handle, &sample); ++ ++ perf_output_end(&handle); ++out: ++ mmap_event->event_id.header.size = size; ++} ++ ++static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) ++{ ++ struct vm_area_struct *vma = mmap_event->vma; ++ struct file *file = vma->vm_file; ++ int maj = 0, min = 0; ++ u64 ino = 0, gen = 0; ++ u32 prot = 0, flags = 0; ++ unsigned int size; ++ char tmp[16]; ++ char *buf = NULL; ++ char *name; ++ ++ if (file) { ++ struct inode *inode; ++ dev_t dev; ++ ++ buf = kmalloc(PATH_MAX, GFP_KERNEL); ++ if (!buf) { ++ name = "//enomem"; ++ goto cpy_name; ++ } ++ /* ++ * d_path() works from the end of the rb backwards, so we ++ * need to add enough zero bytes after the string to handle ++ * the 64bit alignment we do later. ++ */ ++ name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); ++ if (IS_ERR(name)) { ++ name = "//toolong"; ++ goto cpy_name; ++ } ++ inode = file_inode(vma->vm_file); ++ dev = inode->i_sb->s_dev; ++ ino = inode->i_ino; ++ gen = inode->i_generation; ++ maj = MAJOR(dev); ++ min = MINOR(dev); ++ ++ if (vma->vm_flags & VM_READ) ++ prot |= PROT_READ; ++ if (vma->vm_flags & VM_WRITE) ++ prot |= PROT_WRITE; ++ if (vma->vm_flags & VM_EXEC) ++ prot |= PROT_EXEC; ++ ++ if (vma->vm_flags & VM_MAYSHARE) ++ flags = MAP_SHARED; ++ else ++ flags = MAP_PRIVATE; ++ ++ if (vma->vm_flags & VM_DENYWRITE) ++ flags |= MAP_DENYWRITE; ++ if (vma->vm_flags & VM_MAYEXEC) ++ flags |= MAP_EXECUTABLE; ++ if (vma->vm_flags & VM_LOCKED) ++ flags |= MAP_LOCKED; ++ if (vma->vm_flags & VM_HUGETLB) ++ flags |= MAP_HUGETLB; ++ ++ goto got_name; ++ } else { ++ if (vma->vm_ops && vma->vm_ops->name) { ++ name = (char *) vma->vm_ops->name(vma); ++ if (name) ++ goto cpy_name; ++ } ++ ++ name = (char *)arch_vma_name(vma); ++ if (name) ++ goto cpy_name; ++ ++ if (vma->vm_start <= vma->vm_mm->start_brk && ++ vma->vm_end >= vma->vm_mm->brk) { ++ name = "[heap]"; ++ goto cpy_name; ++ } ++ if (vma->vm_start <= vma->vm_mm->start_stack && ++ vma->vm_end >= vma->vm_mm->start_stack) { ++ name = "[stack]"; ++ goto cpy_name; ++ } ++ ++ name = "//anon"; ++ goto cpy_name; ++ } ++ ++cpy_name: ++ strlcpy(tmp, name, sizeof(tmp)); ++ name = tmp; ++got_name: ++ /* ++ * Since our buffer works in 8 byte units we need to align our string ++ * size to a multiple of 8. However, we must guarantee the tail end is ++ * zero'd out to avoid leaking random bits to userspace. ++ */ ++ size = strlen(name)+1; ++ while (!IS_ALIGNED(size, sizeof(u64))) ++ name[size++] = '\0'; ++ ++ mmap_event->file_name = name; ++ mmap_event->file_size = size; ++ mmap_event->maj = maj; ++ mmap_event->min = min; ++ mmap_event->ino = ino; ++ mmap_event->ino_generation = gen; ++ mmap_event->prot = prot; ++ mmap_event->flags = flags; ++ ++ if (!(vma->vm_flags & VM_EXEC)) ++ mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; ++ ++ mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; ++ ++ perf_event_aux(perf_event_mmap_output, ++ mmap_event, ++ NULL); ++ ++ kfree(buf); ++} ++ ++void perf_event_mmap(struct vm_area_struct *vma) ++{ ++ struct perf_mmap_event mmap_event; ++ ++ if (!atomic_read(&nr_mmap_events)) ++ return; ++ ++ mmap_event = (struct perf_mmap_event){ ++ .vma = vma, ++ /* .file_name */ ++ /* .file_size */ ++ .event_id = { ++ .header = { ++ .type = PERF_RECORD_MMAP, ++ .misc = PERF_RECORD_MISC_USER, ++ /* .size */ ++ }, ++ /* .pid */ ++ /* .tid */ ++ .start = vma->vm_start, ++ .len = vma->vm_end - vma->vm_start, ++ .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, ++ }, ++ /* .maj (attr_mmap2 only) */ ++ /* .min (attr_mmap2 only) */ ++ /* .ino (attr_mmap2 only) */ ++ /* .ino_generation (attr_mmap2 only) */ ++ /* .prot (attr_mmap2 only) */ ++ /* .flags (attr_mmap2 only) */ ++ }; ++ ++ perf_event_mmap_event(&mmap_event); ++} ++ ++/* ++ * IRQ throttle logging ++ */ ++ ++static void perf_log_throttle(struct perf_event *event, int enable) ++{ ++ struct perf_output_handle handle; ++ struct perf_sample_data sample; ++ int ret; ++ ++ struct { ++ struct perf_event_header header; ++ u64 time; ++ u64 id; ++ u64 stream_id; ++ } throttle_event = { ++ .header = { ++ .type = PERF_RECORD_THROTTLE, ++ .misc = 0, ++ .size = sizeof(throttle_event), ++ }, ++ .time = perf_clock(), ++ .id = primary_event_id(event), ++ .stream_id = event->id, ++ }; ++ ++ if (enable) ++ throttle_event.header.type = PERF_RECORD_UNTHROTTLE; ++ ++ perf_event_header__init_id(&throttle_event.header, &sample, event); ++ ++ ret = perf_output_begin(&handle, event, ++ throttle_event.header.size); ++ if (ret) ++ return; ++ ++ perf_output_put(&handle, throttle_event); ++ perf_event__output_id_sample(event, &handle, &sample); ++ perf_output_end(&handle); ++} ++ ++/* ++ * Generic event overflow handling, sampling. ++ */ ++ ++static int __perf_event_overflow(struct perf_event *event, ++ int throttle, struct perf_sample_data *data, ++ struct pt_regs *regs) ++{ ++ int events = atomic_read(&event->event_limit); ++ struct hw_perf_event *hwc = &event->hw; ++ u64 seq; ++ int ret = 0; ++ ++ /* ++ * Non-sampling counters might still use the PMI to fold short ++ * hardware counters, ignore those. ++ */ ++ if (unlikely(!is_sampling_event(event))) ++ return 0; ++ ++ seq = __this_cpu_read(perf_throttled_seq); ++ if (seq != hwc->interrupts_seq) { ++ hwc->interrupts_seq = seq; ++ hwc->interrupts = 1; ++ } else { ++ hwc->interrupts++; ++ if (unlikely(throttle ++ && hwc->interrupts >= max_samples_per_tick)) { ++ __this_cpu_inc(perf_throttled_count); ++ hwc->interrupts = MAX_INTERRUPTS; ++ perf_log_throttle(event, 0); ++ tick_nohz_full_kick(); ++ ret = 1; ++ } ++ } ++ ++ if (event->attr.freq) { ++ u64 now = perf_clock(); ++ s64 delta = now - hwc->freq_time_stamp; ++ ++ hwc->freq_time_stamp = now; ++ ++ if (delta > 0 && delta < 2*TICK_NSEC) ++ perf_adjust_period(event, delta, hwc->last_period, true); ++ } ++ ++ /* ++ * XXX event_limit might not quite work as expected on inherited ++ * events ++ */ ++ ++ event->pending_kill = POLL_IN; ++ if (events && atomic_dec_and_test(&event->event_limit)) { ++ ret = 1; ++ event->pending_kill = POLL_HUP; ++ event->pending_disable = 1; ++ irq_work_queue(&event->pending); ++ } ++ ++ if (event->overflow_handler) ++ event->overflow_handler(event, data, regs); ++ else ++ perf_event_output(event, data, regs); ++ ++ if (event->fasync && event->pending_kill) { ++ event->pending_wakeup = 1; ++ irq_work_queue(&event->pending); ++ } ++ ++ return ret; ++} ++ ++int perf_event_overflow(struct perf_event *event, ++ struct perf_sample_data *data, ++ struct pt_regs *regs) ++{ ++ return __perf_event_overflow(event, 1, data, regs); ++} ++ ++/* ++ * Generic software event infrastructure ++ */ ++ ++struct swevent_htable { ++ struct swevent_hlist *swevent_hlist; ++ struct mutex hlist_mutex; ++ int hlist_refcount; ++ ++ /* Recursion avoidance in each contexts */ ++ int recursion[PERF_NR_CONTEXTS]; ++ ++ /* Keeps track of cpu being initialized/exited */ ++ bool online; ++}; ++ ++static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); ++ ++/* ++ * We directly increment event->count and keep a second value in ++ * event->hw.period_left to count intervals. This period event ++ * is kept in the range [-sample_period, 0] so that we can use the ++ * sign as trigger. ++ */ ++ ++u64 perf_swevent_set_period(struct perf_event *event) ++{ ++ struct hw_perf_event *hwc = &event->hw; ++ u64 period = hwc->last_period; ++ u64 nr, offset; ++ s64 old, val; ++ ++ hwc->last_period = hwc->sample_period; ++ ++again: ++ old = val = local64_read(&hwc->period_left); ++ if (val < 0) ++ return 0; ++ ++ nr = div64_u64(period + val, period); ++ offset = nr * period; ++ val -= offset; ++ if (local64_cmpxchg(&hwc->period_left, old, val) != old) ++ goto again; ++ ++ return nr; ++} ++ ++static void perf_swevent_overflow(struct perf_event *event, u64 overflow, ++ struct perf_sample_data *data, ++ struct pt_regs *regs) ++{ ++ struct hw_perf_event *hwc = &event->hw; ++ int throttle = 0; ++ ++ if (!overflow) ++ overflow = perf_swevent_set_period(event); ++ ++ if (hwc->interrupts == MAX_INTERRUPTS) ++ return; ++ ++ for (; overflow; overflow--) { ++ if (__perf_event_overflow(event, throttle, ++ data, regs)) { ++ /* ++ * We inhibit the overflow from happening when ++ * hwc->interrupts == MAX_INTERRUPTS. ++ */ ++ break; ++ } ++ throttle = 1; ++ } ++} ++ ++static void perf_swevent_event(struct perf_event *event, u64 nr, ++ struct perf_sample_data *data, ++ struct pt_regs *regs) ++{ ++ struct hw_perf_event *hwc = &event->hw; ++ ++ local64_add(nr, &event->count); ++ ++ if (!regs) ++ return; ++ ++ if (!is_sampling_event(event)) ++ return; ++ ++ if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { ++ data->period = nr; ++ return perf_swevent_overflow(event, 1, data, regs); ++ } else ++ data->period = event->hw.last_period; ++ ++ if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) ++ return perf_swevent_overflow(event, 1, data, regs); ++ ++ if (local64_add_negative(nr, &hwc->period_left)) ++ return; ++ ++ perf_swevent_overflow(event, 0, data, regs); ++} ++ ++static int perf_exclude_event(struct perf_event *event, ++ struct pt_regs *regs) ++{ ++ if (event->hw.state & PERF_HES_STOPPED) ++ return 1; ++ ++ if (regs) { ++ if (event->attr.exclude_user && user_mode(regs)) ++ return 1; ++ ++ if (event->attr.exclude_kernel && !user_mode(regs)) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++static int perf_swevent_match(struct perf_event *event, ++ enum perf_type_id type, ++ u32 event_id, ++ struct perf_sample_data *data, ++ struct pt_regs *regs) ++{ ++ if (event->attr.type != type) ++ return 0; ++ ++ if (event->attr.config != event_id) ++ return 0; ++ ++ if (perf_exclude_event(event, regs)) ++ return 0; ++ ++ return 1; ++} ++ ++static inline u64 swevent_hash(u64 type, u32 event_id) ++{ ++ u64 val = event_id | (type << 32); ++ ++ return hash_64(val, SWEVENT_HLIST_BITS); ++} ++ ++static inline struct hlist_head * ++__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) ++{ ++ u64 hash = swevent_hash(type, event_id); ++ ++ return &hlist->heads[hash]; ++} ++ ++/* For the read side: events when they trigger */ ++static inline struct hlist_head * ++find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) ++{ ++ struct swevent_hlist *hlist; ++ ++ hlist = rcu_dereference(swhash->swevent_hlist); ++ if (!hlist) ++ return NULL; ++ ++ return __find_swevent_head(hlist, type, event_id); ++} ++ ++/* For the event head insertion and removal in the hlist */ ++static inline struct hlist_head * ++find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) ++{ ++ struct swevent_hlist *hlist; ++ u32 event_id = event->attr.config; ++ u64 type = event->attr.type; ++ ++ /* ++ * Event scheduling is always serialized against hlist allocation ++ * and release. Which makes the protected version suitable here. ++ * The context lock guarantees that. ++ */ ++ hlist = rcu_dereference_protected(swhash->swevent_hlist, ++ lockdep_is_held(&event->ctx->lock)); ++ if (!hlist) ++ return NULL; ++ ++ return __find_swevent_head(hlist, type, event_id); ++} ++ ++static void do_perf_sw_event(enum perf_type_id type, u32 event_id, ++ u64 nr, ++ struct perf_sample_data *data, ++ struct pt_regs *regs) ++{ ++ struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); ++ struct perf_event *event; ++ struct hlist_head *head; ++ ++ rcu_read_lock(); ++ head = find_swevent_head_rcu(swhash, type, event_id); ++ if (!head) ++ goto end; ++ ++ hlist_for_each_entry_rcu(event, head, hlist_entry) { ++ if (perf_swevent_match(event, type, event_id, data, regs)) ++ perf_swevent_event(event, nr, data, regs); ++ } ++end: ++ rcu_read_unlock(); ++} ++ ++int perf_swevent_get_recursion_context(void) ++{ ++ struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); ++ ++ return get_recursion_context(swhash->recursion); ++} ++EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); ++ ++inline void perf_swevent_put_recursion_context(int rctx) ++{ ++ struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); ++ ++ put_recursion_context(swhash->recursion, rctx); ++} ++ ++void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) ++{ ++ struct perf_sample_data data; ++ int rctx; ++ ++ preempt_disable_notrace(); ++ rctx = perf_swevent_get_recursion_context(); ++ if (rctx < 0) ++ return; ++ ++ perf_sample_data_init(&data, addr, 0); ++ ++ do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); ++ ++ perf_swevent_put_recursion_context(rctx); ++ preempt_enable_notrace(); ++} ++ ++static void perf_swevent_read(struct perf_event *event) ++{ ++} ++ ++static int perf_swevent_add(struct perf_event *event, int flags) ++{ ++ struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); ++ struct hw_perf_event *hwc = &event->hw; ++ struct hlist_head *head; ++ ++ if (is_sampling_event(event)) { ++ hwc->last_period = hwc->sample_period; ++ perf_swevent_set_period(event); ++ } ++ ++ hwc->state = !(flags & PERF_EF_START); ++ ++ head = find_swevent_head(swhash, event); ++ if (!head) { ++ /* ++ * We can race with cpu hotplug code. Do not ++ * WARN if the cpu just got unplugged. ++ */ ++ WARN_ON_ONCE(swhash->online); ++ return -EINVAL; ++ } ++ ++ hlist_add_head_rcu(&event->hlist_entry, head); ++ ++ return 0; ++} ++ ++static void perf_swevent_del(struct perf_event *event, int flags) ++{ ++ hlist_del_rcu(&event->hlist_entry); ++} ++ ++static void perf_swevent_start(struct perf_event *event, int flags) ++{ ++ event->hw.state = 0; ++} ++ ++static void perf_swevent_stop(struct perf_event *event, int flags) ++{ ++ event->hw.state = PERF_HES_STOPPED; ++} ++ ++/* Deref the hlist from the update side */ ++static inline struct swevent_hlist * ++swevent_hlist_deref(struct swevent_htable *swhash) ++{ ++ return rcu_dereference_protected(swhash->swevent_hlist, ++ lockdep_is_held(&swhash->hlist_mutex)); ++} ++ ++static void swevent_hlist_release(struct swevent_htable *swhash) ++{ ++ struct swevent_hlist *hlist = swevent_hlist_deref(swhash); ++ ++ if (!hlist) ++ return; ++ ++ RCU_INIT_POINTER(swhash->swevent_hlist, NULL); ++ kfree_rcu(hlist, rcu_head); ++} ++ ++static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) ++{ ++ struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); ++ ++ mutex_lock(&swhash->hlist_mutex); ++ ++ if (!--swhash->hlist_refcount) ++ swevent_hlist_release(swhash); ++ ++ mutex_unlock(&swhash->hlist_mutex); ++} ++ ++static void swevent_hlist_put(struct perf_event *event) ++{ ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ swevent_hlist_put_cpu(event, cpu); ++} ++ ++static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) ++{ ++ struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); ++ int err = 0; ++ ++ mutex_lock(&swhash->hlist_mutex); ++ ++ if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { ++ struct swevent_hlist *hlist; ++ ++ hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); ++ if (!hlist) { ++ err = -ENOMEM; ++ goto exit; ++ } ++ rcu_assign_pointer(swhash->swevent_hlist, hlist); ++ } ++ swhash->hlist_refcount++; ++exit: ++ mutex_unlock(&swhash->hlist_mutex); ++ ++ return err; ++} ++ ++static int swevent_hlist_get(struct perf_event *event) ++{ ++ int err; ++ int cpu, failed_cpu; ++ ++ get_online_cpus(); ++ for_each_possible_cpu(cpu) { ++ err = swevent_hlist_get_cpu(event, cpu); ++ if (err) { ++ failed_cpu = cpu; ++ goto fail; ++ } ++ } ++ put_online_cpus(); ++ ++ return 0; ++fail: ++ for_each_possible_cpu(cpu) { ++ if (cpu == failed_cpu) ++ break; ++ swevent_hlist_put_cpu(event, cpu); ++ } ++ ++ put_online_cpus(); ++ return err; ++} ++ ++struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; ++ ++static void sw_perf_event_destroy(struct perf_event *event) ++{ ++ u64 event_id = event->attr.config; ++ ++ WARN_ON(event->parent); ++ ++ static_key_slow_dec(&perf_swevent_enabled[event_id]); ++ swevent_hlist_put(event); ++} ++ ++static int perf_swevent_init(struct perf_event *event) ++{ ++ u64 event_id = event->attr.config; ++ ++ if (event->attr.type != PERF_TYPE_SOFTWARE) ++ return -ENOENT; ++ ++ /* ++ * no branch sampling for software events ++ */ ++ if (has_branch_stack(event)) ++ return -EOPNOTSUPP; ++ ++ switch (event_id) { ++ case PERF_COUNT_SW_CPU_CLOCK: ++ case PERF_COUNT_SW_TASK_CLOCK: ++ return -ENOENT; ++ ++ default: ++ break; ++ } ++ ++ if (event_id >= PERF_COUNT_SW_MAX) ++ return -ENOENT; ++ ++ if (!event->parent) { ++ int err; ++ ++ err = swevent_hlist_get(event); ++ if (err) ++ return err; ++ ++ static_key_slow_inc(&perf_swevent_enabled[event_id]); ++ event->destroy = sw_perf_event_destroy; ++ } ++ ++ return 0; ++} ++ ++static struct pmu perf_swevent = { ++ .task_ctx_nr = perf_sw_context, ++ ++ .event_init = perf_swevent_init, ++ .add = perf_swevent_add, ++ .del = perf_swevent_del, ++ .start = perf_swevent_start, ++ .stop = perf_swevent_stop, ++ .read = perf_swevent_read, ++}; ++ ++#ifdef CONFIG_EVENT_TRACING ++ ++static int perf_tp_filter_match(struct perf_event *event, ++ struct perf_sample_data *data) ++{ ++ void *record = data->raw->data; ++ ++ if (likely(!event->filter) || filter_match_preds(event->filter, record)) ++ return 1; ++ return 0; ++} ++ ++static int perf_tp_event_match(struct perf_event *event, ++ struct perf_sample_data *data, ++ struct pt_regs *regs) ++{ ++ if (event->hw.state & PERF_HES_STOPPED) ++ return 0; ++ /* ++ * All tracepoints are from kernel-space. ++ */ ++ if (event->attr.exclude_kernel) ++ return 0; ++ ++ if (!perf_tp_filter_match(event, data)) ++ return 0; ++ ++ return 1; ++} ++ ++void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, ++ struct pt_regs *regs, struct hlist_head *head, int rctx, ++ struct task_struct *task) ++{ ++ struct perf_sample_data data; ++ struct perf_event *event; ++ ++ struct perf_raw_record raw = { ++ .size = entry_size, ++ .data = record, ++ }; ++ ++ perf_sample_data_init(&data, addr, 0); ++ data.raw = &raw; ++ ++ hlist_for_each_entry_rcu(event, head, hlist_entry) { ++ if (perf_tp_event_match(event, &data, regs)) ++ perf_swevent_event(event, count, &data, regs); ++ } ++ ++ /* ++ * If we got specified a target task, also iterate its context and ++ * deliver this event there too. ++ */ ++ if (task && task != current) { ++ struct perf_event_context *ctx; ++ struct trace_entry *entry = record; ++ ++ rcu_read_lock(); ++ ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); ++ if (!ctx) ++ goto unlock; ++ ++ list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { ++ if (event->attr.type != PERF_TYPE_TRACEPOINT) ++ continue; ++ if (event->attr.config != entry->type) ++ continue; ++ if (perf_tp_event_match(event, &data, regs)) ++ perf_swevent_event(event, count, &data, regs); ++ } ++unlock: ++ rcu_read_unlock(); ++ } ++ ++ perf_swevent_put_recursion_context(rctx); ++} ++EXPORT_SYMBOL_GPL(perf_tp_event); ++ ++static void tp_perf_event_destroy(struct perf_event *event) ++{ ++ perf_trace_destroy(event); ++} ++ ++static int perf_tp_event_init(struct perf_event *event) ++{ ++ int err; ++ ++ if (event->attr.type != PERF_TYPE_TRACEPOINT) ++ return -ENOENT; ++ ++ /* ++ * no branch sampling for tracepoint events ++ */ ++ if (has_branch_stack(event)) ++ return -EOPNOTSUPP; ++ ++ err = perf_trace_init(event); ++ if (err) ++ return err; ++ ++ event->destroy = tp_perf_event_destroy; ++ ++ return 0; ++} ++ ++static struct pmu perf_tracepoint = { ++ .task_ctx_nr = perf_sw_context, ++ ++ .event_init = perf_tp_event_init, ++ .add = perf_trace_add, ++ .del = perf_trace_del, ++ .start = perf_swevent_start, ++ .stop = perf_swevent_stop, ++ .read = perf_swevent_read, ++}; ++ ++static inline void perf_tp_register(void) ++{ ++ perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); ++} ++ ++static int perf_event_set_filter(struct perf_event *event, void __user *arg) ++{ ++ char *filter_str; ++ int ret; ++ ++ if (event->attr.type != PERF_TYPE_TRACEPOINT) ++ return -EINVAL; ++ ++ filter_str = strndup_user(arg, PAGE_SIZE); ++ if (IS_ERR(filter_str)) ++ return PTR_ERR(filter_str); ++ ++ ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); ++ ++ kfree(filter_str); ++ return ret; ++} ++ ++static void perf_event_free_filter(struct perf_event *event) ++{ ++ ftrace_profile_free_filter(event); ++} ++ ++#else ++ ++static inline void perf_tp_register(void) ++{ ++} ++ ++static int perf_event_set_filter(struct perf_event *event, void __user *arg) ++{ ++ return -ENOENT; ++} ++ ++static void perf_event_free_filter(struct perf_event *event) ++{ ++} ++ ++#endif /* CONFIG_EVENT_TRACING */ ++ ++#ifdef CONFIG_HAVE_HW_BREAKPOINT ++void perf_bp_event(struct perf_event *bp, void *data) ++{ ++ struct perf_sample_data sample; ++ struct pt_regs *regs = data; ++ ++ perf_sample_data_init(&sample, bp->attr.bp_addr, 0); ++ ++ if (!bp->hw.state && !perf_exclude_event(bp, regs)) ++ perf_swevent_event(bp, 1, &sample, regs); ++} ++#endif ++ ++/* ++ * hrtimer based swevent callback ++ */ ++ ++static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) ++{ ++ enum hrtimer_restart ret = HRTIMER_RESTART; ++ struct perf_sample_data data; ++ struct pt_regs *regs; ++ struct perf_event *event; ++ u64 period; ++ ++ event = container_of(hrtimer, struct perf_event, hw.hrtimer); ++ ++ if (event->state != PERF_EVENT_STATE_ACTIVE) ++ return HRTIMER_NORESTART; ++ ++ event->pmu->read(event); ++ ++ perf_sample_data_init(&data, 0, event->hw.last_period); ++ regs = get_irq_regs(); ++ ++ if (regs && !perf_exclude_event(event, regs)) { ++ if (!(event->attr.exclude_idle && is_idle_task(current))) ++ if (__perf_event_overflow(event, 1, &data, regs)) ++ ret = HRTIMER_NORESTART; ++ } ++ ++ period = max_t(u64, 10000, event->hw.sample_period); ++ hrtimer_forward_now(hrtimer, ns_to_ktime(period)); ++ ++ return ret; ++} ++ ++static void perf_swevent_start_hrtimer(struct perf_event *event) ++{ ++ struct hw_perf_event *hwc = &event->hw; ++ s64 period; ++ ++ if (!is_sampling_event(event)) ++ return; ++ ++ period = local64_read(&hwc->period_left); ++ if (period) { ++ if (period < 0) ++ period = 10000; ++ ++ local64_set(&hwc->period_left, 0); ++ } else { ++ period = max_t(u64, 10000, hwc->sample_period); ++ } ++ __hrtimer_start_range_ns(&hwc->hrtimer, ++ ns_to_ktime(period), 0, ++ HRTIMER_MODE_REL_PINNED, 0); ++} ++ ++static void perf_swevent_cancel_hrtimer(struct perf_event *event) ++{ ++ struct hw_perf_event *hwc = &event->hw; ++ ++ if (is_sampling_event(event)) { ++ ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); ++ local64_set(&hwc->period_left, ktime_to_ns(remaining)); ++ ++ hrtimer_cancel(&hwc->hrtimer); ++ } ++} ++ ++static void perf_swevent_init_hrtimer(struct perf_event *event) ++{ ++ struct hw_perf_event *hwc = &event->hw; ++ ++ if (!is_sampling_event(event)) ++ return; ++ ++ hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); ++ hwc->hrtimer.function = perf_swevent_hrtimer; ++ ++ /* ++ * Since hrtimers have a fixed rate, we can do a static freq->period ++ * mapping and avoid the whole period adjust feedback stuff. ++ */ ++ if (event->attr.freq) { ++ long freq = event->attr.sample_freq; ++ ++ event->attr.sample_period = NSEC_PER_SEC / freq; ++ hwc->sample_period = event->attr.sample_period; ++ local64_set(&hwc->period_left, hwc->sample_period); ++ hwc->last_period = hwc->sample_period; ++ event->attr.freq = 0; ++ } ++} ++ ++/* ++ * Software event: cpu wall time clock ++ */ ++ ++static void cpu_clock_event_update(struct perf_event *event) ++{ ++ s64 prev; ++ u64 now; ++ ++ now = local_clock(); ++ prev = local64_xchg(&event->hw.prev_count, now); ++ local64_add(now - prev, &event->count); ++} ++ ++static void cpu_clock_event_start(struct perf_event *event, int flags) ++{ ++ local64_set(&event->hw.prev_count, local_clock()); ++ perf_swevent_start_hrtimer(event); ++} ++ ++static void cpu_clock_event_stop(struct perf_event *event, int flags) ++{ ++ perf_swevent_cancel_hrtimer(event); ++ cpu_clock_event_update(event); ++} ++ ++static int cpu_clock_event_add(struct perf_event *event, int flags) ++{ ++ if (flags & PERF_EF_START) ++ cpu_clock_event_start(event, flags); ++ ++ return 0; ++} ++ ++static void cpu_clock_event_del(struct perf_event *event, int flags) ++{ ++ cpu_clock_event_stop(event, flags); ++} ++ ++static void cpu_clock_event_read(struct perf_event *event) ++{ ++ cpu_clock_event_update(event); ++} ++ ++static int cpu_clock_event_init(struct perf_event *event) ++{ ++ if (event->attr.type != PERF_TYPE_SOFTWARE) ++ return -ENOENT; ++ ++ if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) ++ return -ENOENT; ++ ++ /* ++ * no branch sampling for software events ++ */ ++ if (has_branch_stack(event)) ++ return -EOPNOTSUPP; ++ ++ perf_swevent_init_hrtimer(event); ++ ++ return 0; ++} ++ ++static struct pmu perf_cpu_clock = { ++ .task_ctx_nr = perf_sw_context, ++ ++ .event_init = cpu_clock_event_init, ++ .add = cpu_clock_event_add, ++ .del = cpu_clock_event_del, ++ .start = cpu_clock_event_start, ++ .stop = cpu_clock_event_stop, ++ .read = cpu_clock_event_read, ++}; ++ ++/* ++ * Software event: task time clock ++ */ ++ ++static void task_clock_event_update(struct perf_event *event, u64 now) ++{ ++ u64 prev; ++ s64 delta; ++ ++ prev = local64_xchg(&event->hw.prev_count, now); ++ delta = now - prev; ++ local64_add(delta, &event->count); ++} ++ ++static void task_clock_event_start(struct perf_event *event, int flags) ++{ ++ local64_set(&event->hw.prev_count, event->ctx->time); ++ perf_swevent_start_hrtimer(event); ++} ++ ++static void task_clock_event_stop(struct perf_event *event, int flags) ++{ ++ perf_swevent_cancel_hrtimer(event); ++ task_clock_event_update(event, event->ctx->time); ++} ++ ++static int task_clock_event_add(struct perf_event *event, int flags) ++{ ++ if (flags & PERF_EF_START) ++ task_clock_event_start(event, flags); ++ ++ return 0; ++} ++ ++static void task_clock_event_del(struct perf_event *event, int flags) ++{ ++ task_clock_event_stop(event, PERF_EF_UPDATE); ++} ++ ++static void task_clock_event_read(struct perf_event *event) ++{ ++ u64 now = perf_clock(); ++ u64 delta = now - event->ctx->timestamp; ++ u64 time = event->ctx->time + delta; ++ ++ task_clock_event_update(event, time); ++} ++ ++static int task_clock_event_init(struct perf_event *event) ++{ ++ if (event->attr.type != PERF_TYPE_SOFTWARE) ++ return -ENOENT; ++ ++ if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) ++ return -ENOENT; ++ ++ /* ++ * no branch sampling for software events ++ */ ++ if (has_branch_stack(event)) ++ return -EOPNOTSUPP; ++ ++ perf_swevent_init_hrtimer(event); ++ ++ return 0; ++} ++ ++static struct pmu perf_task_clock = { ++ .task_ctx_nr = perf_sw_context, ++ ++ .event_init = task_clock_event_init, ++ .add = task_clock_event_add, ++ .del = task_clock_event_del, ++ .start = task_clock_event_start, ++ .stop = task_clock_event_stop, ++ .read = task_clock_event_read, ++}; ++ ++static void perf_pmu_nop_void(struct pmu *pmu) ++{ ++} ++ ++static int perf_pmu_nop_int(struct pmu *pmu) ++{ ++ return 0; ++} ++ ++static void perf_pmu_start_txn(struct pmu *pmu) ++{ ++ perf_pmu_disable(pmu); ++} ++ ++static int perf_pmu_commit_txn(struct pmu *pmu) ++{ ++ perf_pmu_enable(pmu); ++ return 0; ++} ++ ++static void perf_pmu_cancel_txn(struct pmu *pmu) ++{ ++ perf_pmu_enable(pmu); ++} ++ ++static int perf_event_idx_default(struct perf_event *event) ++{ ++ return 0; ++} ++ ++/* ++ * Ensures all contexts with the same task_ctx_nr have the same ++ * pmu_cpu_context too. ++ */ ++static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) ++{ ++ struct pmu *pmu; ++ ++ if (ctxn < 0) ++ return NULL; ++ ++ list_for_each_entry(pmu, &pmus, entry) { ++ if (pmu->task_ctx_nr == ctxn) ++ return pmu->pmu_cpu_context; ++ } ++ ++ return NULL; ++} ++ ++static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) ++{ ++ int cpu; ++ ++ for_each_possible_cpu(cpu) { ++ struct perf_cpu_context *cpuctx; ++ ++ cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); ++ ++ if (cpuctx->unique_pmu == old_pmu) ++ cpuctx->unique_pmu = pmu; ++ } ++} ++ ++static void free_pmu_context(struct pmu *pmu) ++{ ++ struct pmu *i; ++ ++ mutex_lock(&pmus_lock); ++ /* ++ * Like a real lame refcount. ++ */ ++ list_for_each_entry(i, &pmus, entry) { ++ if (i->pmu_cpu_context == pmu->pmu_cpu_context) { ++ update_pmu_context(i, pmu); ++ goto out; ++ } ++ } ++ ++ free_percpu(pmu->pmu_cpu_context); ++out: ++ mutex_unlock(&pmus_lock); ++} ++static struct idr pmu_idr; ++ ++static ssize_t ++type_show(struct device *dev, struct device_attribute *attr, char *page) ++{ ++ struct pmu *pmu = dev_get_drvdata(dev); ++ ++ return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); ++} ++static DEVICE_ATTR_RO(type); ++ ++static ssize_t ++perf_event_mux_interval_ms_show(struct device *dev, ++ struct device_attribute *attr, ++ char *page) ++{ ++ struct pmu *pmu = dev_get_drvdata(dev); ++ ++ return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); ++} ++ ++static ssize_t ++perf_event_mux_interval_ms_store(struct device *dev, ++ struct device_attribute *attr, ++ const char *buf, size_t count) ++{ ++ struct pmu *pmu = dev_get_drvdata(dev); ++ int timer, cpu, ret; ++ ++ ret = kstrtoint(buf, 0, &timer); ++ if (ret) ++ return ret; ++ ++ if (timer < 1) ++ return -EINVAL; ++ ++ /* same value, noting to do */ ++ if (timer == pmu->hrtimer_interval_ms) ++ return count; ++ ++ pmu->hrtimer_interval_ms = timer; ++ ++ /* update all cpuctx for this PMU */ ++ for_each_possible_cpu(cpu) { ++ struct perf_cpu_context *cpuctx; ++ cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); ++ cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); ++ ++ if (hrtimer_active(&cpuctx->hrtimer)) ++ hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); ++ } ++ ++ return count; ++} ++static DEVICE_ATTR_RW(perf_event_mux_interval_ms); ++ ++static struct attribute *pmu_dev_attrs[] = { ++ &dev_attr_type.attr, ++ &dev_attr_perf_event_mux_interval_ms.attr, ++ NULL, ++}; ++ATTRIBUTE_GROUPS(pmu_dev); ++ ++static int pmu_bus_running; ++static struct bus_type pmu_bus = { ++ .name = "event_source", ++ .dev_groups = pmu_dev_groups, ++}; ++ ++static void pmu_dev_release(struct device *dev) ++{ ++ kfree(dev); ++} ++ ++static int pmu_dev_alloc(struct pmu *pmu) ++{ ++ int ret = -ENOMEM; ++ ++ pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); ++ if (!pmu->dev) ++ goto out; ++ ++ pmu->dev->groups = pmu->attr_groups; ++ device_initialize(pmu->dev); ++ ret = dev_set_name(pmu->dev, "%s", pmu->name); ++ if (ret) ++ goto free_dev; ++ ++ dev_set_drvdata(pmu->dev, pmu); ++ pmu->dev->bus = &pmu_bus; ++ pmu->dev->release = pmu_dev_release; ++ ret = device_add(pmu->dev); ++ if (ret) ++ goto free_dev; ++ ++out: ++ return ret; ++ ++free_dev: ++ put_device(pmu->dev); ++ goto out; ++} ++ ++static struct lock_class_key cpuctx_mutex; ++static struct lock_class_key cpuctx_lock; ++ ++int perf_pmu_register(struct pmu *pmu, const char *name, int type) ++{ ++ int cpu, ret; ++ ++ mutex_lock(&pmus_lock); ++ ret = -ENOMEM; ++ pmu->pmu_disable_count = alloc_percpu(int); ++ if (!pmu->pmu_disable_count) ++ goto unlock; ++ ++ pmu->type = -1; ++ if (!name) ++ goto skip_type; ++ pmu->name = name; ++ ++ if (type < 0) { ++ type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); ++ if (type < 0) { ++ ret = type; ++ goto free_pdc; ++ } ++ } ++ pmu->type = type; ++ ++ if (pmu_bus_running) { ++ ret = pmu_dev_alloc(pmu); ++ if (ret) ++ goto free_idr; ++ } ++ ++skip_type: ++ pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); ++ if (pmu->pmu_cpu_context) ++ goto got_cpu_context; ++ ++ ret = -ENOMEM; ++ pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); ++ if (!pmu->pmu_cpu_context) ++ goto free_dev; ++ ++ for_each_possible_cpu(cpu) { ++ struct perf_cpu_context *cpuctx; ++ ++ cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); ++ __perf_event_init_context(&cpuctx->ctx); ++ lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); ++ lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); ++ cpuctx->ctx.type = cpu_context; ++ cpuctx->ctx.pmu = pmu; ++ ++ __perf_cpu_hrtimer_init(cpuctx, cpu); ++ ++ INIT_LIST_HEAD(&cpuctx->rotation_list); ++ cpuctx->unique_pmu = pmu; ++ } ++ ++got_cpu_context: ++ if (!pmu->start_txn) { ++ if (pmu->pmu_enable) { ++ /* ++ * If we have pmu_enable/pmu_disable calls, install ++ * transaction stubs that use that to try and batch ++ * hardware accesses. ++ */ ++ pmu->start_txn = perf_pmu_start_txn; ++ pmu->commit_txn = perf_pmu_commit_txn; ++ pmu->cancel_txn = perf_pmu_cancel_txn; ++ } else { ++ pmu->start_txn = perf_pmu_nop_void; ++ pmu->commit_txn = perf_pmu_nop_int; ++ pmu->cancel_txn = perf_pmu_nop_void; ++ } ++ } ++ ++ if (!pmu->pmu_enable) { ++ pmu->pmu_enable = perf_pmu_nop_void; ++ pmu->pmu_disable = perf_pmu_nop_void; ++ } ++ ++ if (!pmu->event_idx) ++ pmu->event_idx = perf_event_idx_default; ++ ++ list_add_rcu(&pmu->entry, &pmus); ++ ret = 0; ++unlock: ++ mutex_unlock(&pmus_lock); ++ ++ return ret; ++ ++free_dev: ++ device_del(pmu->dev); ++ put_device(pmu->dev); ++ ++free_idr: ++ if (pmu->type >= PERF_TYPE_MAX) ++ idr_remove(&pmu_idr, pmu->type); ++ ++free_pdc: ++ free_percpu(pmu->pmu_disable_count); ++ goto unlock; ++} ++EXPORT_SYMBOL_GPL(perf_pmu_register); ++ ++void perf_pmu_unregister(struct pmu *pmu) ++{ ++ mutex_lock(&pmus_lock); ++ list_del_rcu(&pmu->entry); ++ mutex_unlock(&pmus_lock); ++ ++ /* ++ * We dereference the pmu list under both SRCU and regular RCU, so ++ * synchronize against both of those. ++ */ ++ synchronize_srcu(&pmus_srcu); ++ synchronize_rcu(); ++ ++ free_percpu(pmu->pmu_disable_count); ++ if (pmu->type >= PERF_TYPE_MAX) ++ idr_remove(&pmu_idr, pmu->type); ++ device_del(pmu->dev); ++ put_device(pmu->dev); ++ free_pmu_context(pmu); ++} ++EXPORT_SYMBOL_GPL(perf_pmu_unregister); ++ ++struct pmu *perf_init_event(struct perf_event *event) ++{ ++ struct pmu *pmu = NULL; ++ int idx; ++ int ret; ++ ++ idx = srcu_read_lock(&pmus_srcu); ++ ++ rcu_read_lock(); ++ pmu = idr_find(&pmu_idr, event->attr.type); ++ rcu_read_unlock(); ++ if (pmu) { ++ if (!try_module_get(pmu->module)) { ++ pmu = ERR_PTR(-ENODEV); ++ goto unlock; ++ } ++ event->pmu = pmu; ++ ret = pmu->event_init(event); ++ if (ret) ++ pmu = ERR_PTR(ret); ++ goto unlock; ++ } ++ ++ list_for_each_entry_rcu(pmu, &pmus, entry) { ++ if (!try_module_get(pmu->module)) { ++ pmu = ERR_PTR(-ENODEV); ++ goto unlock; ++ } ++ event->pmu = pmu; ++ ret = pmu->event_init(event); ++ if (!ret) ++ goto unlock; ++ ++ if (ret != -ENOENT) { ++ pmu = ERR_PTR(ret); ++ goto unlock; ++ } ++ } ++ pmu = ERR_PTR(-ENOENT); ++unlock: ++ srcu_read_unlock(&pmus_srcu, idx); ++ ++ return pmu; ++} ++ ++static void account_event_cpu(struct perf_event *event, int cpu) ++{ ++ if (event->parent) ++ return; ++ ++ if (has_branch_stack(event)) { ++ if (!(event->attach_state & PERF_ATTACH_TASK)) ++ atomic_inc(&per_cpu(perf_branch_stack_events, cpu)); ++ } ++ if (is_cgroup_event(event)) ++ atomic_inc(&per_cpu(perf_cgroup_events, cpu)); ++} ++ ++static void account_event(struct perf_event *event) ++{ ++ if (event->parent) ++ return; ++ ++ if (event->attach_state & PERF_ATTACH_TASK) ++ static_key_slow_inc(&perf_sched_events.key); ++ if (event->attr.mmap || event->attr.mmap_data) ++ atomic_inc(&nr_mmap_events); ++ if (event->attr.comm) ++ atomic_inc(&nr_comm_events); ++ if (event->attr.task) ++ atomic_inc(&nr_task_events); ++ if (event->attr.freq) { ++ if (atomic_inc_return(&nr_freq_events) == 1) ++ tick_nohz_full_kick_all(); ++ } ++ if (has_branch_stack(event)) ++ static_key_slow_inc(&perf_sched_events.key); ++ if (is_cgroup_event(event)) ++ static_key_slow_inc(&perf_sched_events.key); ++ ++ account_event_cpu(event, event->cpu); ++} ++ ++/* ++ * Allocate and initialize a event structure ++ */ ++static struct perf_event * ++perf_event_alloc(struct perf_event_attr *attr, int cpu, ++ struct task_struct *task, ++ struct perf_event *group_leader, ++ struct perf_event *parent_event, ++ perf_overflow_handler_t overflow_handler, ++ void *context) ++{ ++ struct pmu *pmu; ++ struct perf_event *event; ++ struct hw_perf_event *hwc; ++ long err = -EINVAL; ++ ++ if ((unsigned)cpu >= nr_cpu_ids) { ++ if (!task || cpu != -1) ++ return ERR_PTR(-EINVAL); ++ } ++ ++ event = kzalloc(sizeof(*event), GFP_KERNEL); ++ if (!event) ++ return ERR_PTR(-ENOMEM); ++ ++ /* ++ * Single events are their own group leaders, with an ++ * empty sibling list: ++ */ ++ if (!group_leader) ++ group_leader = event; ++ ++ mutex_init(&event->child_mutex); ++ INIT_LIST_HEAD(&event->child_list); ++ ++ INIT_LIST_HEAD(&event->group_entry); ++ INIT_LIST_HEAD(&event->event_entry); ++ INIT_LIST_HEAD(&event->sibling_list); ++ INIT_LIST_HEAD(&event->rb_entry); ++ INIT_LIST_HEAD(&event->active_entry); ++ INIT_HLIST_NODE(&event->hlist_entry); ++ ++ ++ init_waitqueue_head(&event->waitq); ++ init_irq_work(&event->pending, perf_pending_event); ++ ++ mutex_init(&event->mmap_mutex); ++ ++ atomic_long_set(&event->refcount, 1); ++ event->cpu = cpu; ++ event->attr = *attr; ++ event->group_leader = group_leader; ++ event->pmu = NULL; ++ event->oncpu = -1; ++ ++ event->parent = parent_event; ++ ++ event->ns = get_pid_ns(task_active_pid_ns(current)); ++ event->id = atomic64_inc_return(&perf_event_id); ++ ++ event->state = PERF_EVENT_STATE_INACTIVE; ++ ++ if (task) { ++ event->attach_state = PERF_ATTACH_TASK; ++ ++ if (attr->type == PERF_TYPE_TRACEPOINT) ++ event->hw.tp_target = task; ++#ifdef CONFIG_HAVE_HW_BREAKPOINT ++ /* ++ * hw_breakpoint is a bit difficult here.. ++ */ ++ else if (attr->type == PERF_TYPE_BREAKPOINT) ++ event->hw.bp_target = task; ++#endif ++ } ++ ++ if (!overflow_handler && parent_event) { ++ overflow_handler = parent_event->overflow_handler; ++ context = parent_event->overflow_handler_context; ++ } ++ ++ event->overflow_handler = overflow_handler; ++ event->overflow_handler_context = context; ++ ++ perf_event__state_init(event); ++ ++ pmu = NULL; ++ ++ hwc = &event->hw; ++ hwc->sample_period = attr->sample_period; ++ if (attr->freq && attr->sample_freq) ++ hwc->sample_period = 1; ++ hwc->last_period = hwc->sample_period; ++ ++ local64_set(&hwc->period_left, hwc->sample_period); ++ ++ /* ++ * we currently do not support PERF_FORMAT_GROUP on inherited events ++ */ ++ if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) ++ goto err_ns; ++ ++ pmu = perf_init_event(event); ++ if (!pmu) ++ goto err_ns; ++ else if (IS_ERR(pmu)) { ++ err = PTR_ERR(pmu); ++ goto err_ns; ++ } ++ ++ if (!event->parent) { ++ if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { ++ err = get_callchain_buffers(); ++ if (err) ++ goto err_pmu; ++ } ++ } ++ ++ return event; ++ ++err_pmu: ++ if (event->destroy) ++ event->destroy(event); ++ module_put(pmu->module); ++err_ns: ++ if (event->ns) ++ put_pid_ns(event->ns); ++ kfree(event); ++ ++ return ERR_PTR(err); ++} ++ ++static int perf_copy_attr(struct perf_event_attr __user *uattr, ++ struct perf_event_attr *attr) ++{ ++ u32 size; ++ int ret; ++ ++ if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) ++ return -EFAULT; ++ ++ /* ++ * zero the full structure, so that a short copy will be nice. ++ */ ++ memset(attr, 0, sizeof(*attr)); ++ ++ ret = get_user(size, &uattr->size); ++ if (ret) ++ return ret; ++ ++ if (size > PAGE_SIZE) /* silly large */ ++ goto err_size; ++ ++ if (!size) /* abi compat */ ++ size = PERF_ATTR_SIZE_VER0; ++ ++ if (size < PERF_ATTR_SIZE_VER0) ++ goto err_size; ++ ++ /* ++ * If we're handed a bigger struct than we know of, ++ * ensure all the unknown bits are 0 - i.e. new ++ * user-space does not rely on any kernel feature ++ * extensions we dont know about yet. ++ */ ++ if (size > sizeof(*attr)) { ++ unsigned char __user *addr; ++ unsigned char __user *end; ++ unsigned char val; ++ ++ addr = (void __user *)uattr + sizeof(*attr); ++ end = (void __user *)uattr + size; ++ ++ for (; addr < end; addr++) { ++ ret = get_user(val, addr); ++ if (ret) ++ return ret; ++ if (val) ++ goto err_size; ++ } ++ size = sizeof(*attr); ++ } ++ ++ ret = copy_from_user(attr, uattr, size); ++ if (ret) ++ return -EFAULT; ++ ++ if (attr->__reserved_1) ++ return -EINVAL; ++ ++ if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) ++ return -EINVAL; ++ ++ if (attr->read_format & ~(PERF_FORMAT_MAX-1)) ++ return -EINVAL; ++ ++ if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { ++ u64 mask = attr->branch_sample_type; ++ ++ /* only using defined bits */ ++ if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) ++ return -EINVAL; ++ ++ /* at least one branch bit must be set */ ++ if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) ++ return -EINVAL; ++ ++ /* propagate priv level, when not set for branch */ ++ if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { ++ ++ /* exclude_kernel checked on syscall entry */ ++ if (!attr->exclude_kernel) ++ mask |= PERF_SAMPLE_BRANCH_KERNEL; ++ ++ if (!attr->exclude_user) ++ mask |= PERF_SAMPLE_BRANCH_USER; ++ ++ if (!attr->exclude_hv) ++ mask |= PERF_SAMPLE_BRANCH_HV; ++ /* ++ * adjust user setting (for HW filter setup) ++ */ ++ attr->branch_sample_type = mask; ++ } ++ /* privileged levels capture (kernel, hv): check permissions */ ++ if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) ++ && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) ++ return -EACCES; ++ } ++ ++ if (attr->sample_type & PERF_SAMPLE_REGS_USER) { ++ ret = perf_reg_validate(attr->sample_regs_user); ++ if (ret) ++ return ret; ++ } ++ ++ if (attr->sample_type & PERF_SAMPLE_STACK_USER) { ++ if (!arch_perf_have_user_stack_dump()) ++ return -ENOSYS; ++ ++ /* ++ * We have __u32 type for the size, but so far ++ * we can only use __u16 as maximum due to the ++ * __u16 sample size limit. ++ */ ++ if (attr->sample_stack_user >= USHRT_MAX) ++ ret = -EINVAL; ++ else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) ++ ret = -EINVAL; ++ } ++ ++out: ++ return ret; ++ ++err_size: ++ put_user(sizeof(*attr), &uattr->size); ++ ret = -E2BIG; ++ goto out; ++} ++ ++static int ++perf_event_set_output(struct perf_event *event, struct perf_event *output_event) ++{ ++ struct ring_buffer *rb = NULL; ++ int ret = -EINVAL; ++ ++ if (!output_event) ++ goto set; ++ ++ /* don't allow circular references */ ++ if (event == output_event) ++ goto out; ++ ++ /* ++ * Don't allow cross-cpu buffers ++ */ ++ if (output_event->cpu != event->cpu) ++ goto out; ++ ++ /* ++ * If its not a per-cpu rb, it must be the same task. ++ */ ++ if (output_event->cpu == -1 && output_event->ctx != event->ctx) ++ goto out; ++ ++set: ++ mutex_lock(&event->mmap_mutex); ++ /* Can't redirect output if we've got an active mmap() */ ++ if (atomic_read(&event->mmap_count)) ++ goto unlock; ++ ++ if (output_event) { ++ /* get the rb we want to redirect to */ ++ rb = ring_buffer_get(output_event); ++ if (!rb) ++ goto unlock; ++ } ++ ++ ring_buffer_attach(event, rb); ++ ++ ret = 0; ++unlock: ++ mutex_unlock(&event->mmap_mutex); ++ ++out: ++ return ret; ++} ++ ++/** ++ * sys_perf_event_open - open a performance event, associate it to a task/cpu ++ * ++ * @attr_uptr: event_id type attributes for monitoring/sampling ++ * @pid: target pid ++ * @cpu: target cpu ++ * @group_fd: group leader event fd ++ */ ++SYSCALL_DEFINE5(perf_event_open, ++ struct perf_event_attr __user *, attr_uptr, ++ pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) ++{ ++ struct perf_event *group_leader = NULL, *output_event = NULL; ++ struct perf_event *event, *sibling; ++ struct perf_event_attr attr; ++ struct perf_event_context *ctx; ++ struct file *event_file = NULL; ++ struct fd group = {NULL, 0}; ++ struct task_struct *task = NULL; ++ struct pmu *pmu; ++ int event_fd; ++ int move_group = 0; ++ int err; ++ int f_flags = O_RDWR; ++ ++ /* for future expandability... */ ++ if (flags & ~PERF_FLAG_ALL) ++ return -EINVAL; ++ ++ err = perf_copy_attr(attr_uptr, &attr); ++ if (err) ++ return err; ++ ++ if (!attr.exclude_kernel) { ++ if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) ++ return -EACCES; ++ } ++ ++ if (attr.freq) { ++ if (attr.sample_freq > sysctl_perf_event_sample_rate) ++ return -EINVAL; ++ } else { ++ if (attr.sample_period & (1ULL << 63)) ++ return -EINVAL; ++ } ++ ++ /* ++ * In cgroup mode, the pid argument is used to pass the fd ++ * opened to the cgroup directory in cgroupfs. The cpu argument ++ * designates the cpu on which to monitor threads from that ++ * cgroup. ++ */ ++ if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) ++ return -EINVAL; ++ ++ if (flags & PERF_FLAG_FD_CLOEXEC) ++ f_flags |= O_CLOEXEC; ++ ++ event_fd = get_unused_fd_flags(f_flags); ++ if (event_fd < 0) ++ return event_fd; ++ ++ if (group_fd != -1) { ++ err = perf_fget_light(group_fd, &group); ++ if (err) ++ goto err_fd; ++ group_leader = group.file->private_data; ++ if (flags & PERF_FLAG_FD_OUTPUT) ++ output_event = group_leader; ++ if (flags & PERF_FLAG_FD_NO_GROUP) ++ group_leader = NULL; ++ } ++ ++ if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { ++ task = find_lively_task_by_vpid(pid); ++ if (IS_ERR(task)) { ++ err = PTR_ERR(task); ++ goto err_group_fd; ++ } ++ } ++ ++ if (task && group_leader && ++ group_leader->attr.inherit != attr.inherit) { ++ err = -EINVAL; ++ goto err_task; ++ } ++ ++ get_online_cpus(); ++ ++ event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, ++ NULL, NULL); ++ if (IS_ERR(event)) { ++ err = PTR_ERR(event); ++ goto err_cpus; ++ } ++ ++ if (flags & PERF_FLAG_PID_CGROUP) { ++ err = perf_cgroup_connect(pid, event, &attr, group_leader); ++ if (err) { ++ __free_event(event); ++ goto err_cpus; ++ } ++ } ++ ++ if (is_sampling_event(event)) { ++ if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { ++ err = -ENOTSUPP; ++ goto err_alloc; ++ } ++ } ++ ++ account_event(event); ++ ++ /* ++ * Special case software events and allow them to be part of ++ * any hardware group. ++ */ ++ pmu = event->pmu; ++ ++ if (group_leader && ++ (is_software_event(event) != is_software_event(group_leader))) { ++ if (is_software_event(event)) { ++ /* ++ * If event and group_leader are not both a software ++ * event, and event is, then group leader is not. ++ * ++ * Allow the addition of software events to !software ++ * groups, this is safe because software events never ++ * fail to schedule. ++ */ ++ pmu = group_leader->pmu; ++ } else if (is_software_event(group_leader) && ++ (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { ++ /* ++ * In case the group is a pure software group, and we ++ * try to add a hardware event, move the whole group to ++ * the hardware context. ++ */ ++ move_group = 1; ++ } ++ } ++ ++ /* ++ * Get the target context (task or percpu): ++ */ ++ ctx = find_get_context(pmu, task, event->cpu); ++ if (IS_ERR(ctx)) { ++ err = PTR_ERR(ctx); ++ goto err_alloc; ++ } ++ ++ if (task) { ++ put_task_struct(task); ++ task = NULL; ++ } ++ ++ /* ++ * Look up the group leader (we will attach this event to it): ++ */ ++ if (group_leader) { ++ err = -EINVAL; ++ ++ /* ++ * Do not allow a recursive hierarchy (this new sibling ++ * becoming part of another group-sibling): ++ */ ++ if (group_leader->group_leader != group_leader) ++ goto err_context; ++ /* ++ * Do not allow to attach to a group in a different ++ * task or CPU context: ++ */ ++ if (move_group) { ++ if (group_leader->ctx->type != ctx->type) ++ goto err_context; ++ } else { ++ if (group_leader->ctx != ctx) ++ goto err_context; ++ } ++ ++ /* ++ * Only a group leader can be exclusive or pinned ++ */ ++ if (attr.exclusive || attr.pinned) ++ goto err_context; ++ } ++ ++ if (output_event) { ++ err = perf_event_set_output(event, output_event); ++ if (err) ++ goto err_context; ++ } ++ ++ event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, ++ f_flags); ++ if (IS_ERR(event_file)) { ++ err = PTR_ERR(event_file); ++ goto err_context; ++ } ++ ++ if (move_group) { ++ struct perf_event_context *gctx = group_leader->ctx; ++ ++ mutex_lock(&gctx->mutex); ++ perf_remove_from_context(group_leader, false); ++ ++ /* ++ * Removing from the context ends up with disabled ++ * event. What we want here is event in the initial ++ * startup state, ready to be add into new context. ++ */ ++ perf_event__state_init(group_leader); ++ list_for_each_entry(sibling, &group_leader->sibling_list, ++ group_entry) { ++ perf_remove_from_context(sibling, false); ++ perf_event__state_init(sibling); ++ put_ctx(gctx); ++ } ++ mutex_unlock(&gctx->mutex); ++ put_ctx(gctx); ++ } ++ ++ WARN_ON_ONCE(ctx->parent_ctx); ++ mutex_lock(&ctx->mutex); ++ ++ if (move_group) { ++ synchronize_rcu(); ++ perf_install_in_context(ctx, group_leader, group_leader->cpu); ++ get_ctx(ctx); ++ list_for_each_entry(sibling, &group_leader->sibling_list, ++ group_entry) { ++ perf_install_in_context(ctx, sibling, sibling->cpu); ++ get_ctx(ctx); ++ } ++ } ++ ++ perf_install_in_context(ctx, event, event->cpu); ++ perf_unpin_context(ctx); ++ mutex_unlock(&ctx->mutex); ++ ++ put_online_cpus(); ++ ++ event->owner = current; ++ ++ mutex_lock(¤t->perf_event_mutex); ++ list_add_tail(&event->owner_entry, ¤t->perf_event_list); ++ mutex_unlock(¤t->perf_event_mutex); ++ ++ /* ++ * Precalculate sample_data sizes ++ */ ++ perf_event__header_size(event); ++ perf_event__id_header_size(event); ++ ++ /* ++ * Drop the reference on the group_event after placing the ++ * new event on the sibling_list. This ensures destruction ++ * of the group leader will find the pointer to itself in ++ * perf_group_detach(). ++ */ ++ fdput(group); ++ fd_install(event_fd, event_file); ++ return event_fd; ++ ++err_context: ++ perf_unpin_context(ctx); ++ put_ctx(ctx); ++err_alloc: ++ free_event(event); ++err_cpus: ++ put_online_cpus(); ++err_task: ++ if (task) ++ put_task_struct(task); ++err_group_fd: ++ fdput(group); ++err_fd: ++ put_unused_fd(event_fd); ++ return err; ++} ++ ++/** ++ * perf_event_create_kernel_counter ++ * ++ * @attr: attributes of the counter to create ++ * @cpu: cpu in which the counter is bound ++ * @task: task to profile (NULL for percpu) ++ */ ++struct perf_event * ++perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, ++ struct task_struct *task, ++ perf_overflow_handler_t overflow_handler, ++ void *context) ++{ ++ struct perf_event_context *ctx; ++ struct perf_event *event; ++ int err; ++ ++ /* ++ * Get the target context (task or percpu): ++ */ ++ ++ event = perf_event_alloc(attr, cpu, task, NULL, NULL, ++ overflow_handler, context); ++ if (IS_ERR(event)) { ++ err = PTR_ERR(event); ++ goto err; ++ } ++ ++ /* Mark owner so we could distinguish it from user events. */ ++ event->owner = EVENT_OWNER_KERNEL; ++ ++ account_event(event); ++ ++ ctx = find_get_context(event->pmu, task, cpu); ++ if (IS_ERR(ctx)) { ++ err = PTR_ERR(ctx); ++ goto err_free; ++ } ++ ++ WARN_ON_ONCE(ctx->parent_ctx); ++ mutex_lock(&ctx->mutex); ++ perf_install_in_context(ctx, event, cpu); ++ perf_unpin_context(ctx); ++ mutex_unlock(&ctx->mutex); ++ ++ return event; ++ ++err_free: ++ free_event(event); ++err: ++ return ERR_PTR(err); ++} ++EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); ++ ++void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) ++{ ++ struct perf_event_context *src_ctx; ++ struct perf_event_context *dst_ctx; ++ struct perf_event *event, *tmp; ++ LIST_HEAD(events); ++ ++ src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; ++ dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; ++ ++ mutex_lock(&src_ctx->mutex); ++ list_for_each_entry_safe(event, tmp, &src_ctx->event_list, ++ event_entry) { ++ perf_remove_from_context(event, false); ++ unaccount_event_cpu(event, src_cpu); ++ put_ctx(src_ctx); ++ list_add(&event->migrate_entry, &events); ++ } ++ mutex_unlock(&src_ctx->mutex); ++ ++ synchronize_rcu(); ++ ++ mutex_lock(&dst_ctx->mutex); ++ list_for_each_entry_safe(event, tmp, &events, migrate_entry) { ++ list_del(&event->migrate_entry); ++ if (event->state >= PERF_EVENT_STATE_OFF) ++ event->state = PERF_EVENT_STATE_INACTIVE; ++ account_event_cpu(event, dst_cpu); ++ perf_install_in_context(dst_ctx, event, dst_cpu); ++ get_ctx(dst_ctx); ++ } ++ mutex_unlock(&dst_ctx->mutex); ++} ++EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); ++ ++static void sync_child_event(struct perf_event *child_event, ++ struct task_struct *child) ++{ ++ struct perf_event *parent_event = child_event->parent; ++ u64 child_val; ++ ++ if (child_event->attr.inherit_stat) ++ perf_event_read_event(child_event, child); ++ ++ child_val = perf_event_count(child_event); ++ ++ /* ++ * Add back the child's count to the parent's count: ++ */ ++ atomic64_add(child_val, &parent_event->child_count); ++ atomic64_add(child_event->total_time_enabled, ++ &parent_event->child_total_time_enabled); ++ atomic64_add(child_event->total_time_running, ++ &parent_event->child_total_time_running); ++ ++ /* ++ * Remove this event from the parent's list ++ */ ++ WARN_ON_ONCE(parent_event->ctx->parent_ctx); ++ mutex_lock(&parent_event->child_mutex); ++ list_del_init(&child_event->child_list); ++ mutex_unlock(&parent_event->child_mutex); ++ ++ /* ++ * Make sure user/parent get notified, that we just ++ * lost one event. ++ */ ++ perf_event_wakeup(parent_event); ++ ++ /* ++ * Release the parent event, if this was the last ++ * reference to it. ++ */ ++ put_event(parent_event); ++} ++ ++static void ++__perf_event_exit_task(struct perf_event *child_event, ++ struct perf_event_context *child_ctx, ++ struct task_struct *child) ++{ ++ /* ++ * Do not destroy the 'original' grouping; because of the context ++ * switch optimization the original events could've ended up in a ++ * random child task. ++ * ++ * If we were to destroy the original group, all group related ++ * operations would cease to function properly after this random ++ * child dies. ++ * ++ * Do destroy all inherited groups, we don't care about those ++ * and being thorough is better. ++ */ ++ perf_remove_from_context(child_event, !!child_event->parent); ++ ++ /* ++ * It can happen that the parent exits first, and has events ++ * that are still around due to the child reference. These ++ * events need to be zapped. ++ */ ++ if (child_event->parent) { ++ sync_child_event(child_event, child); ++ free_event(child_event); ++ } else { ++ child_event->state = PERF_EVENT_STATE_EXIT; ++ perf_event_wakeup(child_event); ++ } ++} ++ ++static void perf_event_exit_task_context(struct task_struct *child, int ctxn) ++{ ++ struct perf_event *child_event, *next; ++ struct perf_event_context *child_ctx, *clone_ctx = NULL; ++ unsigned long flags; ++ ++ if (likely(!child->perf_event_ctxp[ctxn])) { ++ perf_event_task(child, NULL, 0); ++ return; ++ } ++ ++ local_irq_save(flags); ++ /* ++ * We can't reschedule here because interrupts are disabled, ++ * and either child is current or it is a task that can't be ++ * scheduled, so we are now safe from rescheduling changing ++ * our context. ++ */ ++ child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); ++ ++ /* ++ * Take the context lock here so that if find_get_context is ++ * reading child->perf_event_ctxp, we wait until it has ++ * incremented the context's refcount before we do put_ctx below. ++ */ ++ raw_spin_lock(&child_ctx->lock); ++ task_ctx_sched_out(child_ctx); ++ child->perf_event_ctxp[ctxn] = NULL; ++ ++ /* ++ * If this context is a clone; unclone it so it can't get ++ * swapped to another process while we're removing all ++ * the events from it. ++ */ ++ clone_ctx = unclone_ctx(child_ctx); ++ update_context_time(child_ctx); ++ raw_spin_unlock_irqrestore(&child_ctx->lock, flags); ++ ++ if (clone_ctx) ++ put_ctx(clone_ctx); ++ ++ /* ++ * Report the task dead after unscheduling the events so that we ++ * won't get any samples after PERF_RECORD_EXIT. We can however still ++ * get a few PERF_RECORD_READ events. ++ */ ++ perf_event_task(child, child_ctx, 0); ++ ++ /* ++ * We can recurse on the same lock type through: ++ * ++ * __perf_event_exit_task() ++ * sync_child_event() ++ * put_event() ++ * mutex_lock(&ctx->mutex) ++ * ++ * But since its the parent context it won't be the same instance. ++ */ ++ mutex_lock(&child_ctx->mutex); ++ ++ list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) ++ __perf_event_exit_task(child_event, child_ctx, child); ++ ++ mutex_unlock(&child_ctx->mutex); ++ ++ put_ctx(child_ctx); ++} ++ ++/* ++ * When a child task exits, feed back event values to parent events. ++ */ ++void perf_event_exit_task(struct task_struct *child) ++{ ++ struct perf_event *event, *tmp; ++ int ctxn; ++ ++ mutex_lock(&child->perf_event_mutex); ++ list_for_each_entry_safe(event, tmp, &child->perf_event_list, ++ owner_entry) { ++ list_del_init(&event->owner_entry); ++ ++ /* ++ * Ensure the list deletion is visible before we clear ++ * the owner, closes a race against perf_release() where ++ * we need to serialize on the owner->perf_event_mutex. ++ */ ++ smp_wmb(); ++ event->owner = NULL; ++ } ++ mutex_unlock(&child->perf_event_mutex); ++ ++ for_each_task_context_nr(ctxn) ++ perf_event_exit_task_context(child, ctxn); ++} ++ ++static void perf_free_event(struct perf_event *event, ++ struct perf_event_context *ctx) ++{ ++ struct perf_event *parent = event->parent; ++ ++ if (WARN_ON_ONCE(!parent)) ++ return; ++ ++ mutex_lock(&parent->child_mutex); ++ list_del_init(&event->child_list); ++ mutex_unlock(&parent->child_mutex); ++ ++ put_event(parent); ++ ++ perf_group_detach(event); ++ list_del_event(event, ctx); ++ free_event(event); ++} ++ ++/* ++ * free an unexposed, unused context as created by inheritance by ++ * perf_event_init_task below, used by fork() in case of fail. ++ */ ++void perf_event_free_task(struct task_struct *task) ++{ ++ struct perf_event_context *ctx; ++ struct perf_event *event, *tmp; ++ int ctxn; ++ ++ for_each_task_context_nr(ctxn) { ++ ctx = task->perf_event_ctxp[ctxn]; ++ if (!ctx) ++ continue; ++ ++ mutex_lock(&ctx->mutex); ++again: ++ list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, ++ group_entry) ++ perf_free_event(event, ctx); ++ ++ list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, ++ group_entry) ++ perf_free_event(event, ctx); ++ ++ if (!list_empty(&ctx->pinned_groups) || ++ !list_empty(&ctx->flexible_groups)) ++ goto again; ++ ++ mutex_unlock(&ctx->mutex); ++ ++ put_ctx(ctx); ++ } ++} ++ ++void perf_event_delayed_put(struct task_struct *task) ++{ ++ int ctxn; ++ ++ for_each_task_context_nr(ctxn) ++ WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); ++} ++ ++/* ++ * inherit a event from parent task to child task: ++ */ ++static struct perf_event * ++inherit_event(struct perf_event *parent_event, ++ struct task_struct *parent, ++ struct perf_event_context *parent_ctx, ++ struct task_struct *child, ++ struct perf_event *group_leader, ++ struct perf_event_context *child_ctx) ++{ ++ enum perf_event_active_state parent_state = parent_event->state; ++ struct perf_event *child_event; ++ unsigned long flags; ++ ++ /* ++ * Instead of creating recursive hierarchies of events, ++ * we link inherited events back to the original parent, ++ * which has a filp for sure, which we use as the reference ++ * count: ++ */ ++ if (parent_event->parent) ++ parent_event = parent_event->parent; ++ ++ child_event = perf_event_alloc(&parent_event->attr, ++ parent_event->cpu, ++ child, ++ group_leader, parent_event, ++ NULL, NULL); ++ if (IS_ERR(child_event)) ++ return child_event; ++ ++ if (is_orphaned_event(parent_event) || ++ !atomic_long_inc_not_zero(&parent_event->refcount)) { ++ free_event(child_event); ++ return NULL; ++ } ++ ++ get_ctx(child_ctx); ++ ++ /* ++ * Make the child state follow the state of the parent event, ++ * not its attr.disabled bit. We hold the parent's mutex, ++ * so we won't race with perf_event_{en, dis}able_family. ++ */ ++ if (parent_state >= PERF_EVENT_STATE_INACTIVE) ++ child_event->state = PERF_EVENT_STATE_INACTIVE; ++ else ++ child_event->state = PERF_EVENT_STATE_OFF; ++ ++ if (parent_event->attr.freq) { ++ u64 sample_period = parent_event->hw.sample_period; ++ struct hw_perf_event *hwc = &child_event->hw; ++ ++ hwc->sample_period = sample_period; ++ hwc->last_period = sample_period; ++ ++ local64_set(&hwc->period_left, sample_period); ++ } ++ ++ child_event->ctx = child_ctx; ++ child_event->overflow_handler = parent_event->overflow_handler; ++ child_event->overflow_handler_context ++ = parent_event->overflow_handler_context; ++ ++ /* ++ * Precalculate sample_data sizes ++ */ ++ perf_event__header_size(child_event); ++ perf_event__id_header_size(child_event); ++ ++ /* ++ * Link it up in the child's context: ++ */ ++ raw_spin_lock_irqsave(&child_ctx->lock, flags); ++ add_event_to_ctx(child_event, child_ctx); ++ raw_spin_unlock_irqrestore(&child_ctx->lock, flags); ++ ++ /* ++ * Link this into the parent event's child list ++ */ ++ WARN_ON_ONCE(parent_event->ctx->parent_ctx); ++ mutex_lock(&parent_event->child_mutex); ++ list_add_tail(&child_event->child_list, &parent_event->child_list); ++ mutex_unlock(&parent_event->child_mutex); ++ ++ return child_event; ++} ++ ++static int inherit_group(struct perf_event *parent_event, ++ struct task_struct *parent, ++ struct perf_event_context *parent_ctx, ++ struct task_struct *child, ++ struct perf_event_context *child_ctx) ++{ ++ struct perf_event *leader; ++ struct perf_event *sub; ++ struct perf_event *child_ctr; ++ ++ leader = inherit_event(parent_event, parent, parent_ctx, ++ child, NULL, child_ctx); ++ if (IS_ERR(leader)) ++ return PTR_ERR(leader); ++ list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { ++ child_ctr = inherit_event(sub, parent, parent_ctx, ++ child, leader, child_ctx); ++ if (IS_ERR(child_ctr)) ++ return PTR_ERR(child_ctr); ++ } ++ return 0; ++} ++ ++static int ++inherit_task_group(struct perf_event *event, struct task_struct *parent, ++ struct perf_event_context *parent_ctx, ++ struct task_struct *child, int ctxn, ++ int *inherited_all) ++{ ++ int ret; ++ struct perf_event_context *child_ctx; ++ ++ if (!event->attr.inherit) { ++ *inherited_all = 0; ++ return 0; ++ } ++ ++ child_ctx = child->perf_event_ctxp[ctxn]; ++ if (!child_ctx) { ++ /* ++ * This is executed from the parent task context, so ++ * inherit events that have been marked for cloning. ++ * First allocate and initialize a context for the ++ * child. ++ */ ++ ++ child_ctx = alloc_perf_context(parent_ctx->pmu, child); ++ if (!child_ctx) ++ return -ENOMEM; ++ ++ child->perf_event_ctxp[ctxn] = child_ctx; ++ } ++ ++ ret = inherit_group(event, parent, parent_ctx, ++ child, child_ctx); ++ ++ if (ret) ++ *inherited_all = 0; ++ ++ return ret; ++} ++ ++/* ++ * Initialize the perf_event context in task_struct ++ */ ++static int perf_event_init_context(struct task_struct *child, int ctxn) ++{ ++ struct perf_event_context *child_ctx, *parent_ctx; ++ struct perf_event_context *cloned_ctx; ++ struct perf_event *event; ++ struct task_struct *parent = current; ++ int inherited_all = 1; ++ unsigned long flags; ++ int ret = 0; ++ ++ if (likely(!parent->perf_event_ctxp[ctxn])) ++ return 0; ++ ++ /* ++ * If the parent's context is a clone, pin it so it won't get ++ * swapped under us. ++ */ ++ parent_ctx = perf_pin_task_context(parent, ctxn); ++ if (!parent_ctx) ++ return 0; ++ ++ /* ++ * No need to check if parent_ctx != NULL here; since we saw ++ * it non-NULL earlier, the only reason for it to become NULL ++ * is if we exit, and since we're currently in the middle of ++ * a fork we can't be exiting at the same time. ++ */ ++ ++ /* ++ * Lock the parent list. No need to lock the child - not PID ++ * hashed yet and not running, so nobody can access it. ++ */ ++ mutex_lock(&parent_ctx->mutex); ++ ++ /* ++ * We dont have to disable NMIs - we are only looking at ++ * the list, not manipulating it: ++ */ ++ list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { ++ ret = inherit_task_group(event, parent, parent_ctx, ++ child, ctxn, &inherited_all); ++ if (ret) ++ break; ++ } ++ ++ /* ++ * We can't hold ctx->lock when iterating the ->flexible_group list due ++ * to allocations, but we need to prevent rotation because ++ * rotate_ctx() will change the list from interrupt context. ++ */ ++ raw_spin_lock_irqsave(&parent_ctx->lock, flags); ++ parent_ctx->rotate_disable = 1; ++ raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); ++ ++ list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { ++ ret = inherit_task_group(event, parent, parent_ctx, ++ child, ctxn, &inherited_all); ++ if (ret) ++ break; ++ } ++ ++ raw_spin_lock_irqsave(&parent_ctx->lock, flags); ++ parent_ctx->rotate_disable = 0; ++ ++ child_ctx = child->perf_event_ctxp[ctxn]; ++ ++ if (child_ctx && inherited_all) { ++ /* ++ * Mark the child context as a clone of the parent ++ * context, or of whatever the parent is a clone of. ++ * ++ * Note that if the parent is a clone, the holding of ++ * parent_ctx->lock avoids it from being uncloned. ++ */ ++ cloned_ctx = parent_ctx->parent_ctx; ++ if (cloned_ctx) { ++ child_ctx->parent_ctx = cloned_ctx; ++ child_ctx->parent_gen = parent_ctx->parent_gen; ++ } else { ++ child_ctx->parent_ctx = parent_ctx; ++ child_ctx->parent_gen = parent_ctx->generation; ++ } ++ get_ctx(child_ctx->parent_ctx); ++ } ++ ++ raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); ++ mutex_unlock(&parent_ctx->mutex); ++ ++ perf_unpin_context(parent_ctx); ++ put_ctx(parent_ctx); ++ ++ return ret; ++} ++ ++/* ++ * Initialize the perf_event context in task_struct ++ */ ++int perf_event_init_task(struct task_struct *child) ++{ ++ int ctxn, ret; ++ ++ memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); ++ mutex_init(&child->perf_event_mutex); ++ INIT_LIST_HEAD(&child->perf_event_list); ++ ++ for_each_task_context_nr(ctxn) { ++ ret = perf_event_init_context(child, ctxn); ++ if (ret) { ++ perf_event_free_task(child); ++ return ret; ++ } ++ } ++ ++ return 0; ++} ++ ++static void __init perf_event_init_all_cpus(void) ++{ ++ struct swevent_htable *swhash; ++ int cpu; ++ ++ for_each_possible_cpu(cpu) { ++ swhash = &per_cpu(swevent_htable, cpu); ++ mutex_init(&swhash->hlist_mutex); ++ INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); ++ } ++} ++ ++static void perf_event_init_cpu(int cpu) ++{ ++ struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); ++ ++ mutex_lock(&swhash->hlist_mutex); ++ swhash->online = true; ++ if (swhash->hlist_refcount > 0) { ++ struct swevent_hlist *hlist; ++ ++ hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); ++ WARN_ON(!hlist); ++ rcu_assign_pointer(swhash->swevent_hlist, hlist); ++ } ++ mutex_unlock(&swhash->hlist_mutex); ++} ++ ++#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC ++static void perf_pmu_rotate_stop(struct pmu *pmu) ++{ ++ struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); ++ ++ WARN_ON(!irqs_disabled()); ++ ++ list_del_init(&cpuctx->rotation_list); ++} ++ ++static void __perf_event_exit_context(void *__info) ++{ ++ struct remove_event re = { .detach_group = true }; ++ struct perf_event_context *ctx = __info; ++ ++ perf_pmu_rotate_stop(ctx->pmu); ++ ++ rcu_read_lock(); ++ list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) ++ __perf_remove_from_context(&re); ++ rcu_read_unlock(); ++} ++ ++static void perf_event_exit_cpu_context(int cpu) ++{ ++ struct perf_event_context *ctx; ++ struct pmu *pmu; ++ int idx; ++ ++ idx = srcu_read_lock(&pmus_srcu); ++ list_for_each_entry_rcu(pmu, &pmus, entry) { ++ ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; ++ ++ mutex_lock(&ctx->mutex); ++ smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); ++ mutex_unlock(&ctx->mutex); ++ } ++ srcu_read_unlock(&pmus_srcu, idx); ++} ++ ++static void perf_event_exit_cpu(int cpu) ++{ ++ struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); ++ ++ perf_event_exit_cpu_context(cpu); ++ ++ mutex_lock(&swhash->hlist_mutex); ++ swhash->online = false; ++ swevent_hlist_release(swhash); ++ mutex_unlock(&swhash->hlist_mutex); ++} ++#else ++static inline void perf_event_exit_cpu(int cpu) { } ++#endif ++ ++static int ++perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) ++{ ++ int cpu; ++ ++ for_each_online_cpu(cpu) ++ perf_event_exit_cpu(cpu); ++ ++ return NOTIFY_OK; ++} ++ ++/* ++ * Run the perf reboot notifier at the very last possible moment so that ++ * the generic watchdog code runs as long as possible. ++ */ ++static struct notifier_block perf_reboot_notifier = { ++ .notifier_call = perf_reboot, ++ .priority = INT_MIN, ++}; ++ ++static int ++perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) ++{ ++ unsigned int cpu = (long)hcpu; ++ ++ switch (action & ~CPU_TASKS_FROZEN) { ++ ++ case CPU_UP_PREPARE: ++ case CPU_DOWN_FAILED: ++ perf_event_init_cpu(cpu); ++ break; ++ ++ case CPU_UP_CANCELED: ++ case CPU_DOWN_PREPARE: ++ perf_event_exit_cpu(cpu); ++ break; ++ default: ++ break; ++ } ++ ++ return NOTIFY_OK; ++} ++ ++void __init perf_event_init(void) ++{ ++ int ret; ++ ++ idr_init(&pmu_idr); ++ ++ perf_event_init_all_cpus(); ++ init_srcu_struct(&pmus_srcu); ++ perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); ++ perf_pmu_register(&perf_cpu_clock, NULL, -1); ++ perf_pmu_register(&perf_task_clock, NULL, -1); ++ perf_tp_register(); ++ perf_cpu_notifier(perf_cpu_notify); ++ register_reboot_notifier(&perf_reboot_notifier); ++ ++ ret = init_hw_breakpoint(); ++ WARN(ret, "hw_breakpoint initialization failed with: %d", ret); ++ ++ /* do not patch jump label more than once per second */ ++ jump_label_rate_limit(&perf_sched_events, HZ); ++ ++ /* ++ * Build time assertion that we keep the data_head at the intended ++ * location. IOW, validation we got the __reserved[] size right. ++ */ ++ BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) ++ != 1024); ++} ++ ++static int __init perf_event_sysfs_init(void) ++{ ++ struct pmu *pmu; ++ int ret; ++ ++ mutex_lock(&pmus_lock); ++ ++ ret = bus_register(&pmu_bus); ++ if (ret) ++ goto unlock; ++ ++ list_for_each_entry(pmu, &pmus, entry) { ++ if (!pmu->name || pmu->type < 0) ++ continue; ++ ++ ret = pmu_dev_alloc(pmu); ++ WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); ++ } ++ pmu_bus_running = 1; ++ ret = 0; ++ ++unlock: ++ mutex_unlock(&pmus_lock); ++ ++ return ret; ++} ++device_initcall(perf_event_sysfs_init); ++ ++#ifdef CONFIG_CGROUP_PERF ++static struct cgroup_subsys_state * ++perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) ++{ ++ struct perf_cgroup *jc; ++ ++ jc = kzalloc(sizeof(*jc), GFP_KERNEL); ++ if (!jc) ++ return ERR_PTR(-ENOMEM); ++ ++ jc->info = alloc_percpu(struct perf_cgroup_info); ++ if (!jc->info) { ++ kfree(jc); ++ return ERR_PTR(-ENOMEM); ++ } ++ ++ return &jc->css; ++} ++ ++static void perf_cgroup_css_free(struct cgroup_subsys_state *css) ++{ ++ struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); ++ ++ free_percpu(jc->info); ++ kfree(jc); ++} ++ ++static int __perf_cgroup_move(void *info) ++{ ++ struct task_struct *task = info; ++ perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); ++ return 0; ++} ++ ++static void perf_cgroup_attach(struct cgroup_subsys_state *css, ++ struct cgroup_taskset *tset) ++{ ++ struct task_struct *task; ++ ++ cgroup_taskset_for_each(task, tset) ++ task_function_call(task, __perf_cgroup_move, task); ++} ++ ++static void perf_cgroup_exit(struct cgroup_subsys_state *css, ++ struct cgroup_subsys_state *old_css, ++ struct task_struct *task) ++{ ++ /* ++ * cgroup_exit() is called in the copy_process() failure path. ++ * Ignore this case since the task hasn't ran yet, this avoids ++ * trying to poke a half freed task state from generic code. ++ */ ++ if (!(task->flags & PF_EXITING)) ++ return; ++ ++ task_function_call(task, __perf_cgroup_move, task); ++} ++ ++struct cgroup_subsys perf_event_cgrp_subsys = { ++ .css_alloc = perf_cgroup_css_alloc, ++ .css_free = perf_cgroup_css_free, ++ .exit = perf_cgroup_exit, ++ .attach = perf_cgroup_attach, ++}; ++#endif /* CONFIG_CGROUP_PERF */ +diff -Nur linux-3.18.12.orig/kernel/exit.c linux-3.18.12/kernel/exit.c +--- linux-3.18.12.orig/kernel/exit.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/exit.c 2015-04-26 13:32:22.431684003 -0500 +@@ -147,7 +147,7 @@ + * Do this under ->siglock, we can race with another thread + * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. + */ +- flush_sigqueue(&tsk->pending); ++ flush_task_sigqueue(tsk); + tsk->sighand = NULL; + spin_unlock(&sighand->siglock); + +diff -Nur linux-3.18.12.orig/kernel/fork.c linux-3.18.12/kernel/fork.c +--- linux-3.18.12.orig/kernel/fork.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/fork.c 2015-04-26 13:32:22.435684003 -0500 +@@ -97,7 +97,7 @@ + + DEFINE_PER_CPU(unsigned long, process_counts) = 0; + +-__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ ++DEFINE_RWLOCK(tasklist_lock); /* outer */ + + #ifdef CONFIG_PROVE_RCU + int lockdep_tasklist_lock_is_held(void) +@@ -233,7 +233,9 @@ + if (atomic_dec_and_test(&sig->sigcnt)) + free_signal_struct(sig); + } +- ++#ifdef CONFIG_PREEMPT_RT_BASE ++static ++#endif + void __put_task_struct(struct task_struct *tsk) + { + WARN_ON(!tsk->exit_state); +@@ -249,7 +251,18 @@ + if (!profile_handoff_task(tsk)) + free_task(tsk); + } ++#ifndef CONFIG_PREEMPT_RT_BASE + EXPORT_SYMBOL_GPL(__put_task_struct); ++#else ++void __put_task_struct_cb(struct rcu_head *rhp) ++{ ++ struct task_struct *tsk = container_of(rhp, struct task_struct, put_rcu); ++ ++ __put_task_struct(tsk); ++ ++} ++EXPORT_SYMBOL_GPL(__put_task_struct_cb); ++#endif + + void __init __weak arch_task_cache_init(void) { } + +@@ -643,6 +656,19 @@ + } + EXPORT_SYMBOL_GPL(__mmdrop); + ++#ifdef CONFIG_PREEMPT_RT_BASE ++/* ++ * RCU callback for delayed mm drop. Not strictly rcu, but we don't ++ * want another facility to make this work. ++ */ ++void __mmdrop_delayed(struct rcu_head *rhp) ++{ ++ struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop); ++ ++ __mmdrop(mm); ++} ++#endif ++ + /* + * Decrement the use count and release all resources for an mm. + */ +@@ -1157,6 +1183,9 @@ + */ + static void posix_cpu_timers_init(struct task_struct *tsk) + { ++#ifdef CONFIG_PREEMPT_RT_BASE ++ tsk->posix_timer_list = NULL; ++#endif + tsk->cputime_expires.prof_exp = 0; + tsk->cputime_expires.virt_exp = 0; + tsk->cputime_expires.sched_exp = 0; +@@ -1284,6 +1313,7 @@ + spin_lock_init(&p->alloc_lock); + + init_sigpending(&p->pending); ++ p->sigqueue_cache = NULL; + + p->utime = p->stime = p->gtime = 0; + p->utimescaled = p->stimescaled = 0; +@@ -1291,7 +1321,8 @@ + p->prev_cputime.utime = p->prev_cputime.stime = 0; + #endif + #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN +- seqlock_init(&p->vtime_seqlock); ++ raw_spin_lock_init(&p->vtime_lock); ++ seqcount_init(&p->vtime_seq); + p->vtime_snap = 0; + p->vtime_snap_whence = VTIME_SLEEPING; + #endif +@@ -1342,6 +1373,9 @@ + p->hardirq_context = 0; + p->softirq_context = 0; + #endif ++#ifdef CONFIG_PREEMPT_RT_FULL ++ p->pagefault_disabled = 0; ++#endif + #ifdef CONFIG_LOCKDEP + p->lockdep_depth = 0; /* no locks held yet */ + p->curr_chain_key = 0; +diff -Nur linux-3.18.12.orig/kernel/futex.c linux-3.18.12/kernel/futex.c +--- linux-3.18.12.orig/kernel/futex.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/futex.c 2015-04-26 13:32:22.435684003 -0500 +@@ -738,7 +738,9 @@ + * task still owns the PI-state: + */ + if (head->next != next) { ++ raw_spin_unlock_irq(&curr->pi_lock); + spin_unlock(&hb->lock); ++ raw_spin_lock_irq(&curr->pi_lock); + continue; + } + +@@ -1705,6 +1707,16 @@ + requeue_pi_wake_futex(this, &key2, hb2); + drop_count++; + continue; ++ } else if (ret == -EAGAIN) { ++ /* ++ * Waiter was woken by timeout or ++ * signal and has set pi_blocked_on to ++ * PI_WAKEUP_INPROGRESS before we ++ * tried to enqueue it on the rtmutex. ++ */ ++ this->pi_state = NULL; ++ free_pi_state(pi_state); ++ continue; + } else if (ret) { + /* -EDEADLK */ + this->pi_state = NULL; +@@ -2549,7 +2561,7 @@ + struct hrtimer_sleeper timeout, *to = NULL; + struct rt_mutex_waiter rt_waiter; + struct rt_mutex *pi_mutex = NULL; +- struct futex_hash_bucket *hb; ++ struct futex_hash_bucket *hb, *hb2; + union futex_key key2 = FUTEX_KEY_INIT; + struct futex_q q = futex_q_init; + int res, ret; +@@ -2574,10 +2586,7 @@ + * The waiter is allocated on our stack, manipulated by the requeue + * code while we sleep on uaddr. + */ +- debug_rt_mutex_init_waiter(&rt_waiter); +- RB_CLEAR_NODE(&rt_waiter.pi_tree_entry); +- RB_CLEAR_NODE(&rt_waiter.tree_entry); +- rt_waiter.task = NULL; ++ rt_mutex_init_waiter(&rt_waiter, false); + + ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); + if (unlikely(ret != 0)) +@@ -2608,20 +2617,55 @@ + /* Queue the futex_q, drop the hb lock, wait for wakeup. */ + futex_wait_queue_me(hb, &q, to); + +- spin_lock(&hb->lock); +- ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); +- spin_unlock(&hb->lock); +- if (ret) +- goto out_put_keys; ++ /* ++ * On RT we must avoid races with requeue and trying to block ++ * on two mutexes (hb->lock and uaddr2's rtmutex) by ++ * serializing access to pi_blocked_on with pi_lock. ++ */ ++ raw_spin_lock_irq(¤t->pi_lock); ++ if (current->pi_blocked_on) { ++ /* ++ * We have been requeued or are in the process of ++ * being requeued. ++ */ ++ raw_spin_unlock_irq(¤t->pi_lock); ++ } else { ++ /* ++ * Setting pi_blocked_on to PI_WAKEUP_INPROGRESS ++ * prevents a concurrent requeue from moving us to the ++ * uaddr2 rtmutex. After that we can safely acquire ++ * (and possibly block on) hb->lock. ++ */ ++ current->pi_blocked_on = PI_WAKEUP_INPROGRESS; ++ raw_spin_unlock_irq(¤t->pi_lock); ++ ++ spin_lock(&hb->lock); ++ ++ /* ++ * Clean up pi_blocked_on. We might leak it otherwise ++ * when we succeeded with the hb->lock in the fast ++ * path. ++ */ ++ raw_spin_lock_irq(¤t->pi_lock); ++ current->pi_blocked_on = NULL; ++ raw_spin_unlock_irq(¤t->pi_lock); ++ ++ ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); ++ spin_unlock(&hb->lock); ++ if (ret) ++ goto out_put_keys; ++ } + + /* +- * In order for us to be here, we know our q.key == key2, and since +- * we took the hb->lock above, we also know that futex_requeue() has +- * completed and we no longer have to concern ourselves with a wakeup +- * race with the atomic proxy lock acquisition by the requeue code. The +- * futex_requeue dropped our key1 reference and incremented our key2 +- * reference count. ++ * In order to be here, we have either been requeued, are in ++ * the process of being requeued, or requeue successfully ++ * acquired uaddr2 on our behalf. If pi_blocked_on was ++ * non-null above, we may be racing with a requeue. Do not ++ * rely on q->lock_ptr to be hb2->lock until after blocking on ++ * hb->lock or hb2->lock. The futex_requeue dropped our key1 ++ * reference and incremented our key2 reference count. + */ ++ hb2 = hash_futex(&key2); + + /* Check if the requeue code acquired the second futex for us. */ + if (!q.rt_waiter) { +@@ -2630,9 +2674,10 @@ + * did a lock-steal - fix up the PI-state in that case. + */ + if (q.pi_state && (q.pi_state->owner != current)) { +- spin_lock(q.lock_ptr); ++ spin_lock(&hb2->lock); ++ BUG_ON(&hb2->lock != q.lock_ptr); + ret = fixup_pi_state_owner(uaddr2, &q, current); +- spin_unlock(q.lock_ptr); ++ spin_unlock(&hb2->lock); + } + } else { + /* +@@ -2645,7 +2690,8 @@ + ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter); + debug_rt_mutex_free_waiter(&rt_waiter); + +- spin_lock(q.lock_ptr); ++ spin_lock(&hb2->lock); ++ BUG_ON(&hb2->lock != q.lock_ptr); + /* + * Fixup the pi_state owner and possibly acquire the lock if we + * haven't already. +diff -Nur linux-3.18.12.orig/kernel/irq/handle.c linux-3.18.12/kernel/irq/handle.c +--- linux-3.18.12.orig/kernel/irq/handle.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/irq/handle.c 2015-04-26 13:32:22.435684003 -0500 +@@ -133,6 +133,8 @@ + irqreturn_t + handle_irq_event_percpu(struct irq_desc *desc, struct irqaction *action) + { ++ struct pt_regs *regs = get_irq_regs(); ++ u64 ip = regs ? instruction_pointer(regs) : 0; + irqreturn_t retval = IRQ_NONE; + unsigned int flags = 0, irq = desc->irq_data.irq; + +@@ -173,7 +175,11 @@ + action = action->next; + } while (action); + +- add_interrupt_randomness(irq, flags); ++#ifndef CONFIG_PREEMPT_RT_FULL ++ add_interrupt_randomness(irq, flags, ip); ++#else ++ desc->random_ip = ip; ++#endif + + if (!noirqdebug) + note_interrupt(irq, desc, retval); +diff -Nur linux-3.18.12.orig/kernel/irq/manage.c linux-3.18.12/kernel/irq/manage.c +--- linux-3.18.12.orig/kernel/irq/manage.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/irq/manage.c 2015-04-26 13:32:22.435684003 -0500 +@@ -22,6 +22,7 @@ + #include "internals.h" + + #ifdef CONFIG_IRQ_FORCED_THREADING ++# ifndef CONFIG_PREEMPT_RT_BASE + __read_mostly bool force_irqthreads; + + static int __init setup_forced_irqthreads(char *arg) +@@ -30,6 +31,7 @@ + return 0; + } + early_param("threadirqs", setup_forced_irqthreads); ++# endif + #endif + + static void __synchronize_hardirq(struct irq_desc *desc) +@@ -173,6 +175,62 @@ + irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { } + #endif + ++#ifdef CONFIG_PREEMPT_RT_FULL ++static void _irq_affinity_notify(struct irq_affinity_notify *notify); ++static struct task_struct *set_affinity_helper; ++static LIST_HEAD(affinity_list); ++static DEFINE_RAW_SPINLOCK(affinity_list_lock); ++ ++static int set_affinity_thread(void *unused) ++{ ++ while (1) { ++ struct irq_affinity_notify *notify; ++ int empty; ++ ++ set_current_state(TASK_INTERRUPTIBLE); ++ ++ raw_spin_lock_irq(&affinity_list_lock); ++ empty = list_empty(&affinity_list); ++ raw_spin_unlock_irq(&affinity_list_lock); ++ ++ if (empty) ++ schedule(); ++ if (kthread_should_stop()) ++ break; ++ set_current_state(TASK_RUNNING); ++try_next: ++ notify = NULL; ++ ++ raw_spin_lock_irq(&affinity_list_lock); ++ if (!list_empty(&affinity_list)) { ++ notify = list_first_entry(&affinity_list, ++ struct irq_affinity_notify, list); ++ list_del_init(¬ify->list); ++ } ++ raw_spin_unlock_irq(&affinity_list_lock); ++ ++ if (!notify) ++ continue; ++ _irq_affinity_notify(notify); ++ goto try_next; ++ } ++ return 0; ++} ++ ++static void init_helper_thread(void) ++{ ++ if (set_affinity_helper) ++ return; ++ set_affinity_helper = kthread_run(set_affinity_thread, NULL, ++ "affinity-cb"); ++ WARN_ON(IS_ERR(set_affinity_helper)); ++} ++#else ++ ++static inline void init_helper_thread(void) { } ++ ++#endif ++ + int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, + bool force) + { +@@ -211,7 +269,17 @@ + + if (desc->affinity_notify) { + kref_get(&desc->affinity_notify->kref); ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++ raw_spin_lock(&affinity_list_lock); ++ if (list_empty(&desc->affinity_notify->list)) ++ list_add_tail(&affinity_list, ++ &desc->affinity_notify->list); ++ raw_spin_unlock(&affinity_list_lock); ++ wake_up_process(set_affinity_helper); ++#else + schedule_work(&desc->affinity_notify->work); ++#endif + } + irqd_set(data, IRQD_AFFINITY_SET); + +@@ -246,10 +314,8 @@ + } + EXPORT_SYMBOL_GPL(irq_set_affinity_hint); + +-static void irq_affinity_notify(struct work_struct *work) ++static void _irq_affinity_notify(struct irq_affinity_notify *notify) + { +- struct irq_affinity_notify *notify = +- container_of(work, struct irq_affinity_notify, work); + struct irq_desc *desc = irq_to_desc(notify->irq); + cpumask_var_t cpumask; + unsigned long flags; +@@ -271,6 +337,13 @@ + kref_put(¬ify->kref, notify->release); + } + ++static void irq_affinity_notify(struct work_struct *work) ++{ ++ struct irq_affinity_notify *notify = ++ container_of(work, struct irq_affinity_notify, work); ++ _irq_affinity_notify(notify); ++} ++ + /** + * irq_set_affinity_notifier - control notification of IRQ affinity changes + * @irq: Interrupt for which to enable/disable notification +@@ -300,6 +373,8 @@ + notify->irq = irq; + kref_init(¬ify->kref); + INIT_WORK(¬ify->work, irq_affinity_notify); ++ INIT_LIST_HEAD(¬ify->list); ++ init_helper_thread(); + } + + raw_spin_lock_irqsave(&desc->lock, flags); +@@ -788,7 +863,15 @@ + local_bh_disable(); + ret = action->thread_fn(action->irq, action->dev_id); + irq_finalize_oneshot(desc, action); +- local_bh_enable(); ++ /* ++ * Interrupts which have real time requirements can be set up ++ * to avoid softirq processing in the thread handler. This is ++ * safe as these interrupts do not raise soft interrupts. ++ */ ++ if (irq_settings_no_softirq_call(desc)) ++ _local_bh_enable(); ++ else ++ local_bh_enable(); + return ret; + } + +@@ -871,6 +954,12 @@ + if (action_ret == IRQ_HANDLED) + atomic_inc(&desc->threads_handled); + ++#ifdef CONFIG_PREEMPT_RT_FULL ++ migrate_disable(); ++ add_interrupt_randomness(action->irq, 0, ++ desc->random_ip ^ (unsigned long) action); ++ migrate_enable(); ++#endif + wake_threads_waitq(desc); + } + +@@ -1184,6 +1273,9 @@ + irqd_set(&desc->irq_data, IRQD_NO_BALANCING); + } + ++ if (new->flags & IRQF_NO_SOFTIRQ_CALL) ++ irq_settings_set_no_softirq_call(desc); ++ + /* Set default affinity mask once everything is setup */ + setup_affinity(irq, desc, mask); + +diff -Nur linux-3.18.12.orig/kernel/irq/settings.h linux-3.18.12/kernel/irq/settings.h +--- linux-3.18.12.orig/kernel/irq/settings.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/irq/settings.h 2015-04-26 13:32:22.435684003 -0500 +@@ -15,6 +15,7 @@ + _IRQ_NESTED_THREAD = IRQ_NESTED_THREAD, + _IRQ_PER_CPU_DEVID = IRQ_PER_CPU_DEVID, + _IRQ_IS_POLLED = IRQ_IS_POLLED, ++ _IRQ_NO_SOFTIRQ_CALL = IRQ_NO_SOFTIRQ_CALL, + _IRQF_MODIFY_MASK = IRQF_MODIFY_MASK, + }; + +@@ -28,6 +29,7 @@ + #define IRQ_NESTED_THREAD GOT_YOU_MORON + #define IRQ_PER_CPU_DEVID GOT_YOU_MORON + #define IRQ_IS_POLLED GOT_YOU_MORON ++#define IRQ_NO_SOFTIRQ_CALL GOT_YOU_MORON + #undef IRQF_MODIFY_MASK + #define IRQF_MODIFY_MASK GOT_YOU_MORON + +@@ -38,6 +40,16 @@ + desc->status_use_accessors |= (set & _IRQF_MODIFY_MASK); + } + ++static inline bool irq_settings_no_softirq_call(struct irq_desc *desc) ++{ ++ return desc->status_use_accessors & _IRQ_NO_SOFTIRQ_CALL; ++} ++ ++static inline void irq_settings_set_no_softirq_call(struct irq_desc *desc) ++{ ++ desc->status_use_accessors |= _IRQ_NO_SOFTIRQ_CALL; ++} ++ + static inline bool irq_settings_is_per_cpu(struct irq_desc *desc) + { + return desc->status_use_accessors & _IRQ_PER_CPU; +diff -Nur linux-3.18.12.orig/kernel/irq/spurious.c linux-3.18.12/kernel/irq/spurious.c +--- linux-3.18.12.orig/kernel/irq/spurious.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/irq/spurious.c 2015-04-26 13:32:22.435684003 -0500 +@@ -444,6 +444,10 @@ + + static int __init irqfixup_setup(char *str) + { ++#ifdef CONFIG_PREEMPT_RT_BASE ++ pr_warn("irqfixup boot option not supported w/ CONFIG_PREEMPT_RT_BASE\n"); ++ return 1; ++#endif + irqfixup = 1; + printk(KERN_WARNING "Misrouted IRQ fixup support enabled.\n"); + printk(KERN_WARNING "This may impact system performance.\n"); +@@ -456,6 +460,10 @@ + + static int __init irqpoll_setup(char *str) + { ++#ifdef CONFIG_PREEMPT_RT_BASE ++ pr_warn("irqpoll boot option not supported w/ CONFIG_PREEMPT_RT_BASE\n"); ++ return 1; ++#endif + irqfixup = 2; + printk(KERN_WARNING "Misrouted IRQ fixup and polling support " + "enabled\n"); +diff -Nur linux-3.18.12.orig/kernel/irq_work.c linux-3.18.12/kernel/irq_work.c +--- linux-3.18.12.orig/kernel/irq_work.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/irq_work.c 2015-04-26 13:32:22.435684003 -0500 +@@ -17,12 +17,15 @@ + #include + #include + #include ++#include + #include + + + static DEFINE_PER_CPU(struct llist_head, raised_list); + static DEFINE_PER_CPU(struct llist_head, lazy_list); +- ++#ifdef CONFIG_PREEMPT_RT_FULL ++static DEFINE_PER_CPU(struct llist_head, hirq_work_list); ++#endif + /* + * Claim the entry so that no one else will poke at it. + */ +@@ -65,6 +68,8 @@ + */ + bool irq_work_queue_on(struct irq_work *work, int cpu) + { ++ bool raise_irqwork; ++ + /* All work should have been flushed before going offline */ + WARN_ON_ONCE(cpu_is_offline(cpu)); + +@@ -75,7 +80,19 @@ + if (!irq_work_claim(work)) + return false; + +- if (llist_add(&work->llnode, &per_cpu(raised_list, cpu))) ++#ifdef CONFIG_PREEMPT_RT_FULL ++ if (work->flags & IRQ_WORK_HARD_IRQ) ++ raise_irqwork = llist_add(&work->llnode, ++ &per_cpu(hirq_work_list, cpu)); ++ else ++ raise_irqwork = llist_add(&work->llnode, ++ &per_cpu(lazy_list, cpu)); ++#else ++ raise_irqwork = llist_add(&work->llnode, ++ &per_cpu(raised_list, cpu)); ++#endif ++ ++ if (raise_irqwork) + arch_send_call_function_single_ipi(cpu); + + return true; +@@ -93,7 +110,16 @@ + /* Queue the entry and raise the IPI if needed. */ + preempt_disable(); + +- /* If the work is "lazy", handle it from next tick if any */ ++#ifdef CONFIG_PREEMPT_RT_FULL ++ if (work->flags & IRQ_WORK_HARD_IRQ) { ++ if (llist_add(&work->llnode, this_cpu_ptr(&hirq_work_list))) ++ arch_irq_work_raise(); ++ } else { ++ if (llist_add(&work->llnode, this_cpu_ptr(&lazy_list)) && ++ tick_nohz_tick_stopped()) ++ raise_softirq(TIMER_SOFTIRQ); ++ } ++#else + if (work->flags & IRQ_WORK_LAZY) { + if (llist_add(&work->llnode, this_cpu_ptr(&lazy_list)) && + tick_nohz_tick_stopped()) +@@ -102,6 +128,7 @@ + if (llist_add(&work->llnode, this_cpu_ptr(&raised_list))) + arch_irq_work_raise(); + } ++#endif + + preempt_enable(); + +@@ -116,9 +143,12 @@ + raised = this_cpu_ptr(&raised_list); + lazy = this_cpu_ptr(&lazy_list); + +- if (llist_empty(raised) || arch_irq_work_has_interrupt()) ++ if (llist_empty(raised)) + if (llist_empty(lazy)) +- return false; ++#ifdef CONFIG_PREEMPT_RT_FULL ++ if (llist_empty(this_cpu_ptr(&hirq_work_list))) ++#endif ++ return false; + + /* All work should have been flushed before going offline */ + WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); +@@ -132,7 +162,9 @@ + struct irq_work *work; + struct llist_node *llnode; + ++#ifndef CONFIG_PREEMPT_RT_FULL + BUG_ON(!irqs_disabled()); ++#endif + + if (llist_empty(list)) + return; +@@ -168,18 +200,26 @@ + */ + void irq_work_run(void) + { ++#ifdef CONFIG_PREEMPT_RT_FULL ++ irq_work_run_list(this_cpu_ptr(&hirq_work_list)); ++#else + irq_work_run_list(this_cpu_ptr(&raised_list)); + irq_work_run_list(this_cpu_ptr(&lazy_list)); ++#endif + } + EXPORT_SYMBOL_GPL(irq_work_run); + + void irq_work_tick(void) + { ++#ifdef CONFIG_PREEMPT_RT_FULL ++ irq_work_run_list(this_cpu_ptr(&lazy_list)); ++#else + struct llist_head *raised = &__get_cpu_var(raised_list); + + if (!llist_empty(raised) && !arch_irq_work_has_interrupt()) + irq_work_run_list(raised); + irq_work_run_list(&__get_cpu_var(lazy_list)); ++#endif + } + + /* +diff -Nur linux-3.18.12.orig/kernel/Kconfig.locks linux-3.18.12/kernel/Kconfig.locks +--- linux-3.18.12.orig/kernel/Kconfig.locks 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/Kconfig.locks 2015-04-26 13:32:22.431684003 -0500 +@@ -225,11 +225,11 @@ + + config MUTEX_SPIN_ON_OWNER + def_bool y +- depends on SMP && !DEBUG_MUTEXES && ARCH_SUPPORTS_ATOMIC_RMW ++ depends on SMP && !DEBUG_MUTEXES && ARCH_SUPPORTS_ATOMIC_RMW && !PREEMPT_RT_FULL + + config RWSEM_SPIN_ON_OWNER + def_bool y +- depends on SMP && RWSEM_XCHGADD_ALGORITHM && ARCH_SUPPORTS_ATOMIC_RMW ++ depends on SMP && RWSEM_XCHGADD_ALGORITHM && ARCH_SUPPORTS_ATOMIC_RMW && !PREEMPT_RT_FULL + + config ARCH_USE_QUEUE_RWLOCK + bool +diff -Nur linux-3.18.12.orig/kernel/Kconfig.preempt linux-3.18.12/kernel/Kconfig.preempt +--- linux-3.18.12.orig/kernel/Kconfig.preempt 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/Kconfig.preempt 2015-04-26 13:32:22.431684003 -0500 +@@ -1,3 +1,16 @@ ++config PREEMPT ++ bool ++ select PREEMPT_COUNT ++ ++config PREEMPT_RT_BASE ++ bool ++ select PREEMPT ++ ++config HAVE_PREEMPT_LAZY ++ bool ++ ++config PREEMPT_LAZY ++ def_bool y if HAVE_PREEMPT_LAZY && PREEMPT_RT_FULL + + choice + prompt "Preemption Model" +@@ -33,9 +46,9 @@ + + Select this if you are building a kernel for a desktop system. + +-config PREEMPT ++config PREEMPT__LL + bool "Preemptible Kernel (Low-Latency Desktop)" +- select PREEMPT_COUNT ++ select PREEMPT + select UNINLINE_SPIN_UNLOCK if !ARCH_INLINE_SPIN_UNLOCK + help + This option reduces the latency of the kernel by making +@@ -52,6 +65,22 @@ + embedded system with latency requirements in the milliseconds + range. + ++config PREEMPT_RTB ++ bool "Preemptible Kernel (Basic RT)" ++ select PREEMPT_RT_BASE ++ help ++ This option is basically the same as (Low-Latency Desktop) but ++ enables changes which are preliminary for the full preemptible ++ RT kernel. ++ ++config PREEMPT_RT_FULL ++ bool "Fully Preemptible Kernel (RT)" ++ depends on IRQ_FORCED_THREADING ++ select PREEMPT_RT_BASE ++ select PREEMPT_RCU ++ help ++ All and everything ++ + endchoice + + config PREEMPT_COUNT +diff -Nur linux-3.18.12.orig/kernel/ksysfs.c linux-3.18.12/kernel/ksysfs.c +--- linux-3.18.12.orig/kernel/ksysfs.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/ksysfs.c 2015-04-26 13:32:22.435684003 -0500 +@@ -136,6 +136,15 @@ + + #endif /* CONFIG_KEXEC */ + ++#if defined(CONFIG_PREEMPT_RT_FULL) ++static ssize_t realtime_show(struct kobject *kobj, ++ struct kobj_attribute *attr, char *buf) ++{ ++ return sprintf(buf, "%d\n", 1); ++} ++KERNEL_ATTR_RO(realtime); ++#endif ++ + /* whether file capabilities are enabled */ + static ssize_t fscaps_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +@@ -203,6 +212,9 @@ + &vmcoreinfo_attr.attr, + #endif + &rcu_expedited_attr.attr, ++#ifdef CONFIG_PREEMPT_RT_FULL ++ &realtime_attr.attr, ++#endif + NULL + }; + +diff -Nur linux-3.18.12.orig/kernel/locking/lglock.c linux-3.18.12/kernel/locking/lglock.c +--- linux-3.18.12.orig/kernel/locking/lglock.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/locking/lglock.c 2015-04-26 13:32:22.435684003 -0500 +@@ -4,6 +4,15 @@ + #include + #include + ++#ifndef CONFIG_PREEMPT_RT_FULL ++# define lg_lock_ptr arch_spinlock_t ++# define lg_do_lock(l) arch_spin_lock(l) ++# define lg_do_unlock(l) arch_spin_unlock(l) ++#else ++# define lg_lock_ptr struct rt_mutex ++# define lg_do_lock(l) __rt_spin_lock(l) ++# define lg_do_unlock(l) __rt_spin_unlock(l) ++#endif + /* + * Note there is no uninit, so lglocks cannot be defined in + * modules (but it's fine to use them from there) +@@ -12,51 +21,60 @@ + + void lg_lock_init(struct lglock *lg, char *name) + { ++#ifdef CONFIG_PREEMPT_RT_FULL ++ int i; ++ ++ for_each_possible_cpu(i) { ++ struct rt_mutex *lock = per_cpu_ptr(lg->lock, i); ++ ++ rt_mutex_init(lock); ++ } ++#endif + LOCKDEP_INIT_MAP(&lg->lock_dep_map, name, &lg->lock_key, 0); + } + EXPORT_SYMBOL(lg_lock_init); + + void lg_local_lock(struct lglock *lg) + { +- arch_spinlock_t *lock; ++ lg_lock_ptr *lock; + +- preempt_disable(); ++ migrate_disable(); + lock_acquire_shared(&lg->lock_dep_map, 0, 0, NULL, _RET_IP_); + lock = this_cpu_ptr(lg->lock); +- arch_spin_lock(lock); ++ lg_do_lock(lock); + } + EXPORT_SYMBOL(lg_local_lock); + + void lg_local_unlock(struct lglock *lg) + { +- arch_spinlock_t *lock; ++ lg_lock_ptr *lock; + + lock_release(&lg->lock_dep_map, 1, _RET_IP_); + lock = this_cpu_ptr(lg->lock); +- arch_spin_unlock(lock); +- preempt_enable(); ++ lg_do_unlock(lock); ++ migrate_enable(); + } + EXPORT_SYMBOL(lg_local_unlock); + + void lg_local_lock_cpu(struct lglock *lg, int cpu) + { +- arch_spinlock_t *lock; ++ lg_lock_ptr *lock; + +- preempt_disable(); ++ preempt_disable_nort(); + lock_acquire_shared(&lg->lock_dep_map, 0, 0, NULL, _RET_IP_); + lock = per_cpu_ptr(lg->lock, cpu); +- arch_spin_lock(lock); ++ lg_do_lock(lock); + } + EXPORT_SYMBOL(lg_local_lock_cpu); + + void lg_local_unlock_cpu(struct lglock *lg, int cpu) + { +- arch_spinlock_t *lock; ++ lg_lock_ptr *lock; + + lock_release(&lg->lock_dep_map, 1, _RET_IP_); + lock = per_cpu_ptr(lg->lock, cpu); +- arch_spin_unlock(lock); +- preempt_enable(); ++ lg_do_unlock(lock); ++ preempt_enable_nort(); + } + EXPORT_SYMBOL(lg_local_unlock_cpu); + +@@ -64,12 +82,12 @@ + { + int i; + +- preempt_disable(); ++ preempt_disable_nort(); + lock_acquire_exclusive(&lg->lock_dep_map, 0, 0, NULL, _RET_IP_); + for_each_possible_cpu(i) { +- arch_spinlock_t *lock; ++ lg_lock_ptr *lock; + lock = per_cpu_ptr(lg->lock, i); +- arch_spin_lock(lock); ++ lg_do_lock(lock); + } + } + EXPORT_SYMBOL(lg_global_lock); +@@ -80,10 +98,35 @@ + + lock_release(&lg->lock_dep_map, 1, _RET_IP_); + for_each_possible_cpu(i) { +- arch_spinlock_t *lock; ++ lg_lock_ptr *lock; + lock = per_cpu_ptr(lg->lock, i); +- arch_spin_unlock(lock); ++ lg_do_unlock(lock); + } +- preempt_enable(); ++ preempt_enable_nort(); + } + EXPORT_SYMBOL(lg_global_unlock); ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++/* ++ * HACK: If you use this, you get to keep the pieces. ++ * Used in queue_stop_cpus_work() when stop machinery ++ * is called from inactive CPU, so we can't schedule. ++ */ ++# define lg_do_trylock_relax(l) \ ++ do { \ ++ while (!__rt_spin_trylock(l)) \ ++ cpu_relax(); \ ++ } while (0) ++ ++void lg_global_trylock_relax(struct lglock *lg) ++{ ++ int i; ++ ++ lock_acquire_exclusive(&lg->lock_dep_map, 0, 0, NULL, _RET_IP_); ++ for_each_possible_cpu(i) { ++ lg_lock_ptr *lock; ++ lock = per_cpu_ptr(lg->lock, i); ++ lg_do_trylock_relax(lock); ++ } ++} ++#endif +diff -Nur linux-3.18.12.orig/kernel/locking/lockdep.c linux-3.18.12/kernel/locking/lockdep.c +--- linux-3.18.12.orig/kernel/locking/lockdep.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/locking/lockdep.c 2015-04-26 13:32:22.435684003 -0500 +@@ -3542,6 +3542,7 @@ + } + } + ++#ifndef CONFIG_PREEMPT_RT_FULL + /* + * We dont accurately track softirq state in e.g. + * hardirq contexts (such as on 4KSTACKS), so only +@@ -3556,6 +3557,7 @@ + DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); + } + } ++#endif + + if (!debug_locks) + print_irqtrace_events(current); +diff -Nur linux-3.18.12.orig/kernel/locking/Makefile linux-3.18.12/kernel/locking/Makefile +--- linux-3.18.12.orig/kernel/locking/Makefile 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/locking/Makefile 2015-04-26 13:32:22.435684003 -0500 +@@ -1,5 +1,5 @@ + +-obj-y += mutex.o semaphore.o rwsem.o mcs_spinlock.o ++obj-y += semaphore.o mcs_spinlock.o + + ifdef CONFIG_FUNCTION_TRACER + CFLAGS_REMOVE_lockdep.o = -pg +@@ -8,7 +8,11 @@ + CFLAGS_REMOVE_rtmutex-debug.o = -pg + endif + ++ifneq ($(CONFIG_PREEMPT_RT_FULL),y) ++obj-y += mutex.o + obj-$(CONFIG_DEBUG_MUTEXES) += mutex-debug.o ++obj-y += rwsem.o ++endif + obj-$(CONFIG_LOCKDEP) += lockdep.o + ifeq ($(CONFIG_PROC_FS),y) + obj-$(CONFIG_LOCKDEP) += lockdep_proc.o +@@ -21,8 +25,11 @@ + obj-$(CONFIG_RT_MUTEX_TESTER) += rtmutex-tester.o + obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o + obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock_debug.o ++ifneq ($(CONFIG_PREEMPT_RT_FULL),y) + obj-$(CONFIG_RWSEM_GENERIC_SPINLOCK) += rwsem-spinlock.o + obj-$(CONFIG_RWSEM_XCHGADD_ALGORITHM) += rwsem-xadd.o ++endif + obj-$(CONFIG_PERCPU_RWSEM) += percpu-rwsem.o ++obj-$(CONFIG_PREEMPT_RT_FULL) += rt.o + obj-$(CONFIG_QUEUE_RWLOCK) += qrwlock.o + obj-$(CONFIG_LOCK_TORTURE_TEST) += locktorture.o +diff -Nur linux-3.18.12.orig/kernel/locking/percpu-rwsem.c linux-3.18.12/kernel/locking/percpu-rwsem.c +--- linux-3.18.12.orig/kernel/locking/percpu-rwsem.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/locking/percpu-rwsem.c 2015-04-26 13:32:22.435684003 -0500 +@@ -84,8 +84,12 @@ + + down_read(&brw->rw_sem); + atomic_inc(&brw->slow_read_ctr); ++#ifdef CONFIG_PREEMPT_RT_FULL ++ up_read(&brw->rw_sem); ++#else + /* avoid up_read()->rwsem_release() */ + __up_read(&brw->rw_sem); ++#endif + } + + void percpu_up_read(struct percpu_rw_semaphore *brw) +diff -Nur linux-3.18.12.orig/kernel/locking/rt.c linux-3.18.12/kernel/locking/rt.c +--- linux-3.18.12.orig/kernel/locking/rt.c 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/kernel/locking/rt.c 2015-04-26 13:32:22.435684003 -0500 +@@ -0,0 +1,456 @@ ++/* ++ * kernel/rt.c ++ * ++ * Real-Time Preemption Support ++ * ++ * started by Ingo Molnar: ++ * ++ * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar ++ * Copyright (C) 2006, Timesys Corp., Thomas Gleixner ++ * ++ * historic credit for proving that Linux spinlocks can be implemented via ++ * RT-aware mutexes goes to many people: The Pmutex project (Dirk Grambow ++ * and others) who prototyped it on 2.4 and did lots of comparative ++ * research and analysis; TimeSys, for proving that you can implement a ++ * fully preemptible kernel via the use of IRQ threading and mutexes; ++ * Bill Huey for persuasively arguing on lkml that the mutex model is the ++ * right one; and to MontaVista, who ported pmutexes to 2.6. ++ * ++ * This code is a from-scratch implementation and is not based on pmutexes, ++ * but the idea of converting spinlocks to mutexes is used here too. ++ * ++ * lock debugging, locking tree, deadlock detection: ++ * ++ * Copyright (C) 2004, LynuxWorks, Inc., Igor Manyilov, Bill Huey ++ * Released under the General Public License (GPL). ++ * ++ * Includes portions of the generic R/W semaphore implementation from: ++ * ++ * Copyright (c) 2001 David Howells (dhowells@redhat.com). ++ * - Derived partially from idea by Andrea Arcangeli ++ * - Derived also from comments by Linus ++ * ++ * Pending ownership of locks and ownership stealing: ++ * ++ * Copyright (C) 2005, Kihon Technologies Inc., Steven Rostedt ++ * ++ * (also by Steven Rostedt) ++ * - Converted single pi_lock to individual task locks. ++ * ++ * By Esben Nielsen: ++ * Doing priority inheritance with help of the scheduler. ++ * ++ * Copyright (C) 2006, Timesys Corp., Thomas Gleixner ++ * - major rework based on Esben Nielsens initial patch ++ * - replaced thread_info references by task_struct refs ++ * - removed task->pending_owner dependency ++ * - BKL drop/reacquire for semaphore style locks to avoid deadlocks ++ * in the scheduler return path as discussed with Steven Rostedt ++ * ++ * Copyright (C) 2006, Kihon Technologies Inc. ++ * Steven Rostedt ++ * - debugged and patched Thomas Gleixner's rework. ++ * - added back the cmpxchg to the rework. ++ * - turned atomic require back on for SMP. ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "rtmutex_common.h" ++ ++/* ++ * struct mutex functions ++ */ ++void __mutex_do_init(struct mutex *mutex, const char *name, ++ struct lock_class_key *key) ++{ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ /* ++ * Make sure we are not reinitializing a held lock: ++ */ ++ debug_check_no_locks_freed((void *)mutex, sizeof(*mutex)); ++ lockdep_init_map(&mutex->dep_map, name, key, 0); ++#endif ++ mutex->lock.save_state = 0; ++} ++EXPORT_SYMBOL(__mutex_do_init); ++ ++void __lockfunc _mutex_lock(struct mutex *lock) ++{ ++ mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); ++ rt_mutex_lock(&lock->lock); ++} ++EXPORT_SYMBOL(_mutex_lock); ++ ++int __lockfunc _mutex_lock_interruptible(struct mutex *lock) ++{ ++ int ret; ++ ++ mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); ++ ret = rt_mutex_lock_interruptible(&lock->lock); ++ if (ret) ++ mutex_release(&lock->dep_map, 1, _RET_IP_); ++ return ret; ++} ++EXPORT_SYMBOL(_mutex_lock_interruptible); ++ ++int __lockfunc _mutex_lock_killable(struct mutex *lock) ++{ ++ int ret; ++ ++ mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); ++ ret = rt_mutex_lock_killable(&lock->lock); ++ if (ret) ++ mutex_release(&lock->dep_map, 1, _RET_IP_); ++ return ret; ++} ++EXPORT_SYMBOL(_mutex_lock_killable); ++ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++void __lockfunc _mutex_lock_nested(struct mutex *lock, int subclass) ++{ ++ mutex_acquire_nest(&lock->dep_map, subclass, 0, NULL, _RET_IP_); ++ rt_mutex_lock(&lock->lock); ++} ++EXPORT_SYMBOL(_mutex_lock_nested); ++ ++void __lockfunc _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) ++{ ++ mutex_acquire_nest(&lock->dep_map, 0, 0, nest, _RET_IP_); ++ rt_mutex_lock(&lock->lock); ++} ++EXPORT_SYMBOL(_mutex_lock_nest_lock); ++ ++int __lockfunc _mutex_lock_interruptible_nested(struct mutex *lock, int subclass) ++{ ++ int ret; ++ ++ mutex_acquire_nest(&lock->dep_map, subclass, 0, NULL, _RET_IP_); ++ ret = rt_mutex_lock_interruptible(&lock->lock); ++ if (ret) ++ mutex_release(&lock->dep_map, 1, _RET_IP_); ++ return ret; ++} ++EXPORT_SYMBOL(_mutex_lock_interruptible_nested); ++ ++int __lockfunc _mutex_lock_killable_nested(struct mutex *lock, int subclass) ++{ ++ int ret; ++ ++ mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_); ++ ret = rt_mutex_lock_killable(&lock->lock); ++ if (ret) ++ mutex_release(&lock->dep_map, 1, _RET_IP_); ++ return ret; ++} ++EXPORT_SYMBOL(_mutex_lock_killable_nested); ++#endif ++ ++int __lockfunc _mutex_trylock(struct mutex *lock) ++{ ++ int ret = rt_mutex_trylock(&lock->lock); ++ ++ if (ret) ++ mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); ++ ++ return ret; ++} ++EXPORT_SYMBOL(_mutex_trylock); ++ ++void __lockfunc _mutex_unlock(struct mutex *lock) ++{ ++ mutex_release(&lock->dep_map, 1, _RET_IP_); ++ rt_mutex_unlock(&lock->lock); ++} ++EXPORT_SYMBOL(_mutex_unlock); ++ ++/* ++ * rwlock_t functions ++ */ ++int __lockfunc rt_write_trylock(rwlock_t *rwlock) ++{ ++ int ret; ++ ++ migrate_disable(); ++ ret = rt_mutex_trylock(&rwlock->lock); ++ if (ret) ++ rwlock_acquire(&rwlock->dep_map, 0, 1, _RET_IP_); ++ else ++ migrate_enable(); ++ ++ return ret; ++} ++EXPORT_SYMBOL(rt_write_trylock); ++ ++int __lockfunc rt_write_trylock_irqsave(rwlock_t *rwlock, unsigned long *flags) ++{ ++ int ret; ++ ++ *flags = 0; ++ ret = rt_write_trylock(rwlock); ++ return ret; ++} ++EXPORT_SYMBOL(rt_write_trylock_irqsave); ++ ++int __lockfunc rt_read_trylock(rwlock_t *rwlock) ++{ ++ struct rt_mutex *lock = &rwlock->lock; ++ int ret = 1; ++ ++ /* ++ * recursive read locks succeed when current owns the lock, ++ * but not when read_depth == 0 which means that the lock is ++ * write locked. ++ */ ++ if (rt_mutex_owner(lock) != current) { ++ migrate_disable(); ++ ret = rt_mutex_trylock(lock); ++ if (ret) ++ rwlock_acquire(&rwlock->dep_map, 0, 1, _RET_IP_); ++ else ++ migrate_enable(); ++ ++ } else if (!rwlock->read_depth) { ++ ret = 0; ++ } ++ ++ if (ret) ++ rwlock->read_depth++; ++ ++ return ret; ++} ++EXPORT_SYMBOL(rt_read_trylock); ++ ++void __lockfunc rt_write_lock(rwlock_t *rwlock) ++{ ++ rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_); ++ migrate_disable(); ++ __rt_spin_lock(&rwlock->lock); ++} ++EXPORT_SYMBOL(rt_write_lock); ++ ++void __lockfunc rt_read_lock(rwlock_t *rwlock) ++{ ++ struct rt_mutex *lock = &rwlock->lock; ++ ++ ++ /* ++ * recursive read locks succeed when current owns the lock ++ */ ++ if (rt_mutex_owner(lock) != current) { ++ migrate_disable(); ++ rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_); ++ __rt_spin_lock(lock); ++ } ++ rwlock->read_depth++; ++} ++ ++EXPORT_SYMBOL(rt_read_lock); ++ ++void __lockfunc rt_write_unlock(rwlock_t *rwlock) ++{ ++ /* NOTE: we always pass in '1' for nested, for simplicity */ ++ rwlock_release(&rwlock->dep_map, 1, _RET_IP_); ++ __rt_spin_unlock(&rwlock->lock); ++ migrate_enable(); ++} ++EXPORT_SYMBOL(rt_write_unlock); ++ ++void __lockfunc rt_read_unlock(rwlock_t *rwlock) ++{ ++ /* Release the lock only when read_depth is down to 0 */ ++ if (--rwlock->read_depth == 0) { ++ rwlock_release(&rwlock->dep_map, 1, _RET_IP_); ++ __rt_spin_unlock(&rwlock->lock); ++ migrate_enable(); ++ } ++} ++EXPORT_SYMBOL(rt_read_unlock); ++ ++unsigned long __lockfunc rt_write_lock_irqsave(rwlock_t *rwlock) ++{ ++ rt_write_lock(rwlock); ++ ++ return 0; ++} ++EXPORT_SYMBOL(rt_write_lock_irqsave); ++ ++unsigned long __lockfunc rt_read_lock_irqsave(rwlock_t *rwlock) ++{ ++ rt_read_lock(rwlock); ++ ++ return 0; ++} ++EXPORT_SYMBOL(rt_read_lock_irqsave); ++ ++void __rt_rwlock_init(rwlock_t *rwlock, char *name, struct lock_class_key *key) ++{ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ /* ++ * Make sure we are not reinitializing a held lock: ++ */ ++ debug_check_no_locks_freed((void *)rwlock, sizeof(*rwlock)); ++ lockdep_init_map(&rwlock->dep_map, name, key, 0); ++#endif ++ rwlock->lock.save_state = 1; ++ rwlock->read_depth = 0; ++} ++EXPORT_SYMBOL(__rt_rwlock_init); ++ ++/* ++ * rw_semaphores ++ */ ++ ++void rt_up_write(struct rw_semaphore *rwsem) ++{ ++ rwsem_release(&rwsem->dep_map, 1, _RET_IP_); ++ rt_mutex_unlock(&rwsem->lock); ++} ++EXPORT_SYMBOL(rt_up_write); ++ ++void rt_up_read(struct rw_semaphore *rwsem) ++{ ++ rwsem_release(&rwsem->dep_map, 1, _RET_IP_); ++ if (--rwsem->read_depth == 0) ++ rt_mutex_unlock(&rwsem->lock); ++} ++EXPORT_SYMBOL(rt_up_read); ++ ++/* ++ * downgrade a write lock into a read lock ++ * - just wake up any readers at the front of the queue ++ */ ++void rt_downgrade_write(struct rw_semaphore *rwsem) ++{ ++ BUG_ON(rt_mutex_owner(&rwsem->lock) != current); ++ rwsem->read_depth = 1; ++} ++EXPORT_SYMBOL(rt_downgrade_write); ++ ++int rt_down_write_trylock(struct rw_semaphore *rwsem) ++{ ++ int ret = rt_mutex_trylock(&rwsem->lock); ++ ++ if (ret) ++ rwsem_acquire(&rwsem->dep_map, 0, 1, _RET_IP_); ++ return ret; ++} ++EXPORT_SYMBOL(rt_down_write_trylock); ++ ++void rt_down_write(struct rw_semaphore *rwsem) ++{ ++ rwsem_acquire(&rwsem->dep_map, 0, 0, _RET_IP_); ++ rt_mutex_lock(&rwsem->lock); ++} ++EXPORT_SYMBOL(rt_down_write); ++ ++void rt_down_write_nested(struct rw_semaphore *rwsem, int subclass) ++{ ++ rwsem_acquire(&rwsem->dep_map, subclass, 0, _RET_IP_); ++ rt_mutex_lock(&rwsem->lock); ++} ++EXPORT_SYMBOL(rt_down_write_nested); ++ ++void rt_down_write_nested_lock(struct rw_semaphore *rwsem, ++ struct lockdep_map *nest) ++{ ++ rwsem_acquire_nest(&rwsem->dep_map, 0, 0, nest, _RET_IP_); ++ rt_mutex_lock(&rwsem->lock); ++} ++EXPORT_SYMBOL(rt_down_write_nested_lock); ++ ++int rt_down_read_trylock(struct rw_semaphore *rwsem) ++{ ++ struct rt_mutex *lock = &rwsem->lock; ++ int ret = 1; ++ ++ /* ++ * recursive read locks succeed when current owns the rwsem, ++ * but not when read_depth == 0 which means that the rwsem is ++ * write locked. ++ */ ++ if (rt_mutex_owner(lock) != current) ++ ret = rt_mutex_trylock(&rwsem->lock); ++ else if (!rwsem->read_depth) ++ ret = 0; ++ ++ if (ret) { ++ rwsem->read_depth++; ++ rwsem_acquire(&rwsem->dep_map, 0, 1, _RET_IP_); ++ } ++ return ret; ++} ++EXPORT_SYMBOL(rt_down_read_trylock); ++ ++static void __rt_down_read(struct rw_semaphore *rwsem, int subclass) ++{ ++ struct rt_mutex *lock = &rwsem->lock; ++ ++ rwsem_acquire_read(&rwsem->dep_map, subclass, 0, _RET_IP_); ++ ++ if (rt_mutex_owner(lock) != current) ++ rt_mutex_lock(&rwsem->lock); ++ rwsem->read_depth++; ++} ++ ++void rt_down_read(struct rw_semaphore *rwsem) ++{ ++ __rt_down_read(rwsem, 0); ++} ++EXPORT_SYMBOL(rt_down_read); ++ ++void rt_down_read_nested(struct rw_semaphore *rwsem, int subclass) ++{ ++ __rt_down_read(rwsem, subclass); ++} ++EXPORT_SYMBOL(rt_down_read_nested); ++ ++void __rt_rwsem_init(struct rw_semaphore *rwsem, const char *name, ++ struct lock_class_key *key) ++{ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ /* ++ * Make sure we are not reinitializing a held lock: ++ */ ++ debug_check_no_locks_freed((void *)rwsem, sizeof(*rwsem)); ++ lockdep_init_map(&rwsem->dep_map, name, key, 0); ++#endif ++ rwsem->read_depth = 0; ++ rwsem->lock.save_state = 0; ++} ++EXPORT_SYMBOL(__rt_rwsem_init); ++ ++/** ++ * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 ++ * @cnt: the atomic which we are to dec ++ * @lock: the mutex to return holding if we dec to 0 ++ * ++ * return true and hold lock if we dec to 0, return false otherwise ++ */ ++int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) ++{ ++ /* dec if we can't possibly hit 0 */ ++ if (atomic_add_unless(cnt, -1, 1)) ++ return 0; ++ /* we might hit 0, so take the lock */ ++ mutex_lock(lock); ++ if (!atomic_dec_and_test(cnt)) { ++ /* when we actually did the dec, we didn't hit 0 */ ++ mutex_unlock(lock); ++ return 0; ++ } ++ /* we hit 0, and we hold the lock */ ++ return 1; ++} ++EXPORT_SYMBOL(atomic_dec_and_mutex_lock); +diff -Nur linux-3.18.12.orig/kernel/locking/rtmutex.c linux-3.18.12/kernel/locking/rtmutex.c +--- linux-3.18.12.orig/kernel/locking/rtmutex.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/locking/rtmutex.c 2015-04-26 13:32:22.439684003 -0500 +@@ -7,6 +7,11 @@ + * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner + * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt + * Copyright (C) 2006 Esben Nielsen ++ * Adaptive Spinlocks: ++ * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich, ++ * and Peter Morreale, ++ * Adaptive Spinlocks simplification: ++ * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt + * + * See Documentation/locking/rt-mutex-design.txt for details. + */ +@@ -16,6 +21,7 @@ + #include + #include + #include ++#include + + #include "rtmutex_common.h" + +@@ -69,6 +75,12 @@ + clear_rt_mutex_waiters(lock); + } + ++static int rt_mutex_real_waiter(struct rt_mutex_waiter *waiter) ++{ ++ return waiter && waiter != PI_WAKEUP_INPROGRESS && ++ waiter != PI_REQUEUE_INPROGRESS; ++} ++ + /* + * We can speed up the acquire/release, if the architecture + * supports cmpxchg and if there's no debugging state to be set up +@@ -333,6 +345,14 @@ + return debug_rt_mutex_detect_deadlock(waiter, chwalk); + } + ++static void rt_mutex_wake_waiter(struct rt_mutex_waiter *waiter) ++{ ++ if (waiter->savestate) ++ wake_up_lock_sleeper(waiter->task); ++ else ++ wake_up_process(waiter->task); ++} ++ + /* + * Max number of times we'll walk the boosting chain: + */ +@@ -340,7 +360,8 @@ + + static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p) + { +- return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; ++ return rt_mutex_real_waiter(p->pi_blocked_on) ? ++ p->pi_blocked_on->lock : NULL; + } + + /* +@@ -477,7 +498,7 @@ + * reached or the state of the chain has changed while we + * dropped the locks. + */ +- if (!waiter) ++ if (!rt_mutex_real_waiter(waiter)) + goto out_unlock_pi; + + /* +@@ -639,13 +660,16 @@ + * follow here. This is the end of the chain we are walking. + */ + if (!rt_mutex_owner(lock)) { ++ struct rt_mutex_waiter *lock_top_waiter; ++ + /* + * If the requeue [7] above changed the top waiter, + * then we need to wake the new top waiter up to try + * to get the lock. + */ +- if (prerequeue_top_waiter != rt_mutex_top_waiter(lock)) +- wake_up_process(rt_mutex_top_waiter(lock)->task); ++ lock_top_waiter = rt_mutex_top_waiter(lock); ++ if (prerequeue_top_waiter != lock_top_waiter) ++ rt_mutex_wake_waiter(lock_top_waiter); + raw_spin_unlock(&lock->wait_lock); + return 0; + } +@@ -738,6 +762,25 @@ + return ret; + } + ++ ++#define STEAL_NORMAL 0 ++#define STEAL_LATERAL 1 ++ ++/* ++ * Note that RT tasks are excluded from lateral-steals to prevent the ++ * introduction of an unbounded latency ++ */ ++static inline int lock_is_stealable(struct task_struct *task, ++ struct task_struct *pendowner, int mode) ++{ ++ if (mode == STEAL_NORMAL || rt_task(task)) { ++ if (task->prio >= pendowner->prio) ++ return 0; ++ } else if (task->prio > pendowner->prio) ++ return 0; ++ return 1; ++} ++ + /* + * Try to take an rt-mutex + * +@@ -748,8 +791,9 @@ + * @waiter: The waiter that is queued to the lock's wait list if the + * callsite called task_blocked_on_lock(), otherwise NULL + */ +-static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, +- struct rt_mutex_waiter *waiter) ++static int __try_to_take_rt_mutex(struct rt_mutex *lock, ++ struct task_struct *task, ++ struct rt_mutex_waiter *waiter, int mode) + { + unsigned long flags; + +@@ -788,8 +832,10 @@ + * If waiter is not the highest priority waiter of + * @lock, give up. + */ +- if (waiter != rt_mutex_top_waiter(lock)) ++ if (waiter != rt_mutex_top_waiter(lock)) { ++ /* XXX lock_is_stealable() ? */ + return 0; ++ } + + /* + * We can acquire the lock. Remove the waiter from the +@@ -807,14 +853,10 @@ + * not need to be dequeued. + */ + if (rt_mutex_has_waiters(lock)) { +- /* +- * If @task->prio is greater than or equal to +- * the top waiter priority (kernel view), +- * @task lost. +- */ +- if (task->prio >= rt_mutex_top_waiter(lock)->prio) +- return 0; ++ struct task_struct *pown = rt_mutex_top_waiter(lock)->task; + ++ if (task != pown && !lock_is_stealable(task, pown, mode)) ++ return 0; + /* + * The current top waiter stays enqueued. We + * don't have to change anything in the lock +@@ -863,6 +905,369 @@ + return 1; + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++/* ++ * preemptible spin_lock functions: ++ */ ++static inline void rt_spin_lock_fastlock(struct rt_mutex *lock, ++ void (*slowfn)(struct rt_mutex *lock)) ++{ ++ might_sleep(); ++ ++ if (likely(rt_mutex_cmpxchg(lock, NULL, current))) ++ rt_mutex_deadlock_account_lock(lock, current); ++ else ++ slowfn(lock); ++} ++ ++static inline void rt_spin_lock_fastunlock(struct rt_mutex *lock, ++ void (*slowfn)(struct rt_mutex *lock)) ++{ ++ if (likely(rt_mutex_cmpxchg(lock, current, NULL))) ++ rt_mutex_deadlock_account_unlock(current); ++ else ++ slowfn(lock); ++} ++#ifdef CONFIG_SMP ++/* ++ * Note that owner is a speculative pointer and dereferencing relies ++ * on rcu_read_lock() and the check against the lock owner. ++ */ ++static int adaptive_wait(struct rt_mutex *lock, ++ struct task_struct *owner) ++{ ++ int res = 0; ++ ++ rcu_read_lock(); ++ for (;;) { ++ if (owner != rt_mutex_owner(lock)) ++ break; ++ /* ++ * Ensure that owner->on_cpu is dereferenced _after_ ++ * checking the above to be valid. ++ */ ++ barrier(); ++ if (!owner->on_cpu) { ++ res = 1; ++ break; ++ } ++ cpu_relax(); ++ } ++ rcu_read_unlock(); ++ return res; ++} ++#else ++static int adaptive_wait(struct rt_mutex *lock, ++ struct task_struct *orig_owner) ++{ ++ return 1; ++} ++#endif ++ ++# define pi_lock(lock) raw_spin_lock_irq(lock) ++# define pi_unlock(lock) raw_spin_unlock_irq(lock) ++ ++static int task_blocks_on_rt_mutex(struct rt_mutex *lock, ++ struct rt_mutex_waiter *waiter, ++ struct task_struct *task, ++ enum rtmutex_chainwalk chwalk); ++/* ++ * Slow path lock function spin_lock style: this variant is very ++ * careful not to miss any non-lock wakeups. ++ * ++ * We store the current state under p->pi_lock in p->saved_state and ++ * the try_to_wake_up() code handles this accordingly. ++ */ ++static void noinline __sched rt_spin_lock_slowlock(struct rt_mutex *lock) ++{ ++ struct task_struct *lock_owner, *self = current; ++ struct rt_mutex_waiter waiter, *top_waiter; ++ int ret; ++ ++ rt_mutex_init_waiter(&waiter, true); ++ ++ raw_spin_lock(&lock->wait_lock); ++ ++ if (__try_to_take_rt_mutex(lock, self, NULL, STEAL_LATERAL)) { ++ raw_spin_unlock(&lock->wait_lock); ++ return; ++ } ++ ++ BUG_ON(rt_mutex_owner(lock) == self); ++ ++ /* ++ * We save whatever state the task is in and we'll restore it ++ * after acquiring the lock taking real wakeups into account ++ * as well. We are serialized via pi_lock against wakeups. See ++ * try_to_wake_up(). ++ */ ++ pi_lock(&self->pi_lock); ++ self->saved_state = self->state; ++ __set_current_state(TASK_UNINTERRUPTIBLE); ++ pi_unlock(&self->pi_lock); ++ ++ ret = task_blocks_on_rt_mutex(lock, &waiter, self, 0); ++ BUG_ON(ret); ++ ++ for (;;) { ++ /* Try to acquire the lock again. */ ++ if (__try_to_take_rt_mutex(lock, self, &waiter, STEAL_LATERAL)) ++ break; ++ ++ top_waiter = rt_mutex_top_waiter(lock); ++ lock_owner = rt_mutex_owner(lock); ++ ++ raw_spin_unlock(&lock->wait_lock); ++ ++ debug_rt_mutex_print_deadlock(&waiter); ++ ++ if (top_waiter != &waiter || adaptive_wait(lock, lock_owner)) ++ schedule_rt_mutex(lock); ++ ++ raw_spin_lock(&lock->wait_lock); ++ ++ pi_lock(&self->pi_lock); ++ __set_current_state(TASK_UNINTERRUPTIBLE); ++ pi_unlock(&self->pi_lock); ++ } ++ ++ /* ++ * Restore the task state to current->saved_state. We set it ++ * to the original state above and the try_to_wake_up() code ++ * has possibly updated it when a real (non-rtmutex) wakeup ++ * happened while we were blocked. Clear saved_state so ++ * try_to_wakeup() does not get confused. ++ */ ++ pi_lock(&self->pi_lock); ++ __set_current_state(self->saved_state); ++ self->saved_state = TASK_RUNNING; ++ pi_unlock(&self->pi_lock); ++ ++ /* ++ * try_to_take_rt_mutex() sets the waiter bit ++ * unconditionally. We might have to fix that up: ++ */ ++ fixup_rt_mutex_waiters(lock); ++ ++ BUG_ON(rt_mutex_has_waiters(lock) && &waiter == rt_mutex_top_waiter(lock)); ++ BUG_ON(!RB_EMPTY_NODE(&waiter.tree_entry)); ++ ++ raw_spin_unlock(&lock->wait_lock); ++ ++ debug_rt_mutex_free_waiter(&waiter); ++} ++ ++static void wakeup_next_waiter(struct rt_mutex *lock); ++/* ++ * Slow path to release a rt_mutex spin_lock style ++ */ ++static void __sched __rt_spin_lock_slowunlock(struct rt_mutex *lock) ++{ ++ debug_rt_mutex_unlock(lock); ++ ++ rt_mutex_deadlock_account_unlock(current); ++ ++ if (!rt_mutex_has_waiters(lock)) { ++ lock->owner = NULL; ++ raw_spin_unlock(&lock->wait_lock); ++ return; ++ } ++ ++ wakeup_next_waiter(lock); ++ ++ raw_spin_unlock(&lock->wait_lock); ++ ++ /* Undo pi boosting.when necessary */ ++ rt_mutex_adjust_prio(current); ++} ++ ++static void noinline __sched rt_spin_lock_slowunlock(struct rt_mutex *lock) ++{ ++ raw_spin_lock(&lock->wait_lock); ++ __rt_spin_lock_slowunlock(lock); ++} ++ ++static void noinline __sched rt_spin_lock_slowunlock_hirq(struct rt_mutex *lock) ++{ ++ int ret; ++ ++ do { ++ ret = raw_spin_trylock(&lock->wait_lock); ++ } while (!ret); ++ ++ __rt_spin_lock_slowunlock(lock); ++} ++ ++void __lockfunc rt_spin_lock(spinlock_t *lock) ++{ ++ rt_spin_lock_fastlock(&lock->lock, rt_spin_lock_slowlock); ++ spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); ++} ++EXPORT_SYMBOL(rt_spin_lock); ++ ++void __lockfunc __rt_spin_lock(struct rt_mutex *lock) ++{ ++ rt_spin_lock_fastlock(lock, rt_spin_lock_slowlock); ++} ++EXPORT_SYMBOL(__rt_spin_lock); ++ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++void __lockfunc rt_spin_lock_nested(spinlock_t *lock, int subclass) ++{ ++ rt_spin_lock_fastlock(&lock->lock, rt_spin_lock_slowlock); ++ spin_acquire(&lock->dep_map, subclass, 0, _RET_IP_); ++} ++EXPORT_SYMBOL(rt_spin_lock_nested); ++#endif ++ ++void __lockfunc rt_spin_unlock(spinlock_t *lock) ++{ ++ /* NOTE: we always pass in '1' for nested, for simplicity */ ++ spin_release(&lock->dep_map, 1, _RET_IP_); ++ rt_spin_lock_fastunlock(&lock->lock, rt_spin_lock_slowunlock); ++} ++EXPORT_SYMBOL(rt_spin_unlock); ++ ++void __lockfunc rt_spin_unlock_after_trylock_in_irq(spinlock_t *lock) ++{ ++ /* NOTE: we always pass in '1' for nested, for simplicity */ ++ spin_release(&lock->dep_map, 1, _RET_IP_); ++ rt_spin_lock_fastunlock(&lock->lock, rt_spin_lock_slowunlock_hirq); ++} ++ ++void __lockfunc __rt_spin_unlock(struct rt_mutex *lock) ++{ ++ rt_spin_lock_fastunlock(lock, rt_spin_lock_slowunlock); ++} ++EXPORT_SYMBOL(__rt_spin_unlock); ++ ++/* ++ * Wait for the lock to get unlocked: instead of polling for an unlock ++ * (like raw spinlocks do), we lock and unlock, to force the kernel to ++ * schedule if there's contention: ++ */ ++void __lockfunc rt_spin_unlock_wait(spinlock_t *lock) ++{ ++ spin_lock(lock); ++ spin_unlock(lock); ++} ++EXPORT_SYMBOL(rt_spin_unlock_wait); ++ ++int __lockfunc __rt_spin_trylock(struct rt_mutex *lock) ++{ ++ return rt_mutex_trylock(lock); ++} ++ ++int __lockfunc rt_spin_trylock(spinlock_t *lock) ++{ ++ int ret = rt_mutex_trylock(&lock->lock); ++ ++ if (ret) ++ spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); ++ return ret; ++} ++EXPORT_SYMBOL(rt_spin_trylock); ++ ++int __lockfunc rt_spin_trylock_bh(spinlock_t *lock) ++{ ++ int ret; ++ ++ local_bh_disable(); ++ ret = rt_mutex_trylock(&lock->lock); ++ if (ret) { ++ migrate_disable(); ++ spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); ++ } else ++ local_bh_enable(); ++ return ret; ++} ++EXPORT_SYMBOL(rt_spin_trylock_bh); ++ ++int __lockfunc rt_spin_trylock_irqsave(spinlock_t *lock, unsigned long *flags) ++{ ++ int ret; ++ ++ *flags = 0; ++ ret = rt_mutex_trylock(&lock->lock); ++ if (ret) { ++ migrate_disable(); ++ spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); ++ } ++ return ret; ++} ++EXPORT_SYMBOL(rt_spin_trylock_irqsave); ++ ++int atomic_dec_and_spin_lock(atomic_t *atomic, spinlock_t *lock) ++{ ++ /* Subtract 1 from counter unless that drops it to 0 (ie. it was 1) */ ++ if (atomic_add_unless(atomic, -1, 1)) ++ return 0; ++ migrate_disable(); ++ rt_spin_lock(lock); ++ if (atomic_dec_and_test(atomic)) ++ return 1; ++ rt_spin_unlock(lock); ++ migrate_enable(); ++ return 0; ++} ++EXPORT_SYMBOL(atomic_dec_and_spin_lock); ++ ++ void ++__rt_spin_lock_init(spinlock_t *lock, char *name, struct lock_class_key *key) ++{ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ /* ++ * Make sure we are not reinitializing a held lock: ++ */ ++ debug_check_no_locks_freed((void *)lock, sizeof(*lock)); ++ lockdep_init_map(&lock->dep_map, name, key, 0); ++#endif ++} ++EXPORT_SYMBOL(__rt_spin_lock_init); ++ ++#endif /* PREEMPT_RT_FULL */ ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++ static inline int __sched ++__mutex_lock_check_stamp(struct rt_mutex *lock, struct ww_acquire_ctx *ctx) ++{ ++ struct ww_mutex *ww = container_of(lock, struct ww_mutex, base.lock); ++ struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx); ++ ++ if (!hold_ctx) ++ return 0; ++ ++ if (unlikely(ctx == hold_ctx)) ++ return -EALREADY; ++ ++ if (ctx->stamp - hold_ctx->stamp <= LONG_MAX && ++ (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) { ++#ifdef CONFIG_DEBUG_MUTEXES ++ DEBUG_LOCKS_WARN_ON(ctx->contending_lock); ++ ctx->contending_lock = ww; ++#endif ++ return -EDEADLK; ++ } ++ ++ return 0; ++} ++#else ++ static inline int __sched ++__mutex_lock_check_stamp(struct rt_mutex *lock, struct ww_acquire_ctx *ctx) ++{ ++ BUG(); ++ return 0; ++} ++ ++#endif ++ ++static inline int ++try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, ++ struct rt_mutex_waiter *waiter) ++{ ++ return __try_to_take_rt_mutex(lock, task, waiter, STEAL_NORMAL); ++} ++ + /* + * Task blocks on lock. + * +@@ -894,6 +1299,23 @@ + return -EDEADLK; + + raw_spin_lock_irqsave(&task->pi_lock, flags); ++ ++ /* ++ * In the case of futex requeue PI, this will be a proxy ++ * lock. The task will wake unaware that it is enqueueed on ++ * this lock. Avoid blocking on two locks and corrupting ++ * pi_blocked_on via the PI_WAKEUP_INPROGRESS ++ * flag. futex_wait_requeue_pi() sets this when it wakes up ++ * before requeue (due to a signal or timeout). Do not enqueue ++ * the task if PI_WAKEUP_INPROGRESS is set. ++ */ ++ if (task != current && task->pi_blocked_on == PI_WAKEUP_INPROGRESS) { ++ raw_spin_unlock_irqrestore(&task->pi_lock, flags); ++ return -EAGAIN; ++ } ++ ++ BUG_ON(rt_mutex_real_waiter(task->pi_blocked_on)); ++ + __rt_mutex_adjust_prio(task); + waiter->task = task; + waiter->lock = lock; +@@ -917,7 +1339,7 @@ + rt_mutex_enqueue_pi(owner, waiter); + + __rt_mutex_adjust_prio(owner); +- if (owner->pi_blocked_on) ++ if (rt_mutex_real_waiter(owner->pi_blocked_on)) + chain_walk = 1; + } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) { + chain_walk = 1; +@@ -994,7 +1416,7 @@ + * long as we hold lock->wait_lock. The waiter task needs to + * acquire it in order to dequeue the waiter. + */ +- wake_up_process(waiter->task); ++ rt_mutex_wake_waiter(waiter); + } + + /* +@@ -1008,7 +1430,7 @@ + { + bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock)); + struct task_struct *owner = rt_mutex_owner(lock); +- struct rt_mutex *next_lock; ++ struct rt_mutex *next_lock = NULL; + unsigned long flags; + + raw_spin_lock_irqsave(¤t->pi_lock, flags); +@@ -1033,7 +1455,8 @@ + __rt_mutex_adjust_prio(owner); + + /* Store the lock on which owner is blocked or NULL */ +- next_lock = task_blocked_on_lock(owner); ++ if (rt_mutex_real_waiter(owner->pi_blocked_on)) ++ next_lock = task_blocked_on_lock(owner); + + raw_spin_unlock_irqrestore(&owner->pi_lock, flags); + +@@ -1069,17 +1492,17 @@ + raw_spin_lock_irqsave(&task->pi_lock, flags); + + waiter = task->pi_blocked_on; +- if (!waiter || (waiter->prio == task->prio && ++ if (!rt_mutex_real_waiter(waiter) || (waiter->prio == task->prio && + !dl_prio(task->prio))) { + raw_spin_unlock_irqrestore(&task->pi_lock, flags); + return; + } + next_lock = waiter->lock; +- raw_spin_unlock_irqrestore(&task->pi_lock, flags); + + /* gets dropped in rt_mutex_adjust_prio_chain()! */ + get_task_struct(task); + ++ raw_spin_unlock_irqrestore(&task->pi_lock, flags); + rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, + next_lock, NULL, task); + } +@@ -1097,7 +1520,8 @@ + static int __sched + __rt_mutex_slowlock(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, +- struct rt_mutex_waiter *waiter) ++ struct rt_mutex_waiter *waiter, ++ struct ww_acquire_ctx *ww_ctx) + { + int ret = 0; + +@@ -1120,6 +1544,12 @@ + break; + } + ++ if (ww_ctx && ww_ctx->acquired > 0) { ++ ret = __mutex_lock_check_stamp(lock, ww_ctx); ++ if (ret) ++ break; ++ } ++ + raw_spin_unlock(&lock->wait_lock); + + debug_rt_mutex_print_deadlock(waiter); +@@ -1153,25 +1583,102 @@ + } + } + ++static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww, ++ struct ww_acquire_ctx *ww_ctx) ++{ ++#ifdef CONFIG_DEBUG_MUTEXES ++ /* ++ * If this WARN_ON triggers, you used ww_mutex_lock to acquire, ++ * but released with a normal mutex_unlock in this call. ++ * ++ * This should never happen, always use ww_mutex_unlock. ++ */ ++ DEBUG_LOCKS_WARN_ON(ww->ctx); ++ ++ /* ++ * Not quite done after calling ww_acquire_done() ? ++ */ ++ DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); ++ ++ if (ww_ctx->contending_lock) { ++ /* ++ * After -EDEADLK you tried to ++ * acquire a different ww_mutex? Bad! ++ */ ++ DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); ++ ++ /* ++ * You called ww_mutex_lock after receiving -EDEADLK, ++ * but 'forgot' to unlock everything else first? ++ */ ++ DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); ++ ww_ctx->contending_lock = NULL; ++ } ++ ++ /* ++ * Naughty, using a different class will lead to undefined behavior! ++ */ ++ DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); ++#endif ++ ww_ctx->acquired++; ++} ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++static void ww_mutex_account_lock(struct rt_mutex *lock, ++ struct ww_acquire_ctx *ww_ctx) ++{ ++ struct ww_mutex *ww = container_of(lock, struct ww_mutex, base.lock); ++ struct rt_mutex_waiter *waiter, *n; ++ ++ /* ++ * This branch gets optimized out for the common case, ++ * and is only important for ww_mutex_lock. ++ */ ++ ww_mutex_lock_acquired(ww, ww_ctx); ++ ww->ctx = ww_ctx; ++ ++ /* ++ * Give any possible sleeping processes the chance to wake up, ++ * so they can recheck if they have to back off. ++ */ ++ rbtree_postorder_for_each_entry_safe(waiter, n, &lock->waiters, ++ tree_entry) { ++ /* XXX debug rt mutex waiter wakeup */ ++ ++ BUG_ON(waiter->lock != lock); ++ rt_mutex_wake_waiter(waiter); ++ } ++} ++ ++#else ++ ++static void ww_mutex_account_lock(struct rt_mutex *lock, ++ struct ww_acquire_ctx *ww_ctx) ++{ ++ BUG(); ++} ++#endif ++ + /* + * Slow path lock function: + */ + static int __sched + rt_mutex_slowlock(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, +- enum rtmutex_chainwalk chwalk) ++ enum rtmutex_chainwalk chwalk, ++ struct ww_acquire_ctx *ww_ctx) + { + struct rt_mutex_waiter waiter; + int ret = 0; + +- debug_rt_mutex_init_waiter(&waiter); +- RB_CLEAR_NODE(&waiter.pi_tree_entry); +- RB_CLEAR_NODE(&waiter.tree_entry); ++ rt_mutex_init_waiter(&waiter, false); + + raw_spin_lock(&lock->wait_lock); + + /* Try to acquire the lock again: */ + if (try_to_take_rt_mutex(lock, current, NULL)) { ++ if (ww_ctx) ++ ww_mutex_account_lock(lock, ww_ctx); + raw_spin_unlock(&lock->wait_lock); + return 0; + } +@@ -1188,14 +1695,23 @@ + ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk); + + if (likely(!ret)) +- ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); ++ ret = __rt_mutex_slowlock(lock, state, timeout, &waiter, ww_ctx); ++ else if (ww_ctx) { ++ /* ww_mutex received EDEADLK, let it become EALREADY */ ++ ret = __mutex_lock_check_stamp(lock, ww_ctx); ++ BUG_ON(!ret); ++ } + + set_current_state(TASK_RUNNING); + + if (unlikely(ret)) { + if (rt_mutex_has_waiters(lock)) + remove_waiter(lock, &waiter); +- rt_mutex_handle_deadlock(ret, chwalk, &waiter); ++ /* ww_mutex want to report EDEADLK/EALREADY, let them */ ++ if (!ww_ctx) ++ rt_mutex_handle_deadlock(ret, chwalk, &waiter); ++ } else if (ww_ctx) { ++ ww_mutex_account_lock(lock, ww_ctx); + } + + /* +@@ -1234,7 +1750,8 @@ + * The mutex has currently no owner. Lock the wait lock and + * try to acquire the lock. + */ +- raw_spin_lock(&lock->wait_lock); ++ if (!raw_spin_trylock(&lock->wait_lock)) ++ return 0; + + ret = try_to_take_rt_mutex(lock, current, NULL); + +@@ -1320,31 +1837,36 @@ + */ + static inline int + rt_mutex_fastlock(struct rt_mutex *lock, int state, ++ struct ww_acquire_ctx *ww_ctx, + int (*slowfn)(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, +- enum rtmutex_chainwalk chwalk)) ++ enum rtmutex_chainwalk chwalk, ++ struct ww_acquire_ctx *ww_ctx)) + { + if (likely(rt_mutex_cmpxchg(lock, NULL, current))) { + rt_mutex_deadlock_account_lock(lock, current); + return 0; + } else +- return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK); ++ return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK, ++ ww_ctx); + } + + static inline int + rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, + enum rtmutex_chainwalk chwalk, ++ struct ww_acquire_ctx *ww_ctx, + int (*slowfn)(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, +- enum rtmutex_chainwalk chwalk)) ++ enum rtmutex_chainwalk chwalk, ++ struct ww_acquire_ctx *ww_ctx)) + { + if (chwalk == RT_MUTEX_MIN_CHAINWALK && + likely(rt_mutex_cmpxchg(lock, NULL, current))) { + rt_mutex_deadlock_account_lock(lock, current); + return 0; + } else +- return slowfn(lock, state, timeout, chwalk); ++ return slowfn(lock, state, timeout, chwalk, ww_ctx); + } + + static inline int +@@ -1377,7 +1899,7 @@ + { + might_sleep(); + +- rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock); ++ rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, NULL, rt_mutex_slowlock); + } + EXPORT_SYMBOL_GPL(rt_mutex_lock); + +@@ -1394,7 +1916,7 @@ + { + might_sleep(); + +- return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock); ++ return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, NULL, rt_mutex_slowlock); + } + EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); + +@@ -1407,11 +1929,30 @@ + might_sleep(); + + return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, +- RT_MUTEX_FULL_CHAINWALK, ++ RT_MUTEX_FULL_CHAINWALK, NULL, + rt_mutex_slowlock); + } + + /** ++ * rt_mutex_lock_killable - lock a rt_mutex killable ++ * ++ * @lock: the rt_mutex to be locked ++ * @detect_deadlock: deadlock detection on/off ++ * ++ * Returns: ++ * 0 on success ++ * -EINTR when interrupted by a signal ++ * -EDEADLK when the lock would deadlock (when deadlock detection is on) ++ */ ++int __sched rt_mutex_lock_killable(struct rt_mutex *lock) ++{ ++ might_sleep(); ++ ++ return rt_mutex_fastlock(lock, TASK_KILLABLE, NULL, rt_mutex_slowlock); ++} ++EXPORT_SYMBOL_GPL(rt_mutex_lock_killable); ++ ++/** + * rt_mutex_timed_lock - lock a rt_mutex interruptible + * the timeout structure is provided + * by the caller +@@ -1431,6 +1972,7 @@ + + return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, + RT_MUTEX_MIN_CHAINWALK, ++ NULL, + rt_mutex_slowlock); + } + EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); +@@ -1489,13 +2031,12 @@ + void __rt_mutex_init(struct rt_mutex *lock, const char *name) + { + lock->owner = NULL; +- raw_spin_lock_init(&lock->wait_lock); + lock->waiters = RB_ROOT; + lock->waiters_leftmost = NULL; + + debug_rt_mutex_init(lock, name); + } +-EXPORT_SYMBOL_GPL(__rt_mutex_init); ++EXPORT_SYMBOL(__rt_mutex_init); + + /** + * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a +@@ -1510,7 +2051,7 @@ + void rt_mutex_init_proxy_locked(struct rt_mutex *lock, + struct task_struct *proxy_owner) + { +- __rt_mutex_init(lock, NULL); ++ rt_mutex_init(lock); + debug_rt_mutex_proxy_lock(lock, proxy_owner); + rt_mutex_set_owner(lock, proxy_owner); + rt_mutex_deadlock_account_lock(lock, proxy_owner); +@@ -1558,6 +2099,35 @@ + return 1; + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++ /* ++ * In PREEMPT_RT there's an added race. ++ * If the task, that we are about to requeue, times out, ++ * it can set the PI_WAKEUP_INPROGRESS. This tells the requeue ++ * to skip this task. But right after the task sets ++ * its pi_blocked_on to PI_WAKEUP_INPROGRESS it can then ++ * block on the spin_lock(&hb->lock), which in RT is an rtmutex. ++ * This will replace the PI_WAKEUP_INPROGRESS with the actual ++ * lock that it blocks on. We *must not* place this task ++ * on this proxy lock in that case. ++ * ++ * To prevent this race, we first take the task's pi_lock ++ * and check if it has updated its pi_blocked_on. If it has, ++ * we assume that it woke up and we return -EAGAIN. ++ * Otherwise, we set the task's pi_blocked_on to ++ * PI_REQUEUE_INPROGRESS, so that if the task is waking up ++ * it will know that we are in the process of requeuing it. ++ */ ++ raw_spin_lock_irq(&task->pi_lock); ++ if (task->pi_blocked_on) { ++ raw_spin_unlock_irq(&task->pi_lock); ++ raw_spin_unlock(&lock->wait_lock); ++ return -EAGAIN; ++ } ++ task->pi_blocked_on = PI_REQUEUE_INPROGRESS; ++ raw_spin_unlock_irq(&task->pi_lock); ++#endif ++ + /* We enforce deadlock detection for futexes */ + ret = task_blocks_on_rt_mutex(lock, waiter, task, + RT_MUTEX_FULL_CHAINWALK); +@@ -1627,7 +2197,7 @@ + + set_current_state(TASK_INTERRUPTIBLE); + +- ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); ++ ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter, NULL); + + set_current_state(TASK_RUNNING); + +@@ -1644,3 +2214,89 @@ + + return ret; + } ++ ++static inline int ++ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) ++{ ++#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH ++ unsigned tmp; ++ ++ if (ctx->deadlock_inject_countdown-- == 0) { ++ tmp = ctx->deadlock_inject_interval; ++ if (tmp > UINT_MAX/4) ++ tmp = UINT_MAX; ++ else ++ tmp = tmp*2 + tmp + tmp/2; ++ ++ ctx->deadlock_inject_interval = tmp; ++ ctx->deadlock_inject_countdown = tmp; ++ ctx->contending_lock = lock; ++ ++ ww_mutex_unlock(lock); ++ ++ return -EDEADLK; ++ } ++#endif ++ ++ return 0; ++} ++ ++#ifdef CONFIG_PREEMPT_RT_FULL ++int __sched ++__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ww_ctx) ++{ ++ int ret; ++ ++ might_sleep(); ++ ++ mutex_acquire_nest(&lock->base.dep_map, 0, 0, &ww_ctx->dep_map, _RET_IP_); ++ ret = rt_mutex_slowlock(&lock->base.lock, TASK_INTERRUPTIBLE, NULL, 0, ww_ctx); ++ if (ret) ++ mutex_release(&lock->base.dep_map, 1, _RET_IP_); ++ else if (!ret && ww_ctx->acquired > 1) ++ return ww_mutex_deadlock_injection(lock, ww_ctx); ++ ++ return ret; ++} ++EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible); ++ ++int __sched ++__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ww_ctx) ++{ ++ int ret; ++ ++ might_sleep(); ++ ++ mutex_acquire_nest(&lock->base.dep_map, 0, 0, &ww_ctx->dep_map, _RET_IP_); ++ ret = rt_mutex_slowlock(&lock->base.lock, TASK_UNINTERRUPTIBLE, NULL, 0, ww_ctx); ++ if (ret) ++ mutex_release(&lock->base.dep_map, 1, _RET_IP_); ++ else if (!ret && ww_ctx->acquired > 1) ++ return ww_mutex_deadlock_injection(lock, ww_ctx); ++ ++ return ret; ++} ++EXPORT_SYMBOL_GPL(__ww_mutex_lock); ++ ++void __sched ww_mutex_unlock(struct ww_mutex *lock) ++{ ++ int nest = !!lock->ctx; ++ ++ /* ++ * The unlocking fastpath is the 0->1 transition from 'locked' ++ * into 'unlocked' state: ++ */ ++ if (nest) { ++#ifdef CONFIG_DEBUG_MUTEXES ++ DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); ++#endif ++ if (lock->ctx->acquired > 0) ++ lock->ctx->acquired--; ++ lock->ctx = NULL; ++ } ++ ++ mutex_release(&lock->base.dep_map, nest, _RET_IP_); ++ rt_mutex_unlock(&lock->base.lock); ++} ++EXPORT_SYMBOL(ww_mutex_unlock); ++#endif +diff -Nur linux-3.18.12.orig/kernel/locking/rtmutex_common.h linux-3.18.12/kernel/locking/rtmutex_common.h +--- linux-3.18.12.orig/kernel/locking/rtmutex_common.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/locking/rtmutex_common.h 2015-04-26 13:32:22.439684003 -0500 +@@ -49,6 +49,7 @@ + struct rb_node pi_tree_entry; + struct task_struct *task; + struct rt_mutex *lock; ++ bool savestate; + #ifdef CONFIG_DEBUG_RT_MUTEXES + unsigned long ip; + struct pid *deadlock_task_pid; +@@ -119,6 +120,9 @@ + /* + * PI-futex support (proxy locking functions, etc.): + */ ++#define PI_WAKEUP_INPROGRESS ((struct rt_mutex_waiter *) 1) ++#define PI_REQUEUE_INPROGRESS ((struct rt_mutex_waiter *) 2) ++ + extern struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock); + extern void rt_mutex_init_proxy_locked(struct rt_mutex *lock, + struct task_struct *proxy_owner); +@@ -138,4 +142,14 @@ + # include "rtmutex.h" + #endif + ++static inline void ++rt_mutex_init_waiter(struct rt_mutex_waiter *waiter, bool savestate) ++{ ++ debug_rt_mutex_init_waiter(waiter); ++ waiter->task = NULL; ++ waiter->savestate = savestate; ++ RB_CLEAR_NODE(&waiter->pi_tree_entry); ++ RB_CLEAR_NODE(&waiter->tree_entry); ++} ++ + #endif +diff -Nur linux-3.18.12.orig/kernel/locking/spinlock.c linux-3.18.12/kernel/locking/spinlock.c +--- linux-3.18.12.orig/kernel/locking/spinlock.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/locking/spinlock.c 2015-04-26 13:32:22.439684003 -0500 +@@ -124,8 +124,11 @@ + * __[spin|read|write]_lock_bh() + */ + BUILD_LOCK_OPS(spin, raw_spinlock); ++ ++#ifndef CONFIG_PREEMPT_RT_FULL + BUILD_LOCK_OPS(read, rwlock); + BUILD_LOCK_OPS(write, rwlock); ++#endif + + #endif + +@@ -209,6 +212,8 @@ + EXPORT_SYMBOL(_raw_spin_unlock_bh); + #endif + ++#ifndef CONFIG_PREEMPT_RT_FULL ++ + #ifndef CONFIG_INLINE_READ_TRYLOCK + int __lockfunc _raw_read_trylock(rwlock_t *lock) + { +@@ -353,6 +358,8 @@ + EXPORT_SYMBOL(_raw_write_unlock_bh); + #endif + ++#endif /* !PREEMPT_RT_FULL */ ++ + #ifdef CONFIG_DEBUG_LOCK_ALLOC + + void __lockfunc _raw_spin_lock_nested(raw_spinlock_t *lock, int subclass) +diff -Nur linux-3.18.12.orig/kernel/locking/spinlock_debug.c linux-3.18.12/kernel/locking/spinlock_debug.c +--- linux-3.18.12.orig/kernel/locking/spinlock_debug.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/locking/spinlock_debug.c 2015-04-26 13:32:22.439684003 -0500 +@@ -31,6 +31,7 @@ + + EXPORT_SYMBOL(__raw_spin_lock_init); + ++#ifndef CONFIG_PREEMPT_RT_FULL + void __rwlock_init(rwlock_t *lock, const char *name, + struct lock_class_key *key) + { +@@ -48,6 +49,7 @@ + } + + EXPORT_SYMBOL(__rwlock_init); ++#endif + + static void spin_dump(raw_spinlock_t *lock, const char *msg) + { +@@ -159,6 +161,7 @@ + arch_spin_unlock(&lock->raw_lock); + } + ++#ifndef CONFIG_PREEMPT_RT_FULL + static void rwlock_bug(rwlock_t *lock, const char *msg) + { + if (!debug_locks_off()) +@@ -300,3 +303,5 @@ + debug_write_unlock(lock); + arch_write_unlock(&lock->raw_lock); + } ++ ++#endif +diff -Nur linux-3.18.12.orig/kernel/panic.c linux-3.18.12/kernel/panic.c +--- linux-3.18.12.orig/kernel/panic.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/panic.c 2015-04-26 13:32:22.439684003 -0500 +@@ -384,9 +384,11 @@ + + static int init_oops_id(void) + { ++#ifndef CONFIG_PREEMPT_RT_FULL + if (!oops_id) + get_random_bytes(&oops_id, sizeof(oops_id)); + else ++#endif + oops_id++; + + return 0; +diff -Nur linux-3.18.12.orig/kernel/power/hibernate.c linux-3.18.12/kernel/power/hibernate.c +--- linux-3.18.12.orig/kernel/power/hibernate.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/power/hibernate.c 2015-04-26 13:32:22.439684003 -0500 +@@ -287,6 +287,8 @@ + + local_irq_disable(); + ++ system_state = SYSTEM_SUSPEND; ++ + error = syscore_suspend(); + if (error) { + printk(KERN_ERR "PM: Some system devices failed to power down, " +@@ -316,6 +318,7 @@ + syscore_resume(); + + Enable_irqs: ++ system_state = SYSTEM_RUNNING; + local_irq_enable(); + + Enable_cpus: +@@ -439,6 +442,7 @@ + goto Enable_cpus; + + local_irq_disable(); ++ system_state = SYSTEM_SUSPEND; + + error = syscore_suspend(); + if (error) +@@ -472,6 +476,7 @@ + syscore_resume(); + + Enable_irqs: ++ system_state = SYSTEM_RUNNING; + local_irq_enable(); + + Enable_cpus: +@@ -557,6 +562,7 @@ + goto Platform_finish; + + local_irq_disable(); ++ system_state = SYSTEM_SUSPEND; + syscore_suspend(); + if (pm_wakeup_pending()) { + error = -EAGAIN; +@@ -569,6 +575,7 @@ + + Power_up: + syscore_resume(); ++ system_state = SYSTEM_RUNNING; + local_irq_enable(); + enable_nonboot_cpus(); + +diff -Nur linux-3.18.12.orig/kernel/power/suspend.c linux-3.18.12/kernel/power/suspend.c +--- linux-3.18.12.orig/kernel/power/suspend.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/power/suspend.c 2015-04-26 13:32:22.439684003 -0500 +@@ -318,6 +318,8 @@ + arch_suspend_disable_irqs(); + BUG_ON(!irqs_disabled()); + ++ system_state = SYSTEM_SUSPEND; ++ + error = syscore_suspend(); + if (!error) { + *wakeup = pm_wakeup_pending(); +@@ -332,6 +334,8 @@ + syscore_resume(); + } + ++ system_state = SYSTEM_RUNNING; ++ + arch_suspend_enable_irqs(); + BUG_ON(irqs_disabled()); + +diff -Nur linux-3.18.12.orig/kernel/printk/printk.c linux-3.18.12/kernel/printk/printk.c +--- linux-3.18.12.orig/kernel/printk/printk.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/printk/printk.c 2015-04-26 13:32:22.439684003 -0500 +@@ -1165,6 +1165,7 @@ + { + char *text; + int len = 0; ++ int attempts = 0; + + text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); + if (!text) +@@ -1176,7 +1177,14 @@ + u64 seq; + u32 idx; + enum log_flags prev; +- ++ int num_msg; ++try_again: ++ attempts++; ++ if (attempts > 10) { ++ len = -EBUSY; ++ goto out; ++ } ++ num_msg = 0; + if (clear_seq < log_first_seq) { + /* messages are gone, move to first available one */ + clear_seq = log_first_seq; +@@ -1197,6 +1205,14 @@ + prev = msg->flags; + idx = log_next(idx); + seq++; ++ num_msg++; ++ if (num_msg > 5) { ++ num_msg = 0; ++ raw_spin_unlock_irq(&logbuf_lock); ++ raw_spin_lock_irq(&logbuf_lock); ++ if (clear_seq < log_first_seq) ++ goto try_again; ++ } + } + + /* move first record forward until length fits into the buffer */ +@@ -1210,6 +1226,14 @@ + prev = msg->flags; + idx = log_next(idx); + seq++; ++ num_msg++; ++ if (num_msg > 5) { ++ num_msg = 0; ++ raw_spin_unlock_irq(&logbuf_lock); ++ raw_spin_lock_irq(&logbuf_lock); ++ if (clear_seq < log_first_seq) ++ goto try_again; ++ } + } + + /* last message fitting into this dump */ +@@ -1250,6 +1274,7 @@ + clear_seq = log_next_seq; + clear_idx = log_next_idx; + } ++out: + raw_spin_unlock_irq(&logbuf_lock); + + kfree(text); +@@ -1407,6 +1432,7 @@ + if (!console_drivers) + return; + ++ migrate_disable(); + for_each_console(con) { + if (exclusive_console && con != exclusive_console) + continue; +@@ -1419,6 +1445,7 @@ + continue; + con->write(con, text, len); + } ++ migrate_enable(); + } + + /* +@@ -1479,6 +1506,15 @@ + static int console_trylock_for_printk(void) + { + unsigned int cpu = smp_processor_id(); ++#ifdef CONFIG_PREEMPT_RT_FULL ++ int lock = !early_boot_irqs_disabled && (preempt_count() == 0) && ++ !irqs_disabled(); ++#else ++ int lock = 1; ++#endif ++ ++ if (!lock) ++ return 0; + + if (!console_trylock()) + return 0; +@@ -1613,6 +1649,62 @@ + return textlen; + } + ++#ifdef CONFIG_EARLY_PRINTK ++struct console *early_console; ++ ++void early_vprintk(const char *fmt, va_list ap) ++{ ++ if (early_console) { ++ char buf[512]; ++ int n = vscnprintf(buf, sizeof(buf), fmt, ap); ++ ++ early_console->write(early_console, buf, n); ++ } ++} ++ ++asmlinkage void early_printk(const char *fmt, ...) ++{ ++ va_list ap; ++ ++ va_start(ap, fmt); ++ early_vprintk(fmt, ap); ++ va_end(ap); ++} ++ ++/* ++ * This is independent of any log levels - a global ++ * kill switch that turns off all of printk. ++ * ++ * Used by the NMI watchdog if early-printk is enabled. ++ */ ++static bool __read_mostly printk_killswitch; ++ ++static int __init force_early_printk_setup(char *str) ++{ ++ printk_killswitch = true; ++ return 0; ++} ++early_param("force_early_printk", force_early_printk_setup); ++ ++void printk_kill(void) ++{ ++ printk_killswitch = true; ++} ++ ++static int forced_early_printk(const char *fmt, va_list ap) ++{ ++ if (!printk_killswitch) ++ return 0; ++ early_vprintk(fmt, ap); ++ return 1; ++} ++#else ++static inline int forced_early_printk(const char *fmt, va_list ap) ++{ ++ return 0; ++} ++#endif ++ + asmlinkage int vprintk_emit(int facility, int level, + const char *dict, size_t dictlen, + const char *fmt, va_list args) +@@ -1629,6 +1721,13 @@ + /* cpu currently holding logbuf_lock in this function */ + static volatile unsigned int logbuf_cpu = UINT_MAX; + ++ /* ++ * Fall back to early_printk if a debugging subsystem has ++ * killed printk output ++ */ ++ if (unlikely(forced_early_printk(fmt, args))) ++ return 1; ++ + if (level == SCHED_MESSAGE_LOGLEVEL) { + level = -1; + in_sched = true; +@@ -1769,8 +1868,7 @@ + * console_sem which would prevent anyone from printing to + * console + */ +- preempt_disable(); +- ++ migrate_disable(); + /* + * Try to acquire and then immediately release the console + * semaphore. The release will print out buffers and wake up +@@ -1778,7 +1876,7 @@ + */ + if (console_trylock_for_printk()) + console_unlock(); +- preempt_enable(); ++ migrate_enable(); + lockdep_on(); + } + +@@ -1878,29 +1976,6 @@ + + #endif /* CONFIG_PRINTK */ + +-#ifdef CONFIG_EARLY_PRINTK +-struct console *early_console; +- +-void early_vprintk(const char *fmt, va_list ap) +-{ +- if (early_console) { +- char buf[512]; +- int n = vscnprintf(buf, sizeof(buf), fmt, ap); +- +- early_console->write(early_console, buf, n); +- } +-} +- +-asmlinkage __visible void early_printk(const char *fmt, ...) +-{ +- va_list ap; +- +- va_start(ap, fmt); +- early_vprintk(fmt, ap); +- va_end(ap); +-} +-#endif +- + static int __add_preferred_console(char *name, int idx, char *options, + char *brl_options) + { +@@ -2140,11 +2215,16 @@ + goto out; + + len = cont_print_text(text, size); ++#ifndef CONFIG_PREEMPT_RT_FULL + raw_spin_unlock(&logbuf_lock); + stop_critical_timings(); + call_console_drivers(cont.level, text, len); + start_critical_timings(); + local_irq_restore(flags); ++#else ++ raw_spin_unlock_irqrestore(&logbuf_lock, flags); ++ call_console_drivers(cont.level, text, len); ++#endif + return; + out: + raw_spin_unlock_irqrestore(&logbuf_lock, flags); +@@ -2232,12 +2312,17 @@ + console_idx = log_next(console_idx); + console_seq++; + console_prev = msg->flags; ++#ifdef CONFIG_PREEMPT_RT_FULL ++ raw_spin_unlock_irqrestore(&logbuf_lock, flags); ++ call_console_drivers(level, text, len); ++#else + raw_spin_unlock(&logbuf_lock); + + stop_critical_timings(); /* don't trace print latency */ + call_console_drivers(level, text, len); + start_critical_timings(); + local_irq_restore(flags); ++#endif + } + console_locked = 0; + +diff -Nur linux-3.18.12.orig/kernel/ptrace.c linux-3.18.12/kernel/ptrace.c +--- linux-3.18.12.orig/kernel/ptrace.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/ptrace.c 2015-04-26 13:32:22.439684003 -0500 +@@ -129,7 +129,12 @@ + + spin_lock_irq(&task->sighand->siglock); + if (task_is_traced(task) && !__fatal_signal_pending(task)) { +- task->state = __TASK_TRACED; ++ raw_spin_lock_irq(&task->pi_lock); ++ if (task->state & __TASK_TRACED) ++ task->state = __TASK_TRACED; ++ else ++ task->saved_state = __TASK_TRACED; ++ raw_spin_unlock_irq(&task->pi_lock); + ret = true; + } + spin_unlock_irq(&task->sighand->siglock); +diff -Nur linux-3.18.12.orig/kernel/rcu/tiny.c linux-3.18.12/kernel/rcu/tiny.c +--- linux-3.18.12.orig/kernel/rcu/tiny.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/rcu/tiny.c 2015-04-26 13:32:22.439684003 -0500 +@@ -370,6 +370,7 @@ + } + EXPORT_SYMBOL_GPL(call_rcu_sched); + ++#ifndef CONFIG_PREEMPT_RT_FULL + /* + * Post an RCU bottom-half callback to be invoked after any subsequent + * quiescent state. +@@ -379,6 +380,7 @@ + __call_rcu(head, func, &rcu_bh_ctrlblk); + } + EXPORT_SYMBOL_GPL(call_rcu_bh); ++#endif + + void rcu_init(void) + { +diff -Nur linux-3.18.12.orig/kernel/rcu/tree.c linux-3.18.12/kernel/rcu/tree.c +--- linux-3.18.12.orig/kernel/rcu/tree.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/rcu/tree.c 2015-04-26 13:32:22.439684003 -0500 +@@ -56,6 +56,11 @@ + #include + #include + #include ++#include ++#include ++#include ++#include ++#include "../time/tick-internal.h" + + #include "tree.h" + #include "rcu.h" +@@ -152,8 +157,6 @@ + */ + static int rcu_scheduler_fully_active __read_mostly; + +-#ifdef CONFIG_RCU_BOOST +- + /* + * Control variables for per-CPU and per-rcu_node kthreads. These + * handle all flavors of RCU. +@@ -163,8 +166,6 @@ + DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); + DEFINE_PER_CPU(char, rcu_cpu_has_work); + +-#endif /* #ifdef CONFIG_RCU_BOOST */ +- + static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); + static void invoke_rcu_core(void); + static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); +@@ -207,6 +208,19 @@ + } + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++static void rcu_preempt_qs(void); ++ ++void rcu_bh_qs(void) ++{ ++ unsigned long flags; ++ ++ /* Callers to this function, rcu_preempt_qs(), must disable irqs. */ ++ local_irq_save(flags); ++ rcu_preempt_qs(); ++ local_irq_restore(flags); ++} ++#else + void rcu_bh_qs(void) + { + if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) { +@@ -216,6 +230,7 @@ + __this_cpu_write(rcu_bh_data.passed_quiesce, 1); + } + } ++#endif + + static DEFINE_PER_CPU(int, rcu_sched_qs_mask); + +@@ -336,6 +351,7 @@ + } + EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); + ++#ifndef CONFIG_PREEMPT_RT_FULL + /* + * Return the number of RCU BH batches processed thus far for debug & stats. + */ +@@ -363,6 +379,13 @@ + } + EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); + ++#else ++void rcu_force_quiescent_state(void) ++{ ++} ++EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); ++#endif ++ + /* + * Show the state of the grace-period kthreads. + */ +@@ -1411,7 +1434,7 @@ + !ACCESS_ONCE(rsp->gp_flags) || + !rsp->gp_kthread) + return; +- wake_up(&rsp->gp_wq); ++ swait_wake(&rsp->gp_wq); + } + + /* +@@ -1793,7 +1816,7 @@ + ACCESS_ONCE(rsp->gpnum), + TPS("reqwait")); + rsp->gp_state = RCU_GP_WAIT_GPS; +- wait_event_interruptible(rsp->gp_wq, ++ swait_event_interruptible(rsp->gp_wq, + ACCESS_ONCE(rsp->gp_flags) & + RCU_GP_FLAG_INIT); + /* Locking provides needed memory barrier. */ +@@ -1821,7 +1844,7 @@ + ACCESS_ONCE(rsp->gpnum), + TPS("fqswait")); + rsp->gp_state = RCU_GP_WAIT_FQS; +- ret = wait_event_interruptible_timeout(rsp->gp_wq, ++ ret = swait_event_interruptible_timeout(rsp->gp_wq, + ((gf = ACCESS_ONCE(rsp->gp_flags)) & + RCU_GP_FLAG_FQS) || + (!ACCESS_ONCE(rnp->qsmask) && +@@ -2565,16 +2588,14 @@ + /* + * Do RCU core processing for the current CPU. + */ +-static void rcu_process_callbacks(struct softirq_action *unused) ++static void rcu_process_callbacks(void) + { + struct rcu_state *rsp; + + if (cpu_is_offline(smp_processor_id())) + return; +- trace_rcu_utilization(TPS("Start RCU core")); + for_each_rcu_flavor(rsp) + __rcu_process_callbacks(rsp); +- trace_rcu_utilization(TPS("End RCU core")); + } + + /* +@@ -2588,18 +2609,105 @@ + { + if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) + return; +- if (likely(!rsp->boost)) { +- rcu_do_batch(rsp, rdp); ++ rcu_do_batch(rsp, rdp); ++} ++ ++static void rcu_wake_cond(struct task_struct *t, int status) ++{ ++ /* ++ * If the thread is yielding, only wake it when this ++ * is invoked from idle ++ */ ++ if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) ++ wake_up_process(t); ++} ++ ++/* ++ * Wake up this CPU's rcuc kthread to do RCU core processing. ++ */ ++static void invoke_rcu_core(void) ++{ ++ unsigned long flags; ++ struct task_struct *t; ++ ++ if (!cpu_online(smp_processor_id())) + return; ++ local_irq_save(flags); ++ __this_cpu_write(rcu_cpu_has_work, 1); ++ t = __this_cpu_read(rcu_cpu_kthread_task); ++ if (t != NULL && current != t) ++ rcu_wake_cond(t, __this_cpu_read(rcu_cpu_kthread_status)); ++ local_irq_restore(flags); ++} ++ ++static void rcu_cpu_kthread_park(unsigned int cpu) ++{ ++ per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; ++} ++ ++static int rcu_cpu_kthread_should_run(unsigned int cpu) ++{ ++ return __this_cpu_read(rcu_cpu_has_work); ++} ++ ++/* ++ * Per-CPU kernel thread that invokes RCU callbacks. This replaces the ++ * RCU softirq used in flavors and configurations of RCU that do not ++ * support RCU priority boosting. ++ */ ++static void rcu_cpu_kthread(unsigned int cpu) ++{ ++ unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status); ++ char work, *workp = &__get_cpu_var(rcu_cpu_has_work); ++ int spincnt; ++ ++ for (spincnt = 0; spincnt < 10; spincnt++) { ++ trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); ++ local_bh_disable(); ++ *statusp = RCU_KTHREAD_RUNNING; ++ this_cpu_inc(rcu_cpu_kthread_loops); ++ local_irq_disable(); ++ work = *workp; ++ *workp = 0; ++ local_irq_enable(); ++ if (work) ++ rcu_process_callbacks(); ++ local_bh_enable(); ++ if (*workp == 0) { ++ trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); ++ *statusp = RCU_KTHREAD_WAITING; ++ return; ++ } + } +- invoke_rcu_callbacks_kthread(); ++ *statusp = RCU_KTHREAD_YIELDING; ++ trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); ++ schedule_timeout_interruptible(2); ++ trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); ++ *statusp = RCU_KTHREAD_WAITING; + } + +-static void invoke_rcu_core(void) ++static struct smp_hotplug_thread rcu_cpu_thread_spec = { ++ .store = &rcu_cpu_kthread_task, ++ .thread_should_run = rcu_cpu_kthread_should_run, ++ .thread_fn = rcu_cpu_kthread, ++ .thread_comm = "rcuc/%u", ++ .setup = rcu_cpu_kthread_setup, ++ .park = rcu_cpu_kthread_park, ++}; ++ ++/* ++ * Spawn per-CPU RCU core processing kthreads. ++ */ ++static int __init rcu_spawn_core_kthreads(void) + { +- if (cpu_online(smp_processor_id())) +- raise_softirq(RCU_SOFTIRQ); ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ per_cpu(rcu_cpu_has_work, cpu) = 0; ++ BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); ++ return 0; + } ++early_initcall(rcu_spawn_core_kthreads); + + /* + * Handle any core-RCU processing required by a call_rcu() invocation. +@@ -2734,6 +2842,7 @@ + } + EXPORT_SYMBOL_GPL(call_rcu_sched); + ++#ifndef CONFIG_PREEMPT_RT_FULL + /* + * Queue an RCU callback for invocation after a quicker grace period. + */ +@@ -2742,6 +2851,7 @@ + __call_rcu(head, func, &rcu_bh_state, -1, 0); + } + EXPORT_SYMBOL_GPL(call_rcu_bh); ++#endif + + /* + * Queue an RCU callback for lazy invocation after a grace period. +@@ -2833,6 +2943,7 @@ + } + EXPORT_SYMBOL_GPL(synchronize_sched); + ++#ifndef CONFIG_PREEMPT_RT_FULL + /** + * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. + * +@@ -2859,6 +2970,7 @@ + wait_rcu_gp(call_rcu_bh); + } + EXPORT_SYMBOL_GPL(synchronize_rcu_bh); ++#endif + + /** + * get_state_synchronize_rcu - Snapshot current RCU state +@@ -3341,6 +3453,7 @@ + mutex_unlock(&rsp->barrier_mutex); + } + ++#ifndef CONFIG_PREEMPT_RT_FULL + /** + * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. + */ +@@ -3349,6 +3462,7 @@ + _rcu_barrier(&rcu_bh_state); + } + EXPORT_SYMBOL_GPL(rcu_barrier_bh); ++#endif + + /** + * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. +@@ -3658,7 +3772,7 @@ + } + + rsp->rda = rda; +- init_waitqueue_head(&rsp->gp_wq); ++ init_swait_head(&rsp->gp_wq); + rnp = rsp->level[rcu_num_lvls - 1]; + for_each_possible_cpu(i) { + while (i > rnp->grphi) +@@ -3755,7 +3869,6 @@ + rcu_init_one(&rcu_bh_state, &rcu_bh_data); + rcu_init_one(&rcu_sched_state, &rcu_sched_data); + __rcu_init_preempt(); +- open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); + + /* + * We don't need protection against CPU-hotplug here because +diff -Nur linux-3.18.12.orig/kernel/rcu/tree.h linux-3.18.12/kernel/rcu/tree.h +--- linux-3.18.12.orig/kernel/rcu/tree.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/rcu/tree.h 2015-04-26 13:32:22.443684003 -0500 +@@ -28,6 +28,7 @@ + #include + #include + #include ++#include + + /* + * Define shape of hierarchy based on NR_CPUS, CONFIG_RCU_FANOUT, and +@@ -172,11 +173,6 @@ + /* queued on this rcu_node structure that */ + /* are blocking the current grace period, */ + /* there can be no such task. */ +- struct completion boost_completion; +- /* Used to ensure that the rt_mutex used */ +- /* to carry out the boosting is fully */ +- /* released with no future boostee accesses */ +- /* before that rt_mutex is re-initialized. */ + struct rt_mutex boost_mtx; + /* Used only for the priority-boosting */ + /* side effect, not as a lock. */ +@@ -208,7 +204,7 @@ + /* This can happen due to race conditions. */ + #endif /* #ifdef CONFIG_RCU_BOOST */ + #ifdef CONFIG_RCU_NOCB_CPU +- wait_queue_head_t nocb_gp_wq[2]; ++ struct swait_head nocb_gp_wq[2]; + /* Place for rcu_nocb_kthread() to wait GP. */ + #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ + int need_future_gp[2]; +@@ -348,7 +344,7 @@ + atomic_long_t nocb_follower_count_lazy; /* (approximate). */ + int nocb_p_count; /* # CBs being invoked by kthread */ + int nocb_p_count_lazy; /* (approximate). */ +- wait_queue_head_t nocb_wq; /* For nocb kthreads to sleep on. */ ++ struct swait_head nocb_wq; /* For nocb kthreads to sleep on. */ + struct task_struct *nocb_kthread; + int nocb_defer_wakeup; /* Defer wakeup of nocb_kthread. */ + +@@ -439,7 +435,7 @@ + unsigned long gpnum; /* Current gp number. */ + unsigned long completed; /* # of last completed gp. */ + struct task_struct *gp_kthread; /* Task for grace periods. */ +- wait_queue_head_t gp_wq; /* Where GP task waits. */ ++ struct swait_head gp_wq; /* Where GP task waits. */ + short gp_flags; /* Commands for GP task. */ + short gp_state; /* GP kthread sleep state. */ + +@@ -570,10 +566,9 @@ + static void __init __rcu_init_preempt(void); + static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags); + static void rcu_preempt_boost_start_gp(struct rcu_node *rnp); +-static void invoke_rcu_callbacks_kthread(void); + static bool rcu_is_callbacks_kthread(void); ++static void rcu_cpu_kthread_setup(unsigned int cpu); + #ifdef CONFIG_RCU_BOOST +-static void rcu_preempt_do_callbacks(void); + static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, + struct rcu_node *rnp); + #endif /* #ifdef CONFIG_RCU_BOOST */ +diff -Nur linux-3.18.12.orig/kernel/rcu/tree_plugin.h linux-3.18.12/kernel/rcu/tree_plugin.h +--- linux-3.18.12.orig/kernel/rcu/tree_plugin.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/rcu/tree_plugin.h 2015-04-26 13:32:22.443684003 -0500 +@@ -24,12 +24,6 @@ + * Paul E. McKenney + */ + +-#include +-#include +-#include +-#include +-#include "../time/tick-internal.h" +- + #define RCU_KTHREAD_PRIO 1 + + #ifdef CONFIG_RCU_BOOST +@@ -335,7 +329,7 @@ + } + + /* Hardware IRQ handlers cannot block, complain if they get here. */ +- if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) { ++ if (WARN_ON_ONCE(preempt_count() & (HARDIRQ_MASK | SOFTIRQ_OFFSET))) { + local_irq_restore(flags); + return; + } +@@ -398,10 +392,8 @@ + + #ifdef CONFIG_RCU_BOOST + /* Unboost if we were boosted. */ +- if (drop_boost_mutex) { ++ if (drop_boost_mutex) + rt_mutex_unlock(&rnp->boost_mtx); +- complete(&rnp->boost_completion); +- } + #endif /* #ifdef CONFIG_RCU_BOOST */ + + /* +@@ -635,15 +627,6 @@ + t->rcu_read_unlock_special.b.need_qs = true; + } + +-#ifdef CONFIG_RCU_BOOST +- +-static void rcu_preempt_do_callbacks(void) +-{ +- rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data)); +-} +- +-#endif /* #ifdef CONFIG_RCU_BOOST */ +- + /* + * Queue a preemptible-RCU callback for invocation after a grace period. + */ +@@ -1072,6 +1055,19 @@ + + #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ + ++/* ++ * If boosting, set rcuc kthreads to realtime priority. ++ */ ++static void rcu_cpu_kthread_setup(unsigned int cpu) ++{ ++#ifdef CONFIG_RCU_BOOST ++ struct sched_param sp; ++ ++ sp.sched_priority = RCU_KTHREAD_PRIO; ++ sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); ++#endif /* #ifdef CONFIG_RCU_BOOST */ ++} ++ + #ifdef CONFIG_RCU_BOOST + + #include "../locking/rtmutex_common.h" +@@ -1103,16 +1099,6 @@ + + #endif /* #else #ifdef CONFIG_RCU_TRACE */ + +-static void rcu_wake_cond(struct task_struct *t, int status) +-{ +- /* +- * If the thread is yielding, only wake it when this +- * is invoked from idle +- */ +- if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) +- wake_up_process(t); +-} +- + /* + * Carry out RCU priority boosting on the task indicated by ->exp_tasks + * or ->boost_tasks, advancing the pointer to the next task in the +@@ -1175,15 +1161,11 @@ + */ + t = container_of(tb, struct task_struct, rcu_node_entry); + rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); +- init_completion(&rnp->boost_completion); + raw_spin_unlock_irqrestore(&rnp->lock, flags); + /* Lock only for side effect: boosts task t's priority. */ + rt_mutex_lock(&rnp->boost_mtx); + rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ + +- /* Wait for boostee to be done w/boost_mtx before reinitializing. */ +- wait_for_completion(&rnp->boost_completion); +- + return ACCESS_ONCE(rnp->exp_tasks) != NULL || + ACCESS_ONCE(rnp->boost_tasks) != NULL; + } +@@ -1261,23 +1243,6 @@ + } + + /* +- * Wake up the per-CPU kthread to invoke RCU callbacks. +- */ +-static void invoke_rcu_callbacks_kthread(void) +-{ +- unsigned long flags; +- +- local_irq_save(flags); +- __this_cpu_write(rcu_cpu_has_work, 1); +- if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && +- current != __this_cpu_read(rcu_cpu_kthread_task)) { +- rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), +- __this_cpu_read(rcu_cpu_kthread_status)); +- } +- local_irq_restore(flags); +-} +- +-/* + * Is the current CPU running the RCU-callbacks kthread? + * Caller must have preemption disabled. + */ +@@ -1332,67 +1297,6 @@ + return 0; + } + +-static void rcu_kthread_do_work(void) +-{ +- rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); +- rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); +- rcu_preempt_do_callbacks(); +-} +- +-static void rcu_cpu_kthread_setup(unsigned int cpu) +-{ +- struct sched_param sp; +- +- sp.sched_priority = RCU_KTHREAD_PRIO; +- sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); +-} +- +-static void rcu_cpu_kthread_park(unsigned int cpu) +-{ +- per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; +-} +- +-static int rcu_cpu_kthread_should_run(unsigned int cpu) +-{ +- return __this_cpu_read(rcu_cpu_has_work); +-} +- +-/* +- * Per-CPU kernel thread that invokes RCU callbacks. This replaces the +- * RCU softirq used in flavors and configurations of RCU that do not +- * support RCU priority boosting. +- */ +-static void rcu_cpu_kthread(unsigned int cpu) +-{ +- unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); +- char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); +- int spincnt; +- +- for (spincnt = 0; spincnt < 10; spincnt++) { +- trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); +- local_bh_disable(); +- *statusp = RCU_KTHREAD_RUNNING; +- this_cpu_inc(rcu_cpu_kthread_loops); +- local_irq_disable(); +- work = *workp; +- *workp = 0; +- local_irq_enable(); +- if (work) +- rcu_kthread_do_work(); +- local_bh_enable(); +- if (*workp == 0) { +- trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); +- *statusp = RCU_KTHREAD_WAITING; +- return; +- } +- } +- *statusp = RCU_KTHREAD_YIELDING; +- trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); +- schedule_timeout_interruptible(2); +- trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); +- *statusp = RCU_KTHREAD_WAITING; +-} +- + /* + * Set the per-rcu_node kthread's affinity to cover all CPUs that are + * served by the rcu_node in question. The CPU hotplug lock is still +@@ -1426,26 +1330,13 @@ + free_cpumask_var(cm); + } + +-static struct smp_hotplug_thread rcu_cpu_thread_spec = { +- .store = &rcu_cpu_kthread_task, +- .thread_should_run = rcu_cpu_kthread_should_run, +- .thread_fn = rcu_cpu_kthread, +- .thread_comm = "rcuc/%u", +- .setup = rcu_cpu_kthread_setup, +- .park = rcu_cpu_kthread_park, +-}; +- + /* + * Spawn boost kthreads -- called as soon as the scheduler is running. + */ + static void __init rcu_spawn_boost_kthreads(void) + { + struct rcu_node *rnp; +- int cpu; + +- for_each_possible_cpu(cpu) +- per_cpu(rcu_cpu_has_work, cpu) = 0; +- BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); + rnp = rcu_get_root(rcu_state_p); + (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); + if (NUM_RCU_NODES > 1) { +@@ -1472,11 +1363,6 @@ + raw_spin_unlock_irqrestore(&rnp->lock, flags); + } + +-static void invoke_rcu_callbacks_kthread(void) +-{ +- WARN_ON_ONCE(1); +-} +- + static bool rcu_is_callbacks_kthread(void) + { + return false; +@@ -1500,7 +1386,7 @@ + + #endif /* #else #ifdef CONFIG_RCU_BOOST */ + +-#if !defined(CONFIG_RCU_FAST_NO_HZ) ++#if !defined(CONFIG_RCU_FAST_NO_HZ) || defined(CONFIG_PREEMPT_RT_FULL) + + /* + * Check to see if any future RCU-related work will need to be done +@@ -1518,7 +1404,9 @@ + return rcu_cpu_has_callbacks(cpu, NULL); + } + #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ ++#endif /* !defined(CONFIG_RCU_FAST_NO_HZ) || defined(CONFIG_PREEMPT_RT_FULL) */ + ++#if !defined(CONFIG_RCU_FAST_NO_HZ) + /* + * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up + * after it. +@@ -1615,6 +1503,8 @@ + return cbs_ready; + } + ++#ifndef CONFIG_PREEMPT_RT_FULL ++ + /* + * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready + * to invoke. If the CPU has callbacks, try to advance them. Tell the +@@ -1655,7 +1545,7 @@ + return 0; + } + #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ +- ++#endif /* #ifndef CONFIG_PREEMPT_RT_FULL */ + /* + * Prepare a CPU for idle from an RCU perspective. The first major task + * is to sense whether nohz mode has been enabled or disabled via sysfs. +@@ -2001,7 +1891,7 @@ + */ + static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) + { +- wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); ++ swait_wake_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); + } + + /* +@@ -2019,8 +1909,8 @@ + + static void rcu_init_one_nocb(struct rcu_node *rnp) + { +- init_waitqueue_head(&rnp->nocb_gp_wq[0]); +- init_waitqueue_head(&rnp->nocb_gp_wq[1]); ++ init_swait_head(&rnp->nocb_gp_wq[0]); ++ init_swait_head(&rnp->nocb_gp_wq[1]); + } + + #ifndef CONFIG_RCU_NOCB_CPU_ALL +@@ -2045,7 +1935,7 @@ + if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) { + /* Prior smp_mb__after_atomic() orders against prior enqueue. */ + ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false; +- wake_up(&rdp_leader->nocb_wq); ++ swait_wake(&rdp_leader->nocb_wq); + } + } + +@@ -2238,7 +2128,7 @@ + */ + trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); + for (;;) { +- wait_event_interruptible( ++ swait_event_interruptible( + rnp->nocb_gp_wq[c & 0x1], + (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c))); + if (likely(d)) +@@ -2266,7 +2156,7 @@ + /* Wait for callbacks to appear. */ + if (!rcu_nocb_poll) { + trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); +- wait_event_interruptible(my_rdp->nocb_wq, ++ swait_event_interruptible(my_rdp->nocb_wq, + !ACCESS_ONCE(my_rdp->nocb_leader_sleep)); + /* Memory barrier handled by smp_mb() calls below and repoll. */ + } else if (firsttime) { +@@ -2347,7 +2237,7 @@ + * List was empty, wake up the follower. + * Memory barriers supplied by atomic_long_add(). + */ +- wake_up(&rdp->nocb_wq); ++ swait_wake(&rdp->nocb_wq); + } + } + +@@ -2368,7 +2258,7 @@ + if (!rcu_nocb_poll) { + trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, + "FollowerSleep"); +- wait_event_interruptible(rdp->nocb_wq, ++ swait_event_interruptible(rdp->nocb_wq, + ACCESS_ONCE(rdp->nocb_follower_head)); + } else if (firsttime) { + /* Don't drown trace log with "Poll"! */ +@@ -2539,7 +2429,7 @@ + static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) + { + rdp->nocb_tail = &rdp->nocb_head; +- init_waitqueue_head(&rdp->nocb_wq); ++ init_swait_head(&rdp->nocb_wq); + rdp->nocb_follower_tail = &rdp->nocb_follower_head; + } + +diff -Nur linux-3.18.12.orig/kernel/rcu/update.c linux-3.18.12/kernel/rcu/update.c +--- linux-3.18.12.orig/kernel/rcu/update.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/rcu/update.c 2015-04-26 13:32:22.443684003 -0500 +@@ -170,6 +170,7 @@ + } + EXPORT_SYMBOL_GPL(rcu_read_lock_held); + ++#ifndef CONFIG_PREEMPT_RT_FULL + /** + * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? + * +@@ -196,6 +197,7 @@ + return in_softirq() || irqs_disabled(); + } + EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); ++#endif + + #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ + +diff -Nur linux-3.18.12.orig/kernel/relay.c linux-3.18.12/kernel/relay.c +--- linux-3.18.12.orig/kernel/relay.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/relay.c 2015-04-26 13:32:22.443684003 -0500 +@@ -339,6 +339,10 @@ + { + struct rchan_buf *buf = (struct rchan_buf *)data; + wake_up_interruptible(&buf->read_wait); ++ /* ++ * Stupid polling for now: ++ */ ++ mod_timer(&buf->timer, jiffies + 1); + } + + /** +@@ -356,6 +360,7 @@ + init_waitqueue_head(&buf->read_wait); + kref_init(&buf->kref); + setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); ++ mod_timer(&buf->timer, jiffies + 1); + } else + del_timer_sync(&buf->timer); + +@@ -739,15 +744,6 @@ + else + buf->early_bytes += buf->chan->subbuf_size - + buf->padding[old_subbuf]; +- smp_mb(); +- if (waitqueue_active(&buf->read_wait)) +- /* +- * Calling wake_up_interruptible() from here +- * will deadlock if we happen to be logging +- * from the scheduler (trying to re-grab +- * rq->lock), so defer it. +- */ +- mod_timer(&buf->timer, jiffies + 1); + } + + old = buf->data; +diff -Nur linux-3.18.12.orig/kernel/res_counter.c linux-3.18.12/kernel/res_counter.c +--- linux-3.18.12.orig/kernel/res_counter.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/res_counter.c 2015-04-26 13:32:22.443684003 -0500 +@@ -59,7 +59,7 @@ + + r = ret = 0; + *limit_fail_at = NULL; +- local_irq_save(flags); ++ local_irq_save_nort(flags); + for (c = counter; c != NULL; c = c->parent) { + spin_lock(&c->lock); + r = res_counter_charge_locked(c, val, force); +@@ -79,7 +79,7 @@ + spin_unlock(&u->lock); + } + } +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + + return ret; + } +@@ -104,7 +104,7 @@ + struct res_counter *c; + u64 ret = 0; + +- local_irq_save(flags); ++ local_irq_save_nort(flags); + for (c = counter; c != top; c = c->parent) { + u64 r; + spin_lock(&c->lock); +@@ -113,7 +113,7 @@ + ret = r; + spin_unlock(&c->lock); + } +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + return ret; + } + +diff -Nur linux-3.18.12.orig/kernel/sched/completion.c linux-3.18.12/kernel/sched/completion.c +--- linux-3.18.12.orig/kernel/sched/completion.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/sched/completion.c 2015-04-26 13:32:22.443684003 -0500 +@@ -30,10 +30,10 @@ + { + unsigned long flags; + +- spin_lock_irqsave(&x->wait.lock, flags); ++ raw_spin_lock_irqsave(&x->wait.lock, flags); + x->done++; +- __wake_up_locked(&x->wait, TASK_NORMAL, 1); +- spin_unlock_irqrestore(&x->wait.lock, flags); ++ __swait_wake_locked(&x->wait, TASK_NORMAL, 1); ++ raw_spin_unlock_irqrestore(&x->wait.lock, flags); + } + EXPORT_SYMBOL(complete); + +@@ -50,10 +50,10 @@ + { + unsigned long flags; + +- spin_lock_irqsave(&x->wait.lock, flags); ++ raw_spin_lock_irqsave(&x->wait.lock, flags); + x->done += UINT_MAX/2; +- __wake_up_locked(&x->wait, TASK_NORMAL, 0); +- spin_unlock_irqrestore(&x->wait.lock, flags); ++ __swait_wake_locked(&x->wait, TASK_NORMAL, 0); ++ raw_spin_unlock_irqrestore(&x->wait.lock, flags); + } + EXPORT_SYMBOL(complete_all); + +@@ -62,20 +62,20 @@ + long (*action)(long), long timeout, int state) + { + if (!x->done) { +- DECLARE_WAITQUEUE(wait, current); ++ DEFINE_SWAITER(wait); + +- __add_wait_queue_tail_exclusive(&x->wait, &wait); ++ swait_prepare_locked(&x->wait, &wait); + do { + if (signal_pending_state(state, current)) { + timeout = -ERESTARTSYS; + break; + } + __set_current_state(state); +- spin_unlock_irq(&x->wait.lock); ++ raw_spin_unlock_irq(&x->wait.lock); + timeout = action(timeout); +- spin_lock_irq(&x->wait.lock); ++ raw_spin_lock_irq(&x->wait.lock); + } while (!x->done && timeout); +- __remove_wait_queue(&x->wait, &wait); ++ swait_finish_locked(&x->wait, &wait); + if (!x->done) + return timeout; + } +@@ -89,9 +89,9 @@ + { + might_sleep(); + +- spin_lock_irq(&x->wait.lock); ++ raw_spin_lock_irq(&x->wait.lock); + timeout = do_wait_for_common(x, action, timeout, state); +- spin_unlock_irq(&x->wait.lock); ++ raw_spin_unlock_irq(&x->wait.lock); + return timeout; + } + +@@ -267,12 +267,12 @@ + unsigned long flags; + int ret = 1; + +- spin_lock_irqsave(&x->wait.lock, flags); ++ raw_spin_lock_irqsave(&x->wait.lock, flags); + if (!x->done) + ret = 0; + else + x->done--; +- spin_unlock_irqrestore(&x->wait.lock, flags); ++ raw_spin_unlock_irqrestore(&x->wait.lock, flags); + return ret; + } + EXPORT_SYMBOL(try_wait_for_completion); +@@ -290,10 +290,10 @@ + unsigned long flags; + int ret = 1; + +- spin_lock_irqsave(&x->wait.lock, flags); ++ raw_spin_lock_irqsave(&x->wait.lock, flags); + if (!x->done) + ret = 0; +- spin_unlock_irqrestore(&x->wait.lock, flags); ++ raw_spin_unlock_irqrestore(&x->wait.lock, flags); + return ret; + } + EXPORT_SYMBOL(completion_done); +diff -Nur linux-3.18.12.orig/kernel/sched/core.c linux-3.18.12/kernel/sched/core.c +--- linux-3.18.12.orig/kernel/sched/core.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/sched/core.c 2015-04-26 13:32:22.443684003 -0500 +@@ -280,7 +280,11 @@ + * Number of tasks to iterate in a single balance run. + * Limited because this is done with IRQs disabled. + */ ++#ifndef CONFIG_PREEMPT_RT_FULL + const_debug unsigned int sysctl_sched_nr_migrate = 32; ++#else ++const_debug unsigned int sysctl_sched_nr_migrate = 8; ++#endif + + /* + * period over which we average the RT time consumption, measured +@@ -516,6 +520,7 @@ + + hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + rq->hrtick_timer.function = hrtick; ++ rq->hrtick_timer.irqsafe = 1; + } + #else /* CONFIG_SCHED_HRTICK */ + static inline void hrtick_clear(struct rq *rq) +@@ -627,6 +632,38 @@ + trace_sched_wake_idle_without_ipi(cpu); + } + ++#ifdef CONFIG_PREEMPT_LAZY ++void resched_curr_lazy(struct rq *rq) ++{ ++ struct task_struct *curr = rq->curr; ++ int cpu; ++ ++ if (!sched_feat(PREEMPT_LAZY)) { ++ resched_curr(rq); ++ return; ++ } ++ ++ lockdep_assert_held(&rq->lock); ++ ++ if (test_tsk_need_resched(curr)) ++ return; ++ ++ if (test_tsk_need_resched_lazy(curr)) ++ return; ++ ++ set_tsk_need_resched_lazy(curr); ++ ++ cpu = cpu_of(rq); ++ if (cpu == smp_processor_id()) ++ return; ++ ++ /* NEED_RESCHED_LAZY must be visible before we test polling */ ++ smp_mb(); ++ if (!tsk_is_polling(curr)) ++ smp_send_reschedule(cpu); ++} ++#endif ++ + void resched_cpu(int cpu) + { + struct rq *rq = cpu_rq(cpu); +@@ -650,12 +687,14 @@ + */ + int get_nohz_timer_target(int pinned) + { +- int cpu = smp_processor_id(); ++ int cpu; + int i; + struct sched_domain *sd; + ++ preempt_disable_rt(); ++ cpu = smp_processor_id(); + if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) +- return cpu; ++ goto preempt_en_rt; + + rcu_read_lock(); + for_each_domain(cpu, sd) { +@@ -668,6 +707,8 @@ + } + unlock: + rcu_read_unlock(); ++preempt_en_rt: ++ preempt_enable_rt(); + return cpu; + } + /* +@@ -745,14 +786,29 @@ + #endif /* CONFIG_NO_HZ_COMMON */ + + #ifdef CONFIG_NO_HZ_FULL ++ ++static int ksoftirqd_running(void) ++{ ++ struct task_struct *softirqd; ++ ++ if (!IS_ENABLED(CONFIG_PREEMPT_RT_FULL)) ++ return 0; ++ softirqd = this_cpu_ksoftirqd(); ++ if (softirqd && softirqd->on_rq) ++ return 1; ++ return 0; ++} ++ + bool sched_can_stop_tick(void) + { + /* + * More than one running task need preemption. + * nr_running update is assumed to be visible + * after IPI is sent from wakers. ++ * ++ * NOTE, RT: if ksoftirqd is awake, subtract it. + */ +- if (this_rq()->nr_running > 1) ++ if (this_rq()->nr_running - ksoftirqd_running() > 1) + return false; + + return true; +@@ -1198,6 +1254,18 @@ + + static int migration_cpu_stop(void *data); + ++static bool check_task_state(struct task_struct *p, long match_state) ++{ ++ bool match = false; ++ ++ raw_spin_lock_irq(&p->pi_lock); ++ if (p->state == match_state || p->saved_state == match_state) ++ match = true; ++ raw_spin_unlock_irq(&p->pi_lock); ++ ++ return match; ++} ++ + /* + * wait_task_inactive - wait for a thread to unschedule. + * +@@ -1242,7 +1310,7 @@ + * is actually now running somewhere else! + */ + while (task_running(rq, p)) { +- if (match_state && unlikely(p->state != match_state)) ++ if (match_state && !check_task_state(p, match_state)) + return 0; + cpu_relax(); + } +@@ -1257,7 +1325,8 @@ + running = task_running(rq, p); + queued = task_on_rq_queued(p); + ncsw = 0; +- if (!match_state || p->state == match_state) ++ if (!match_state || p->state == match_state || ++ p->saved_state == match_state) + ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ + task_rq_unlock(rq, p, &flags); + +@@ -1482,10 +1551,6 @@ + { + activate_task(rq, p, en_flags); + p->on_rq = TASK_ON_RQ_QUEUED; +- +- /* if a worker is waking up, notify workqueue */ +- if (p->flags & PF_WQ_WORKER) +- wq_worker_waking_up(p, cpu_of(rq)); + } + + /* +@@ -1699,8 +1764,27 @@ + */ + smp_mb__before_spinlock(); + raw_spin_lock_irqsave(&p->pi_lock, flags); +- if (!(p->state & state)) ++ if (!(p->state & state)) { ++ /* ++ * The task might be running due to a spinlock sleeper ++ * wakeup. Check the saved state and set it to running ++ * if the wakeup condition is true. ++ */ ++ if (!(wake_flags & WF_LOCK_SLEEPER)) { ++ if (p->saved_state & state) { ++ p->saved_state = TASK_RUNNING; ++ success = 1; ++ } ++ } + goto out; ++ } ++ ++ /* ++ * If this is a regular wakeup, then we can unconditionally ++ * clear the saved state of a "lock sleeper". ++ */ ++ if (!(wake_flags & WF_LOCK_SLEEPER)) ++ p->saved_state = TASK_RUNNING; + + success = 1; /* we're going to change ->state */ + cpu = task_cpu(p); +@@ -1743,42 +1827,6 @@ + } + + /** +- * try_to_wake_up_local - try to wake up a local task with rq lock held +- * @p: the thread to be awakened +- * +- * Put @p on the run-queue if it's not already there. The caller must +- * ensure that this_rq() is locked, @p is bound to this_rq() and not +- * the current task. +- */ +-static void try_to_wake_up_local(struct task_struct *p) +-{ +- struct rq *rq = task_rq(p); +- +- if (WARN_ON_ONCE(rq != this_rq()) || +- WARN_ON_ONCE(p == current)) +- return; +- +- lockdep_assert_held(&rq->lock); +- +- if (!raw_spin_trylock(&p->pi_lock)) { +- raw_spin_unlock(&rq->lock); +- raw_spin_lock(&p->pi_lock); +- raw_spin_lock(&rq->lock); +- } +- +- if (!(p->state & TASK_NORMAL)) +- goto out; +- +- if (!task_on_rq_queued(p)) +- ttwu_activate(rq, p, ENQUEUE_WAKEUP); +- +- ttwu_do_wakeup(rq, p, 0); +- ttwu_stat(p, smp_processor_id(), 0); +-out: +- raw_spin_unlock(&p->pi_lock); +-} +- +-/** + * wake_up_process - Wake up a specific process + * @p: The process to be woken up. + * +@@ -1792,11 +1840,23 @@ + */ + int wake_up_process(struct task_struct *p) + { +- WARN_ON(task_is_stopped_or_traced(p)); ++ WARN_ON(__task_is_stopped_or_traced(p)); + return try_to_wake_up(p, TASK_NORMAL, 0); + } + EXPORT_SYMBOL(wake_up_process); + ++/** ++ * wake_up_lock_sleeper - Wake up a specific process blocked on a "sleeping lock" ++ * @p: The process to be woken up. ++ * ++ * Same as wake_up_process() above, but wake_flags=WF_LOCK_SLEEPER to indicate ++ * the nature of the wakeup. ++ */ ++int wake_up_lock_sleeper(struct task_struct *p) ++{ ++ return try_to_wake_up(p, TASK_ALL, WF_LOCK_SLEEPER); ++} ++ + int wake_up_state(struct task_struct *p, unsigned int state) + { + return try_to_wake_up(p, state, 0); +@@ -1987,6 +2047,9 @@ + p->on_cpu = 0; + #endif + init_task_preempt_count(p); ++#ifdef CONFIG_HAVE_PREEMPT_LAZY ++ task_thread_info(p)->preempt_lazy_count = 0; ++#endif + #ifdef CONFIG_SMP + plist_node_init(&p->pushable_tasks, MAX_PRIO); + RB_CLEAR_NODE(&p->pushable_dl_tasks); +@@ -2270,8 +2333,12 @@ + finish_arch_post_lock_switch(); + + fire_sched_in_preempt_notifiers(current); ++ /* ++ * We use mmdrop_delayed() here so we don't have to do the ++ * full __mmdrop() when we are the last user. ++ */ + if (mm) +- mmdrop(mm); ++ mmdrop_delayed(mm); + if (unlikely(prev_state == TASK_DEAD)) { + if (prev->sched_class->task_dead) + prev->sched_class->task_dead(prev); +@@ -2696,6 +2763,133 @@ + schedstat_inc(this_rq(), sched_count); + } + ++#if defined(CONFIG_PREEMPT_RT_FULL) && defined(CONFIG_SMP) ++#define MIGRATE_DISABLE_SET_AFFIN (1<<30) /* Can't make a negative */ ++#define migrate_disabled_updated(p) ((p)->migrate_disable & MIGRATE_DISABLE_SET_AFFIN) ++#define migrate_disable_count(p) ((p)->migrate_disable & ~MIGRATE_DISABLE_SET_AFFIN) ++ ++static inline void update_migrate_disable(struct task_struct *p) ++{ ++ const struct cpumask *mask; ++ ++ if (likely(!p->migrate_disable)) ++ return; ++ ++ /* Did we already update affinity? */ ++ if (unlikely(migrate_disabled_updated(p))) ++ return; ++ ++ /* ++ * Since this is always current we can get away with only locking ++ * rq->lock, the ->cpus_allowed value can normally only be changed ++ * while holding both p->pi_lock and rq->lock, but seeing that this ++ * is current, we cannot actually be waking up, so all code that ++ * relies on serialization against p->pi_lock is out of scope. ++ * ++ * Having rq->lock serializes us against things like ++ * set_cpus_allowed_ptr() that can still happen concurrently. ++ */ ++ mask = tsk_cpus_allowed(p); ++ ++ if (p->sched_class->set_cpus_allowed) ++ p->sched_class->set_cpus_allowed(p, mask); ++ /* mask==cpumask_of(task_cpu(p)) which has a cpumask_weight==1 */ ++ p->nr_cpus_allowed = 1; ++ ++ /* Let migrate_enable know to fix things back up */ ++ p->migrate_disable |= MIGRATE_DISABLE_SET_AFFIN; ++} ++ ++void migrate_disable(void) ++{ ++ struct task_struct *p = current; ++ ++ if (in_atomic()) { ++#ifdef CONFIG_SCHED_DEBUG ++ p->migrate_disable_atomic++; ++#endif ++ return; ++ } ++ ++#ifdef CONFIG_SCHED_DEBUG ++ if (unlikely(p->migrate_disable_atomic)) { ++ tracing_off(); ++ WARN_ON_ONCE(1); ++ } ++#endif ++ ++ if (p->migrate_disable) { ++ p->migrate_disable++; ++ return; ++ } ++ ++ preempt_disable(); ++ preempt_lazy_disable(); ++ pin_current_cpu(); ++ p->migrate_disable = 1; ++ preempt_enable(); ++} ++EXPORT_SYMBOL(migrate_disable); ++ ++void migrate_enable(void) ++{ ++ struct task_struct *p = current; ++ const struct cpumask *mask; ++ unsigned long flags; ++ struct rq *rq; ++ ++ if (in_atomic()) { ++#ifdef CONFIG_SCHED_DEBUG ++ p->migrate_disable_atomic--; ++#endif ++ return; ++ } ++ ++#ifdef CONFIG_SCHED_DEBUG ++ if (unlikely(p->migrate_disable_atomic)) { ++ tracing_off(); ++ WARN_ON_ONCE(1); ++ } ++#endif ++ WARN_ON_ONCE(p->migrate_disable <= 0); ++ ++ if (migrate_disable_count(p) > 1) { ++ p->migrate_disable--; ++ return; ++ } ++ ++ preempt_disable(); ++ if (unlikely(migrate_disabled_updated(p))) { ++ /* ++ * Undo whatever update_migrate_disable() did, also see there ++ * about locking. ++ */ ++ rq = this_rq(); ++ raw_spin_lock_irqsave(&rq->lock, flags); ++ ++ /* ++ * Clearing migrate_disable causes tsk_cpus_allowed to ++ * show the tasks original cpu affinity. ++ */ ++ p->migrate_disable = 0; ++ mask = tsk_cpus_allowed(p); ++ if (p->sched_class->set_cpus_allowed) ++ p->sched_class->set_cpus_allowed(p, mask); ++ p->nr_cpus_allowed = cpumask_weight(mask); ++ raw_spin_unlock_irqrestore(&rq->lock, flags); ++ } else ++ p->migrate_disable = 0; ++ ++ unpin_current_cpu(); ++ preempt_enable(); ++ preempt_lazy_enable(); ++} ++EXPORT_SYMBOL(migrate_enable); ++#else ++static inline void update_migrate_disable(struct task_struct *p) { } ++#define migrate_disabled_updated(p) 0 ++#endif ++ + /* + * Pick up the highest-prio task: + */ +@@ -2799,6 +2993,8 @@ + smp_mb__before_spinlock(); + raw_spin_lock_irq(&rq->lock); + ++ update_migrate_disable(prev); ++ + switch_count = &prev->nivcsw; + if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { + if (unlikely(signal_pending_state(prev->state, prev))) { +@@ -2806,19 +3002,6 @@ + } else { + deactivate_task(rq, prev, DEQUEUE_SLEEP); + prev->on_rq = 0; +- +- /* +- * If a worker went to sleep, notify and ask workqueue +- * whether it wants to wake up a task to maintain +- * concurrency. +- */ +- if (prev->flags & PF_WQ_WORKER) { +- struct task_struct *to_wakeup; +- +- to_wakeup = wq_worker_sleeping(prev, cpu); +- if (to_wakeup) +- try_to_wake_up_local(to_wakeup); +- } + } + switch_count = &prev->nvcsw; + } +@@ -2828,6 +3011,7 @@ + + next = pick_next_task(rq, prev); + clear_tsk_need_resched(prev); ++ clear_tsk_need_resched_lazy(prev); + clear_preempt_need_resched(); + rq->skip_clock_update = 0; + +@@ -2857,9 +3041,20 @@ + + static inline void sched_submit_work(struct task_struct *tsk) + { +- if (!tsk->state || tsk_is_pi_blocked(tsk)) ++ if (!tsk->state) + return; + /* ++ * If a worker went to sleep, notify and ask workqueue whether ++ * it wants to wake up a task to maintain concurrency. ++ */ ++ if (tsk->flags & PF_WQ_WORKER) ++ wq_worker_sleeping(tsk); ++ ++ ++ if (tsk_is_pi_blocked(tsk)) ++ return; ++ ++ /* + * If we are going to sleep and we have plugged IO queued, + * make sure to submit it to avoid deadlocks. + */ +@@ -2867,12 +3062,19 @@ + blk_schedule_flush_plug(tsk); + } + ++static inline void sched_update_worker(struct task_struct *tsk) ++{ ++ if (tsk->flags & PF_WQ_WORKER) ++ wq_worker_running(tsk); ++} ++ + asmlinkage __visible void __sched schedule(void) + { + struct task_struct *tsk = current; + + sched_submit_work(tsk); + __schedule(); ++ sched_update_worker(tsk); + } + EXPORT_SYMBOL(schedule); + +@@ -2922,9 +3124,26 @@ + if (likely(!preemptible())) + return; + ++#ifdef CONFIG_PREEMPT_LAZY ++ /* ++ * Check for lazy preemption ++ */ ++ if (current_thread_info()->preempt_lazy_count && ++ !test_thread_flag(TIF_NEED_RESCHED)) ++ return; ++#endif + do { + __preempt_count_add(PREEMPT_ACTIVE); ++ /* ++ * The add/subtract must not be traced by the function ++ * tracer. But we still want to account for the ++ * preempt off latency tracer. Since the _notrace versions ++ * of add/subtract skip the accounting for latency tracer ++ * we must force it manually. ++ */ ++ start_critical_timings(); + __schedule(); ++ stop_critical_timings(); + __preempt_count_sub(PREEMPT_ACTIVE); + + /* +@@ -3097,6 +3316,8 @@ + } else { + if (dl_prio(oldprio)) + p->dl.dl_boosted = 0; ++ if (rt_prio(oldprio)) ++ p->rt.timeout = 0; + p->sched_class = &fair_sched_class; + } + +@@ -4234,9 +4455,16 @@ + + static void __cond_resched(void) + { +- __preempt_count_add(PREEMPT_ACTIVE); +- __schedule(); +- __preempt_count_sub(PREEMPT_ACTIVE); ++ do { ++ __preempt_count_add(PREEMPT_ACTIVE); ++ __schedule(); ++ __preempt_count_sub(PREEMPT_ACTIVE); ++ /* ++ * Check again in case we missed a preemption ++ * opportunity between schedule and now. ++ */ ++ barrier(); ++ } while (need_resched()); + } + + int __sched _cond_resched(void) +@@ -4277,6 +4505,7 @@ + } + EXPORT_SYMBOL(__cond_resched_lock); + ++#ifndef CONFIG_PREEMPT_RT_FULL + int __sched __cond_resched_softirq(void) + { + BUG_ON(!in_softirq()); +@@ -4290,6 +4519,7 @@ + return 0; + } + EXPORT_SYMBOL(__cond_resched_softirq); ++#endif + + /** + * yield - yield the current processor to other threads. +@@ -4651,7 +4881,9 @@ + + /* Set the preempt count _outside_ the spinlocks! */ + init_idle_preempt_count(idle, cpu); +- ++#ifdef CONFIG_HAVE_PREEMPT_LAZY ++ task_thread_info(idle)->preempt_lazy_count = 0; ++#endif + /* + * The idle tasks have their own, simple scheduling class: + */ +@@ -4693,11 +4925,91 @@ + + void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) + { +- if (p->sched_class && p->sched_class->set_cpus_allowed) +- p->sched_class->set_cpus_allowed(p, new_mask); ++ if (!migrate_disabled_updated(p)) { ++ if (p->sched_class && p->sched_class->set_cpus_allowed) ++ p->sched_class->set_cpus_allowed(p, new_mask); ++ p->nr_cpus_allowed = cpumask_weight(new_mask); ++ } + + cpumask_copy(&p->cpus_allowed, new_mask); +- p->nr_cpus_allowed = cpumask_weight(new_mask); ++} ++ ++static DEFINE_PER_CPU(struct cpumask, sched_cpumasks); ++static DEFINE_MUTEX(sched_down_mutex); ++static cpumask_t sched_down_cpumask; ++ ++void tell_sched_cpu_down_begin(int cpu) ++{ ++ mutex_lock(&sched_down_mutex); ++ cpumask_set_cpu(cpu, &sched_down_cpumask); ++ mutex_unlock(&sched_down_mutex); ++} ++ ++void tell_sched_cpu_down_done(int cpu) ++{ ++ mutex_lock(&sched_down_mutex); ++ cpumask_clear_cpu(cpu, &sched_down_cpumask); ++ mutex_unlock(&sched_down_mutex); ++} ++ ++/** ++ * migrate_me - try to move the current task off this cpu ++ * ++ * Used by the pin_current_cpu() code to try to get tasks ++ * to move off the current CPU as it is going down. ++ * It will only move the task if the task isn't pinned to ++ * the CPU (with migrate_disable, affinity or NO_SETAFFINITY) ++ * and the task has to be in a RUNNING state. Otherwise the ++ * movement of the task will wake it up (change its state ++ * to running) when the task did not expect it. ++ * ++ * Returns 1 if it succeeded in moving the current task ++ * 0 otherwise. ++ */ ++int migrate_me(void) ++{ ++ struct task_struct *p = current; ++ struct migration_arg arg; ++ struct cpumask *cpumask; ++ struct cpumask *mask; ++ unsigned long flags; ++ unsigned int dest_cpu; ++ struct rq *rq; ++ ++ /* ++ * We can not migrate tasks bounded to a CPU or tasks not ++ * running. The movement of the task will wake it up. ++ */ ++ if (p->flags & PF_NO_SETAFFINITY || p->state) ++ return 0; ++ ++ mutex_lock(&sched_down_mutex); ++ rq = task_rq_lock(p, &flags); ++ ++ cpumask = &__get_cpu_var(sched_cpumasks); ++ mask = &p->cpus_allowed; ++ ++ cpumask_andnot(cpumask, mask, &sched_down_cpumask); ++ ++ if (!cpumask_weight(cpumask)) { ++ /* It's only on this CPU? */ ++ task_rq_unlock(rq, p, &flags); ++ mutex_unlock(&sched_down_mutex); ++ return 0; ++ } ++ ++ dest_cpu = cpumask_any_and(cpu_active_mask, cpumask); ++ ++ arg.task = p; ++ arg.dest_cpu = dest_cpu; ++ ++ task_rq_unlock(rq, p, &flags); ++ ++ stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); ++ tlb_migrate_finish(p->mm); ++ mutex_unlock(&sched_down_mutex); ++ ++ return 1; + } + + /* +@@ -4743,7 +5055,7 @@ + do_set_cpus_allowed(p, new_mask); + + /* Can the task run on the task's current CPU? If so, we're done */ +- if (cpumask_test_cpu(task_cpu(p), new_mask)) ++ if (cpumask_test_cpu(task_cpu(p), new_mask) || __migrate_disabled(p)) + goto out; + + dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); +@@ -4883,6 +5195,8 @@ + + #ifdef CONFIG_HOTPLUG_CPU + ++static DEFINE_PER_CPU(struct mm_struct *, idle_last_mm); ++ + /* + * Ensures that the idle task is using init_mm right before its cpu goes + * offline. +@@ -4897,7 +5211,11 @@ + switch_mm(mm, &init_mm, current); + finish_arch_post_lock_switch(); + } +- mmdrop(mm); ++ /* ++ * Defer the cleanup to an alive cpu. On RT we can neither ++ * call mmdrop() nor mmdrop_delayed() from here. ++ */ ++ per_cpu(idle_last_mm, smp_processor_id()) = mm; + } + + /* +@@ -5240,6 +5558,10 @@ + + case CPU_DEAD: + calc_load_migrate(rq); ++ if (per_cpu(idle_last_mm, cpu)) { ++ mmdrop(per_cpu(idle_last_mm, cpu)); ++ per_cpu(idle_last_mm, cpu) = NULL; ++ } + break; + #endif + } +@@ -7181,7 +7503,8 @@ + #ifdef CONFIG_DEBUG_ATOMIC_SLEEP + static inline int preempt_count_equals(int preempt_offset) + { +- int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); ++ int nested = (preempt_count() & ~PREEMPT_ACTIVE) + ++ sched_rcu_preempt_depth(); + + return (nested == preempt_offset); + } +diff -Nur linux-3.18.12.orig/kernel/sched/cputime.c linux-3.18.12/kernel/sched/cputime.c +--- linux-3.18.12.orig/kernel/sched/cputime.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/sched/cputime.c 2015-04-26 13:32:22.443684003 -0500 +@@ -675,37 +675,45 @@ + + void vtime_account_system(struct task_struct *tsk) + { +- write_seqlock(&tsk->vtime_seqlock); ++ raw_spin_lock(&tsk->vtime_lock); ++ write_seqcount_begin(&tsk->vtime_seq); + __vtime_account_system(tsk); +- write_sequnlock(&tsk->vtime_seqlock); ++ write_seqcount_end(&tsk->vtime_seq); ++ raw_spin_unlock(&tsk->vtime_lock); + } + + void vtime_gen_account_irq_exit(struct task_struct *tsk) + { +- write_seqlock(&tsk->vtime_seqlock); ++ raw_spin_lock(&tsk->vtime_lock); ++ write_seqcount_begin(&tsk->vtime_seq); + __vtime_account_system(tsk); + if (context_tracking_in_user()) + tsk->vtime_snap_whence = VTIME_USER; +- write_sequnlock(&tsk->vtime_seqlock); ++ write_seqcount_end(&tsk->vtime_seq); ++ raw_spin_unlock(&tsk->vtime_lock); + } + + void vtime_account_user(struct task_struct *tsk) + { + cputime_t delta_cpu; + +- write_seqlock(&tsk->vtime_seqlock); ++ raw_spin_lock(&tsk->vtime_lock); ++ write_seqcount_begin(&tsk->vtime_seq); + delta_cpu = get_vtime_delta(tsk); + tsk->vtime_snap_whence = VTIME_SYS; + account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu)); +- write_sequnlock(&tsk->vtime_seqlock); ++ write_seqcount_end(&tsk->vtime_seq); ++ raw_spin_unlock(&tsk->vtime_lock); + } + + void vtime_user_enter(struct task_struct *tsk) + { +- write_seqlock(&tsk->vtime_seqlock); ++ raw_spin_lock(&tsk->vtime_lock); ++ write_seqcount_begin(&tsk->vtime_seq); + __vtime_account_system(tsk); + tsk->vtime_snap_whence = VTIME_USER; +- write_sequnlock(&tsk->vtime_seqlock); ++ write_seqcount_end(&tsk->vtime_seq); ++ raw_spin_unlock(&tsk->vtime_lock); + } + + void vtime_guest_enter(struct task_struct *tsk) +@@ -717,19 +725,23 @@ + * synchronization against the reader (task_gtime()) + * that can thus safely catch up with a tickless delta. + */ +- write_seqlock(&tsk->vtime_seqlock); ++ raw_spin_lock(&tsk->vtime_lock); ++ write_seqcount_begin(&tsk->vtime_seq); + __vtime_account_system(tsk); + current->flags |= PF_VCPU; +- write_sequnlock(&tsk->vtime_seqlock); ++ write_seqcount_end(&tsk->vtime_seq); ++ raw_spin_unlock(&tsk->vtime_lock); + } + EXPORT_SYMBOL_GPL(vtime_guest_enter); + + void vtime_guest_exit(struct task_struct *tsk) + { +- write_seqlock(&tsk->vtime_seqlock); ++ raw_spin_lock(&tsk->vtime_lock); ++ write_seqcount_begin(&tsk->vtime_seq); + __vtime_account_system(tsk); + current->flags &= ~PF_VCPU; +- write_sequnlock(&tsk->vtime_seqlock); ++ write_seqcount_end(&tsk->vtime_seq); ++ raw_spin_unlock(&tsk->vtime_lock); + } + EXPORT_SYMBOL_GPL(vtime_guest_exit); + +@@ -742,24 +754,30 @@ + + void arch_vtime_task_switch(struct task_struct *prev) + { +- write_seqlock(&prev->vtime_seqlock); ++ raw_spin_lock(&prev->vtime_lock); ++ write_seqcount_begin(&prev->vtime_seq); + prev->vtime_snap_whence = VTIME_SLEEPING; +- write_sequnlock(&prev->vtime_seqlock); ++ write_seqcount_end(&prev->vtime_seq); ++ raw_spin_unlock(&prev->vtime_lock); + +- write_seqlock(¤t->vtime_seqlock); ++ raw_spin_lock(¤t->vtime_lock); ++ write_seqcount_begin(¤t->vtime_seq); + current->vtime_snap_whence = VTIME_SYS; + current->vtime_snap = sched_clock_cpu(smp_processor_id()); +- write_sequnlock(¤t->vtime_seqlock); ++ write_seqcount_end(¤t->vtime_seq); ++ raw_spin_unlock(¤t->vtime_lock); + } + + void vtime_init_idle(struct task_struct *t, int cpu) + { + unsigned long flags; + +- write_seqlock_irqsave(&t->vtime_seqlock, flags); ++ raw_spin_lock_irqsave(&t->vtime_lock, flags); ++ write_seqcount_begin(&t->vtime_seq); + t->vtime_snap_whence = VTIME_SYS; + t->vtime_snap = sched_clock_cpu(cpu); +- write_sequnlock_irqrestore(&t->vtime_seqlock, flags); ++ write_seqcount_end(&t->vtime_seq); ++ raw_spin_unlock_irqrestore(&t->vtime_lock, flags); + } + + cputime_t task_gtime(struct task_struct *t) +@@ -768,13 +786,13 @@ + cputime_t gtime; + + do { +- seq = read_seqbegin(&t->vtime_seqlock); ++ seq = read_seqcount_begin(&t->vtime_seq); + + gtime = t->gtime; + if (t->flags & PF_VCPU) + gtime += vtime_delta(t); + +- } while (read_seqretry(&t->vtime_seqlock, seq)); ++ } while (read_seqcount_retry(&t->vtime_seq, seq)); + + return gtime; + } +@@ -797,7 +815,7 @@ + *udelta = 0; + *sdelta = 0; + +- seq = read_seqbegin(&t->vtime_seqlock); ++ seq = read_seqcount_begin(&t->vtime_seq); + + if (u_dst) + *u_dst = *u_src; +@@ -821,7 +839,7 @@ + if (t->vtime_snap_whence == VTIME_SYS) + *sdelta = delta; + } +- } while (read_seqretry(&t->vtime_seqlock, seq)); ++ } while (read_seqcount_retry(&t->vtime_seq, seq)); + } + + +diff -Nur linux-3.18.12.orig/kernel/sched/deadline.c linux-3.18.12/kernel/sched/deadline.c +--- linux-3.18.12.orig/kernel/sched/deadline.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/sched/deadline.c 2015-04-26 13:32:22.447684003 -0500 +@@ -570,6 +570,7 @@ + + hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + timer->function = dl_task_timer; ++ timer->irqsafe = 1; + } + + static +diff -Nur linux-3.18.12.orig/kernel/sched/debug.c linux-3.18.12/kernel/sched/debug.c +--- linux-3.18.12.orig/kernel/sched/debug.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/sched/debug.c 2015-04-26 13:32:22.447684003 -0500 +@@ -256,6 +256,9 @@ + P(rt_throttled); + PN(rt_time); + PN(rt_runtime); ++#ifdef CONFIG_SMP ++ P(rt_nr_migratory); ++#endif + + #undef PN + #undef P +@@ -634,6 +637,10 @@ + #endif + P(policy); + P(prio); ++#ifdef CONFIG_PREEMPT_RT_FULL ++ P(migrate_disable); ++#endif ++ P(nr_cpus_allowed); + #undef PN + #undef __PN + #undef P +diff -Nur linux-3.18.12.orig/kernel/sched/fair.c linux-3.18.12/kernel/sched/fair.c +--- linux-3.18.12.orig/kernel/sched/fair.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/sched/fair.c 2015-04-26 13:32:22.447684003 -0500 +@@ -2951,7 +2951,7 @@ + ideal_runtime = sched_slice(cfs_rq, curr); + delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; + if (delta_exec > ideal_runtime) { +- resched_curr(rq_of(cfs_rq)); ++ resched_curr_lazy(rq_of(cfs_rq)); + /* + * The current task ran long enough, ensure it doesn't get + * re-elected due to buddy favours. +@@ -2975,7 +2975,7 @@ + return; + + if (delta > ideal_runtime) +- resched_curr(rq_of(cfs_rq)); ++ resched_curr_lazy(rq_of(cfs_rq)); + } + + static void +@@ -3115,7 +3115,7 @@ + * validating it and just reschedule. + */ + if (queued) { +- resched_curr(rq_of(cfs_rq)); ++ resched_curr_lazy(rq_of(cfs_rq)); + return; + } + /* +@@ -3306,7 +3306,7 @@ + * hierarchy can be throttled + */ + if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) +- resched_curr(rq_of(cfs_rq)); ++ resched_curr_lazy(rq_of(cfs_rq)); + } + + static __always_inline +@@ -3925,7 +3925,7 @@ + + if (delta < 0) { + if (rq->curr == p) +- resched_curr(rq); ++ resched_curr_lazy(rq); + return; + } + hrtick_start(rq, delta); +@@ -4792,7 +4792,7 @@ + return; + + preempt: +- resched_curr(rq); ++ resched_curr_lazy(rq); + /* + * Only set the backward buddy when the current task is still + * on the rq. This can happen when a wakeup gets interleaved +@@ -7576,7 +7576,7 @@ + * 'current' within the tree based on its new key value. + */ + swap(curr->vruntime, se->vruntime); +- resched_curr(rq); ++ resched_curr_lazy(rq); + } + + se->vruntime -= cfs_rq->min_vruntime; +@@ -7601,7 +7601,7 @@ + */ + if (rq->curr == p) { + if (p->prio > oldprio) +- resched_curr(rq); ++ resched_curr_lazy(rq); + } else + check_preempt_curr(rq, p, 0); + } +diff -Nur linux-3.18.12.orig/kernel/sched/features.h linux-3.18.12/kernel/sched/features.h +--- linux-3.18.12.orig/kernel/sched/features.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/sched/features.h 2015-04-26 13:32:22.447684003 -0500 +@@ -50,12 +50,18 @@ + */ + SCHED_FEAT(NONTASK_CAPACITY, true) + ++#ifdef CONFIG_PREEMPT_RT_FULL ++SCHED_FEAT(TTWU_QUEUE, false) ++# ifdef CONFIG_PREEMPT_LAZY ++SCHED_FEAT(PREEMPT_LAZY, true) ++# endif ++#else + /* + * Queue remote wakeups on the target CPU and process them + * using the scheduler IPI. Reduces rq->lock contention/bounces. + */ + SCHED_FEAT(TTWU_QUEUE, true) +- ++#endif + SCHED_FEAT(FORCE_SD_OVERLAP, false) + SCHED_FEAT(RT_RUNTIME_SHARE, true) + SCHED_FEAT(LB_MIN, false) +diff -Nur linux-3.18.12.orig/kernel/sched/Makefile linux-3.18.12/kernel/sched/Makefile +--- linux-3.18.12.orig/kernel/sched/Makefile 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/sched/Makefile 2015-04-26 13:32:22.443684003 -0500 +@@ -13,7 +13,7 @@ + + obj-y += core.o proc.o clock.o cputime.o + obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o +-obj-y += wait.o completion.o idle.o ++obj-y += wait.o wait-simple.o work-simple.o completion.o idle.o + obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o + obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o + obj-$(CONFIG_SCHEDSTATS) += stats.o +diff -Nur linux-3.18.12.orig/kernel/sched/rt.c linux-3.18.12/kernel/sched/rt.c +--- linux-3.18.12.orig/kernel/sched/rt.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/sched/rt.c 2015-04-26 13:32:22.447684003 -0500 +@@ -43,6 +43,7 @@ + + hrtimer_init(&rt_b->rt_period_timer, + CLOCK_MONOTONIC, HRTIMER_MODE_REL); ++ rt_b->rt_period_timer.irqsafe = 1; + rt_b->rt_period_timer.function = sched_rt_period_timer; + } + +diff -Nur linux-3.18.12.orig/kernel/sched/sched.h linux-3.18.12/kernel/sched/sched.h +--- linux-3.18.12.orig/kernel/sched/sched.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/sched/sched.h 2015-04-26 13:32:22.447684003 -0500 +@@ -1018,6 +1018,7 @@ + #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ + #define WF_FORK 0x02 /* child wakeup after fork */ + #define WF_MIGRATED 0x4 /* internal use, task got migrated */ ++#define WF_LOCK_SLEEPER 0x08 /* wakeup spinlock "sleeper" */ + + /* + * To aid in avoiding the subversion of "niceness" due to uneven distribution +@@ -1210,6 +1211,15 @@ + extern void resched_curr(struct rq *rq); + extern void resched_cpu(int cpu); + ++#ifdef CONFIG_PREEMPT_LAZY ++extern void resched_curr_lazy(struct rq *rq); ++#else ++static inline void resched_curr_lazy(struct rq *rq) ++{ ++ resched_curr(rq); ++} ++#endif ++ + extern struct rt_bandwidth def_rt_bandwidth; + extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); + +diff -Nur linux-3.18.12.orig/kernel/sched/wait-simple.c linux-3.18.12/kernel/sched/wait-simple.c +--- linux-3.18.12.orig/kernel/sched/wait-simple.c 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/kernel/sched/wait-simple.c 2015-04-26 13:32:22.447684003 -0500 +@@ -0,0 +1,115 @@ ++/* ++ * Simple waitqueues without fancy flags and callbacks ++ * ++ * (C) 2011 Thomas Gleixner ++ * ++ * Based on kernel/wait.c ++ * ++ * For licencing details see kernel-base/COPYING ++ */ ++#include ++#include ++#include ++#include ++ ++/* Adds w to head->list. Must be called with head->lock locked. */ ++static inline void __swait_enqueue(struct swait_head *head, struct swaiter *w) ++{ ++ list_add(&w->node, &head->list); ++ /* We can't let the condition leak before the setting of head */ ++ smp_mb(); ++} ++ ++/* Removes w from head->list. Must be called with head->lock locked. */ ++static inline void __swait_dequeue(struct swaiter *w) ++{ ++ list_del_init(&w->node); ++} ++ ++void __init_swait_head(struct swait_head *head, struct lock_class_key *key) ++{ ++ raw_spin_lock_init(&head->lock); ++ lockdep_set_class(&head->lock, key); ++ INIT_LIST_HEAD(&head->list); ++} ++EXPORT_SYMBOL(__init_swait_head); ++ ++void swait_prepare_locked(struct swait_head *head, struct swaiter *w) ++{ ++ w->task = current; ++ if (list_empty(&w->node)) ++ __swait_enqueue(head, w); ++} ++ ++void swait_prepare(struct swait_head *head, struct swaiter *w, int state) ++{ ++ unsigned long flags; ++ ++ raw_spin_lock_irqsave(&head->lock, flags); ++ swait_prepare_locked(head, w); ++ __set_current_state(state); ++ raw_spin_unlock_irqrestore(&head->lock, flags); ++} ++EXPORT_SYMBOL(swait_prepare); ++ ++void swait_finish_locked(struct swait_head *head, struct swaiter *w) ++{ ++ __set_current_state(TASK_RUNNING); ++ if (w->task) ++ __swait_dequeue(w); ++} ++ ++void swait_finish(struct swait_head *head, struct swaiter *w) ++{ ++ unsigned long flags; ++ ++ __set_current_state(TASK_RUNNING); ++ if (w->task) { ++ raw_spin_lock_irqsave(&head->lock, flags); ++ __swait_dequeue(w); ++ raw_spin_unlock_irqrestore(&head->lock, flags); ++ } ++} ++EXPORT_SYMBOL(swait_finish); ++ ++unsigned int ++__swait_wake_locked(struct swait_head *head, unsigned int state, unsigned int num) ++{ ++ struct swaiter *curr, *next; ++ int woken = 0; ++ ++ list_for_each_entry_safe(curr, next, &head->list, node) { ++ if (wake_up_state(curr->task, state)) { ++ __swait_dequeue(curr); ++ /* ++ * The waiting task can free the waiter as ++ * soon as curr->task = NULL is written, ++ * without taking any locks. A memory barrier ++ * is required here to prevent the following ++ * store to curr->task from getting ahead of ++ * the dequeue operation. ++ */ ++ smp_wmb(); ++ curr->task = NULL; ++ if (++woken == num) ++ break; ++ } ++ } ++ return woken; ++} ++ ++unsigned int ++__swait_wake(struct swait_head *head, unsigned int state, unsigned int num) ++{ ++ unsigned long flags; ++ int woken; ++ ++ if (!swaitqueue_active(head)) ++ return 0; ++ ++ raw_spin_lock_irqsave(&head->lock, flags); ++ woken = __swait_wake_locked(head, state, num); ++ raw_spin_unlock_irqrestore(&head->lock, flags); ++ return woken; ++} ++EXPORT_SYMBOL(__swait_wake); +diff -Nur linux-3.18.12.orig/kernel/sched/work-simple.c linux-3.18.12/kernel/sched/work-simple.c +--- linux-3.18.12.orig/kernel/sched/work-simple.c 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/kernel/sched/work-simple.c 2015-04-26 13:32:22.447684003 -0500 +@@ -0,0 +1,172 @@ ++/* ++ * Copyright (C) 2014 BMW Car IT GmbH, Daniel Wagner daniel.wagner@bmw-carit.de ++ * ++ * Provides a framework for enqueuing callbacks from irq context ++ * PREEMPT_RT_FULL safe. The callbacks are executed in kthread context. ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++ ++#define SWORK_EVENT_PENDING (1 << 0) ++ ++static DEFINE_MUTEX(worker_mutex); ++static struct sworker *glob_worker; ++ ++struct sworker { ++ struct list_head events; ++ struct swait_head wq; ++ ++ raw_spinlock_t lock; ++ ++ struct task_struct *task; ++ int refs; ++}; ++ ++static bool swork_readable(struct sworker *worker) ++{ ++ bool r; ++ ++ if (kthread_should_stop()) ++ return true; ++ ++ raw_spin_lock_irq(&worker->lock); ++ r = !list_empty(&worker->events); ++ raw_spin_unlock_irq(&worker->lock); ++ ++ return r; ++} ++ ++static int swork_kthread(void *arg) ++{ ++ struct sworker *worker = arg; ++ ++ for (;;) { ++ swait_event_interruptible(worker->wq, ++ swork_readable(worker)); ++ if (kthread_should_stop()) ++ break; ++ ++ raw_spin_lock_irq(&worker->lock); ++ while (!list_empty(&worker->events)) { ++ struct swork_event *sev; ++ ++ sev = list_first_entry(&worker->events, ++ struct swork_event, item); ++ list_del(&sev->item); ++ raw_spin_unlock_irq(&worker->lock); ++ ++ WARN_ON_ONCE(!test_and_clear_bit(SWORK_EVENT_PENDING, ++ &sev->flags)); ++ sev->func(sev); ++ raw_spin_lock_irq(&worker->lock); ++ } ++ raw_spin_unlock_irq(&worker->lock); ++ } ++ return 0; ++} ++ ++static struct sworker *swork_create(void) ++{ ++ struct sworker *worker; ++ ++ worker = kzalloc(sizeof(*worker), GFP_KERNEL); ++ if (!worker) ++ return ERR_PTR(-ENOMEM); ++ ++ INIT_LIST_HEAD(&worker->events); ++ raw_spin_lock_init(&worker->lock); ++ init_swait_head(&worker->wq); ++ ++ worker->task = kthread_run(swork_kthread, worker, "kswork"); ++ if (IS_ERR(worker->task)) { ++ kfree(worker); ++ return ERR_PTR(-ENOMEM); ++ } ++ ++ return worker; ++} ++ ++static void swork_destroy(struct sworker *worker) ++{ ++ kthread_stop(worker->task); ++ ++ WARN_ON(!list_empty(&worker->events)); ++ kfree(worker); ++} ++ ++/** ++ * swork_queue - queue swork ++ * ++ * Returns %false if @work was already on a queue, %true otherwise. ++ * ++ * The work is queued and processed on a random CPU ++ */ ++bool swork_queue(struct swork_event *sev) ++{ ++ unsigned long flags; ++ ++ if (test_and_set_bit(SWORK_EVENT_PENDING, &sev->flags)) ++ return false; ++ ++ raw_spin_lock_irqsave(&glob_worker->lock, flags); ++ list_add_tail(&sev->item, &glob_worker->events); ++ raw_spin_unlock_irqrestore(&glob_worker->lock, flags); ++ ++ swait_wake(&glob_worker->wq); ++ return true; ++} ++EXPORT_SYMBOL_GPL(swork_queue); ++ ++/** ++ * swork_get - get an instance of the sworker ++ * ++ * Returns an negative error code if the initialization if the worker did not ++ * work, %0 otherwise. ++ * ++ */ ++int swork_get(void) ++{ ++ struct sworker *worker; ++ ++ mutex_lock(&worker_mutex); ++ if (!glob_worker) { ++ worker = swork_create(); ++ if (IS_ERR(worker)) { ++ mutex_unlock(&worker_mutex); ++ return -ENOMEM; ++ } ++ ++ glob_worker = worker; ++ } ++ ++ glob_worker->refs++; ++ mutex_unlock(&worker_mutex); ++ ++ return 0; ++} ++EXPORT_SYMBOL_GPL(swork_get); ++ ++/** ++ * swork_put - puts an instance of the sworker ++ * ++ * Will destroy the sworker thread. This function must not be called until all ++ * queued events have been completed. ++ */ ++void swork_put(void) ++{ ++ mutex_lock(&worker_mutex); ++ ++ glob_worker->refs--; ++ if (glob_worker->refs > 0) ++ goto out; ++ ++ swork_destroy(glob_worker); ++ glob_worker = NULL; ++out: ++ mutex_unlock(&worker_mutex); ++} ++EXPORT_SYMBOL_GPL(swork_put); +diff -Nur linux-3.18.12.orig/kernel/signal.c linux-3.18.12/kernel/signal.c +--- linux-3.18.12.orig/kernel/signal.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/signal.c 2015-04-26 13:32:22.447684003 -0500 +@@ -14,6 +14,7 @@ + #include + #include + #include ++#include + #include + #include + #include +@@ -352,13 +353,45 @@ + return false; + } + ++#ifdef __HAVE_ARCH_CMPXCHG ++static inline struct sigqueue *get_task_cache(struct task_struct *t) ++{ ++ struct sigqueue *q = t->sigqueue_cache; ++ ++ if (cmpxchg(&t->sigqueue_cache, q, NULL) != q) ++ return NULL; ++ return q; ++} ++ ++static inline int put_task_cache(struct task_struct *t, struct sigqueue *q) ++{ ++ if (cmpxchg(&t->sigqueue_cache, NULL, q) == NULL) ++ return 0; ++ return 1; ++} ++ ++#else ++ ++static inline struct sigqueue *get_task_cache(struct task_struct *t) ++{ ++ return NULL; ++} ++ ++static inline int put_task_cache(struct task_struct *t, struct sigqueue *q) ++{ ++ return 1; ++} ++ ++#endif ++ + /* + * allocate a new signal queue record + * - this may be called without locks if and only if t == current, otherwise an + * appropriate lock must be held to stop the target task from exiting + */ + static struct sigqueue * +-__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) ++__sigqueue_do_alloc(int sig, struct task_struct *t, gfp_t flags, ++ int override_rlimit, int fromslab) + { + struct sigqueue *q = NULL; + struct user_struct *user; +@@ -375,7 +408,10 @@ + if (override_rlimit || + atomic_read(&user->sigpending) <= + task_rlimit(t, RLIMIT_SIGPENDING)) { +- q = kmem_cache_alloc(sigqueue_cachep, flags); ++ if (!fromslab) ++ q = get_task_cache(t); ++ if (!q) ++ q = kmem_cache_alloc(sigqueue_cachep, flags); + } else { + print_dropped_signal(sig); + } +@@ -392,6 +428,13 @@ + return q; + } + ++static struct sigqueue * ++__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, ++ int override_rlimit) ++{ ++ return __sigqueue_do_alloc(sig, t, flags, override_rlimit, 0); ++} ++ + static void __sigqueue_free(struct sigqueue *q) + { + if (q->flags & SIGQUEUE_PREALLOC) +@@ -401,6 +444,21 @@ + kmem_cache_free(sigqueue_cachep, q); + } + ++static void sigqueue_free_current(struct sigqueue *q) ++{ ++ struct user_struct *up; ++ ++ if (q->flags & SIGQUEUE_PREALLOC) ++ return; ++ ++ up = q->user; ++ if (rt_prio(current->normal_prio) && !put_task_cache(current, q)) { ++ atomic_dec(&up->sigpending); ++ free_uid(up); ++ } else ++ __sigqueue_free(q); ++} ++ + void flush_sigqueue(struct sigpending *queue) + { + struct sigqueue *q; +@@ -414,6 +472,21 @@ + } + + /* ++ * Called from __exit_signal. Flush tsk->pending and ++ * tsk->sigqueue_cache ++ */ ++void flush_task_sigqueue(struct task_struct *tsk) ++{ ++ struct sigqueue *q; ++ ++ flush_sigqueue(&tsk->pending); ++ ++ q = get_task_cache(tsk); ++ if (q) ++ kmem_cache_free(sigqueue_cachep, q); ++} ++ ++/* + * Flush all pending signals for a task. + */ + void __flush_signals(struct task_struct *t) +@@ -565,7 +638,7 @@ + still_pending: + list_del_init(&first->list); + copy_siginfo(info, &first->info); +- __sigqueue_free(first); ++ sigqueue_free_current(first); + } else { + /* + * Ok, it wasn't in the queue. This must be +@@ -611,6 +684,8 @@ + { + int signr; + ++ WARN_ON_ONCE(tsk != current); ++ + /* We only dequeue private signals from ourselves, we don't let + * signalfd steal them + */ +@@ -1207,8 +1282,8 @@ + * We don't want to have recursive SIGSEGV's etc, for example, + * that is why we also clear SIGNAL_UNKILLABLE. + */ +-int +-force_sig_info(int sig, struct siginfo *info, struct task_struct *t) ++static int ++do_force_sig_info(int sig, struct siginfo *info, struct task_struct *t) + { + unsigned long int flags; + int ret, blocked, ignored; +@@ -1233,6 +1308,39 @@ + return ret; + } + ++int force_sig_info(int sig, struct siginfo *info, struct task_struct *t) ++{ ++/* ++ * On some archs, PREEMPT_RT has to delay sending a signal from a trap ++ * since it can not enable preemption, and the signal code's spin_locks ++ * turn into mutexes. Instead, it must set TIF_NOTIFY_RESUME which will ++ * send the signal on exit of the trap. ++ */ ++#ifdef ARCH_RT_DELAYS_SIGNAL_SEND ++ if (in_atomic()) { ++ if (WARN_ON_ONCE(t != current)) ++ return 0; ++ if (WARN_ON_ONCE(t->forced_info.si_signo)) ++ return 0; ++ ++ if (is_si_special(info)) { ++ WARN_ON_ONCE(info != SEND_SIG_PRIV); ++ t->forced_info.si_signo = sig; ++ t->forced_info.si_errno = 0; ++ t->forced_info.si_code = SI_KERNEL; ++ t->forced_info.si_pid = 0; ++ t->forced_info.si_uid = 0; ++ } else { ++ t->forced_info = *info; ++ } ++ ++ set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); ++ return 0; ++ } ++#endif ++ return do_force_sig_info(sig, info, t); ++} ++ + /* + * Nuke all other threads in the group. + */ +@@ -1267,12 +1375,12 @@ + * Disable interrupts early to avoid deadlocks. + * See rcu_read_unlock() comment header for details. + */ +- local_irq_save(*flags); ++ local_irq_save_nort(*flags); + rcu_read_lock(); + sighand = rcu_dereference(tsk->sighand); + if (unlikely(sighand == NULL)) { + rcu_read_unlock(); +- local_irq_restore(*flags); ++ local_irq_restore_nort(*flags); + break; + } + +@@ -1283,7 +1391,7 @@ + } + spin_unlock(&sighand->siglock); + rcu_read_unlock(); +- local_irq_restore(*flags); ++ local_irq_restore_nort(*flags); + } + + return sighand; +@@ -1528,7 +1636,8 @@ + */ + struct sigqueue *sigqueue_alloc(void) + { +- struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); ++ /* Preallocated sigqueue objects always from the slabcache ! */ ++ struct sigqueue *q = __sigqueue_do_alloc(-1, current, GFP_KERNEL, 0, 1); + + if (q) + q->flags |= SIGQUEUE_PREALLOC; +@@ -1889,15 +1998,7 @@ + if (gstop_done && ptrace_reparented(current)) + do_notify_parent_cldstop(current, false, why); + +- /* +- * Don't want to allow preemption here, because +- * sys_ptrace() needs this task to be inactive. +- * +- * XXX: implement read_unlock_no_resched(). +- */ +- preempt_disable(); + read_unlock(&tasklist_lock); +- preempt_enable_no_resched(); + freezable_schedule(); + } else { + /* +diff -Nur linux-3.18.12.orig/kernel/softirq.c linux-3.18.12/kernel/softirq.c +--- linux-3.18.12.orig/kernel/softirq.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/softirq.c 2015-04-26 13:32:22.451684003 -0500 +@@ -21,10 +21,12 @@ + #include + #include + #include ++#include + #include + #include + #include + #include ++#include + #include + + #define CREATE_TRACE_POINTS +@@ -62,6 +64,98 @@ + "TASKLET", "SCHED", "HRTIMER", "RCU" + }; + ++#ifdef CONFIG_NO_HZ_COMMON ++# ifdef CONFIG_PREEMPT_RT_FULL ++ ++struct softirq_runner { ++ struct task_struct *runner[NR_SOFTIRQS]; ++}; ++ ++static DEFINE_PER_CPU(struct softirq_runner, softirq_runners); ++ ++static inline void softirq_set_runner(unsigned int sirq) ++{ ++ struct softirq_runner *sr = &__get_cpu_var(softirq_runners); ++ ++ sr->runner[sirq] = current; ++} ++ ++static inline void softirq_clr_runner(unsigned int sirq) ++{ ++ struct softirq_runner *sr = &__get_cpu_var(softirq_runners); ++ ++ sr->runner[sirq] = NULL; ++} ++ ++/* ++ * On preempt-rt a softirq running context might be blocked on a ++ * lock. There might be no other runnable task on this CPU because the ++ * lock owner runs on some other CPU. So we have to go into idle with ++ * the pending bit set. Therefor we need to check this otherwise we ++ * warn about false positives which confuses users and defeats the ++ * whole purpose of this test. ++ * ++ * This code is called with interrupts disabled. ++ */ ++void softirq_check_pending_idle(void) ++{ ++ static int rate_limit; ++ struct softirq_runner *sr = &__get_cpu_var(softirq_runners); ++ u32 warnpending; ++ int i; ++ ++ if (rate_limit >= 10) ++ return; ++ ++ warnpending = local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK; ++ for (i = 0; i < NR_SOFTIRQS; i++) { ++ struct task_struct *tsk = sr->runner[i]; ++ ++ /* ++ * The wakeup code in rtmutex.c wakes up the task ++ * _before_ it sets pi_blocked_on to NULL under ++ * tsk->pi_lock. So we need to check for both: state ++ * and pi_blocked_on. ++ */ ++ if (tsk) { ++ raw_spin_lock(&tsk->pi_lock); ++ if (tsk->pi_blocked_on || tsk->state == TASK_RUNNING) { ++ /* Clear all bits pending in that task */ ++ warnpending &= ~(tsk->softirqs_raised); ++ warnpending &= ~(1 << i); ++ } ++ raw_spin_unlock(&tsk->pi_lock); ++ } ++ } ++ ++ if (warnpending) { ++ printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", ++ warnpending); ++ rate_limit++; ++ } ++} ++# else ++/* ++ * On !PREEMPT_RT we just printk rate limited: ++ */ ++void softirq_check_pending_idle(void) ++{ ++ static int rate_limit; ++ ++ if (rate_limit < 10 && ++ (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { ++ printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", ++ local_softirq_pending()); ++ rate_limit++; ++ } ++} ++# endif ++ ++#else /* !CONFIG_NO_HZ_COMMON */ ++static inline void softirq_set_runner(unsigned int sirq) { } ++static inline void softirq_clr_runner(unsigned int sirq) { } ++#endif ++ + /* + * we cannot loop indefinitely here to avoid userspace starvation, + * but we also don't want to introduce a worst case 1/HZ latency +@@ -77,6 +171,70 @@ + wake_up_process(tsk); + } + ++static void handle_softirq(unsigned int vec_nr) ++{ ++ struct softirq_action *h = softirq_vec + vec_nr; ++ int prev_count; ++ ++ prev_count = preempt_count(); ++ ++ kstat_incr_softirqs_this_cpu(vec_nr); ++ ++ trace_softirq_entry(vec_nr); ++ h->action(h); ++ trace_softirq_exit(vec_nr); ++ if (unlikely(prev_count != preempt_count())) { ++ pr_err("huh, entered softirq %u %s %p with preempt_count %08x, exited with %08x?\n", ++ vec_nr, softirq_to_name[vec_nr], h->action, ++ prev_count, preempt_count()); ++ preempt_count_set(prev_count); ++ } ++} ++ ++#ifndef CONFIG_PREEMPT_RT_FULL ++static inline int ksoftirqd_softirq_pending(void) ++{ ++ return local_softirq_pending(); ++} ++ ++static void handle_pending_softirqs(u32 pending, int need_rcu_bh_qs) ++{ ++ struct softirq_action *h = softirq_vec; ++ int softirq_bit; ++ ++ local_irq_enable(); ++ ++ h = softirq_vec; ++ ++ while ((softirq_bit = ffs(pending))) { ++ unsigned int vec_nr; ++ ++ h += softirq_bit - 1; ++ vec_nr = h - softirq_vec; ++ handle_softirq(vec_nr); ++ ++ h++; ++ pending >>= softirq_bit; ++ } ++ ++ if (need_rcu_bh_qs) ++ rcu_bh_qs(); ++ local_irq_disable(); ++} ++ ++static void run_ksoftirqd(unsigned int cpu) ++{ ++ local_irq_disable(); ++ if (ksoftirqd_softirq_pending()) { ++ __do_softirq(); ++ rcu_note_context_switch(cpu); ++ local_irq_enable(); ++ cond_resched(); ++ return; ++ } ++ local_irq_enable(); ++} ++ + /* + * preempt_count and SOFTIRQ_OFFSET usage: + * - preempt_count is changed by SOFTIRQ_OFFSET on entering or leaving +@@ -228,10 +386,8 @@ + unsigned long end = jiffies + MAX_SOFTIRQ_TIME; + unsigned long old_flags = current->flags; + int max_restart = MAX_SOFTIRQ_RESTART; +- struct softirq_action *h; + bool in_hardirq; + __u32 pending; +- int softirq_bit; + + /* + * Mask out PF_MEMALLOC s current task context is borrowed for the +@@ -250,36 +406,7 @@ + /* Reset the pending bitmask before enabling irqs */ + set_softirq_pending(0); + +- local_irq_enable(); +- +- h = softirq_vec; +- +- while ((softirq_bit = ffs(pending))) { +- unsigned int vec_nr; +- int prev_count; +- +- h += softirq_bit - 1; +- +- vec_nr = h - softirq_vec; +- prev_count = preempt_count(); +- +- kstat_incr_softirqs_this_cpu(vec_nr); +- +- trace_softirq_entry(vec_nr); +- h->action(h); +- trace_softirq_exit(vec_nr); +- if (unlikely(prev_count != preempt_count())) { +- pr_err("huh, entered softirq %u %s %p with preempt_count %08x, exited with %08x?\n", +- vec_nr, softirq_to_name[vec_nr], h->action, +- prev_count, preempt_count()); +- preempt_count_set(prev_count); +- } +- h++; +- pending >>= softirq_bit; +- } +- +- rcu_bh_qs(); +- local_irq_disable(); ++ handle_pending_softirqs(pending, 1); + + pending = local_softirq_pending(); + if (pending) { +@@ -316,6 +443,285 @@ + } + + /* ++ * This function must run with irqs disabled! ++ */ ++void raise_softirq_irqoff(unsigned int nr) ++{ ++ __raise_softirq_irqoff(nr); ++ ++ /* ++ * If we're in an interrupt or softirq, we're done ++ * (this also catches softirq-disabled code). We will ++ * actually run the softirq once we return from ++ * the irq or softirq. ++ * ++ * Otherwise we wake up ksoftirqd to make sure we ++ * schedule the softirq soon. ++ */ ++ if (!in_interrupt()) ++ wakeup_softirqd(); ++} ++ ++void __raise_softirq_irqoff(unsigned int nr) ++{ ++ trace_softirq_raise(nr); ++ or_softirq_pending(1UL << nr); ++} ++ ++static inline void local_bh_disable_nort(void) { local_bh_disable(); } ++static inline void _local_bh_enable_nort(void) { _local_bh_enable(); } ++static void ksoftirqd_set_sched_params(unsigned int cpu) { } ++static void ksoftirqd_clr_sched_params(unsigned int cpu, bool online) { } ++ ++#else /* !PREEMPT_RT_FULL */ ++ ++/* ++ * On RT we serialize softirq execution with a cpu local lock per softirq ++ */ ++static DEFINE_PER_CPU(struct local_irq_lock [NR_SOFTIRQS], local_softirq_locks); ++ ++void __init softirq_early_init(void) ++{ ++ int i; ++ ++ for (i = 0; i < NR_SOFTIRQS; i++) ++ local_irq_lock_init(local_softirq_locks[i]); ++} ++ ++static void lock_softirq(int which) ++{ ++ local_lock(local_softirq_locks[which]); ++} ++ ++static void unlock_softirq(int which) ++{ ++ local_unlock(local_softirq_locks[which]); ++} ++ ++static void do_single_softirq(int which, int need_rcu_bh_qs) ++{ ++ unsigned long old_flags = current->flags; ++ ++ current->flags &= ~PF_MEMALLOC; ++ vtime_account_irq_enter(current); ++ current->flags |= PF_IN_SOFTIRQ; ++ lockdep_softirq_enter(); ++ local_irq_enable(); ++ handle_softirq(which); ++ local_irq_disable(); ++ lockdep_softirq_exit(); ++ current->flags &= ~PF_IN_SOFTIRQ; ++ vtime_account_irq_enter(current); ++ tsk_restore_flags(current, old_flags, PF_MEMALLOC); ++} ++ ++/* ++ * Called with interrupts disabled. Process softirqs which were raised ++ * in current context (or on behalf of ksoftirqd). ++ */ ++static void do_current_softirqs(int need_rcu_bh_qs) ++{ ++ while (current->softirqs_raised) { ++ int i = __ffs(current->softirqs_raised); ++ unsigned int pending, mask = (1U << i); ++ ++ current->softirqs_raised &= ~mask; ++ local_irq_enable(); ++ ++ /* ++ * If the lock is contended, we boost the owner to ++ * process the softirq or leave the critical section ++ * now. ++ */ ++ lock_softirq(i); ++ local_irq_disable(); ++ softirq_set_runner(i); ++ /* ++ * Check with the local_softirq_pending() bits, ++ * whether we need to process this still or if someone ++ * else took care of it. ++ */ ++ pending = local_softirq_pending(); ++ if (pending & mask) { ++ set_softirq_pending(pending & ~mask); ++ do_single_softirq(i, need_rcu_bh_qs); ++ } ++ softirq_clr_runner(i); ++ unlock_softirq(i); ++ WARN_ON(current->softirq_nestcnt != 1); ++ } ++} ++ ++static void __local_bh_disable(void) ++{ ++ if (++current->softirq_nestcnt == 1) ++ migrate_disable(); ++} ++ ++void local_bh_disable(void) ++{ ++ __local_bh_disable(); ++} ++EXPORT_SYMBOL(local_bh_disable); ++ ++void __local_bh_disable_ip(unsigned long ip, unsigned int cnt) ++{ ++ __local_bh_disable(); ++ if (cnt & PREEMPT_CHECK_OFFSET) ++ preempt_disable(); ++} ++ ++static void __local_bh_enable(void) ++{ ++ if (WARN_ON(current->softirq_nestcnt == 0)) ++ return; ++ ++ local_irq_disable(); ++ if (current->softirq_nestcnt == 1 && current->softirqs_raised) ++ do_current_softirqs(1); ++ local_irq_enable(); ++ ++ if (--current->softirq_nestcnt == 0) ++ migrate_enable(); ++} ++ ++void local_bh_enable(void) ++{ ++ __local_bh_enable(); ++} ++EXPORT_SYMBOL(local_bh_enable); ++ ++extern void __local_bh_enable_ip(unsigned long ip, unsigned int cnt) ++{ ++ __local_bh_enable(); ++ if (cnt & PREEMPT_CHECK_OFFSET) ++ preempt_enable(); ++} ++ ++void local_bh_enable_ip(unsigned long ip) ++{ ++ local_bh_enable(); ++} ++EXPORT_SYMBOL(local_bh_enable_ip); ++ ++void _local_bh_enable(void) ++{ ++ if (WARN_ON(current->softirq_nestcnt == 0)) ++ return; ++ if (--current->softirq_nestcnt == 0) ++ migrate_enable(); ++} ++EXPORT_SYMBOL(_local_bh_enable); ++ ++int in_serving_softirq(void) ++{ ++ return current->flags & PF_IN_SOFTIRQ; ++} ++EXPORT_SYMBOL(in_serving_softirq); ++ ++/* Called with preemption disabled */ ++static void run_ksoftirqd(unsigned int cpu) ++{ ++ local_irq_disable(); ++ current->softirq_nestcnt++; ++ ++ do_current_softirqs(1); ++ current->softirq_nestcnt--; ++ rcu_note_context_switch(cpu); ++ local_irq_enable(); ++} ++ ++/* ++ * Called from netif_rx_ni(). Preemption enabled, but migration ++ * disabled. So the cpu can't go away under us. ++ */ ++void thread_do_softirq(void) ++{ ++ if (!in_serving_softirq() && current->softirqs_raised) { ++ current->softirq_nestcnt++; ++ do_current_softirqs(0); ++ current->softirq_nestcnt--; ++ } ++} ++ ++static void do_raise_softirq_irqoff(unsigned int nr) ++{ ++ trace_softirq_raise(nr); ++ or_softirq_pending(1UL << nr); ++ ++ /* ++ * If we are not in a hard interrupt and inside a bh disabled ++ * region, we simply raise the flag on current. local_bh_enable() ++ * will make sure that the softirq is executed. Otherwise we ++ * delegate it to ksoftirqd. ++ */ ++ if (!in_irq() && current->softirq_nestcnt) ++ current->softirqs_raised |= (1U << nr); ++ else if (__this_cpu_read(ksoftirqd)) ++ __this_cpu_read(ksoftirqd)->softirqs_raised |= (1U << nr); ++} ++ ++void __raise_softirq_irqoff(unsigned int nr) ++{ ++ do_raise_softirq_irqoff(nr); ++ if (!in_irq() && !current->softirq_nestcnt) ++ wakeup_softirqd(); ++} ++ ++/* ++ * This function must run with irqs disabled! ++ */ ++void raise_softirq_irqoff(unsigned int nr) ++{ ++ do_raise_softirq_irqoff(nr); ++ ++ /* ++ * If we're in an hard interrupt we let irq return code deal ++ * with the wakeup of ksoftirqd. ++ */ ++ if (in_irq()) ++ return; ++ /* ++ * If we are in thread context but outside of a bh disabled ++ * region, we need to wake ksoftirqd as well. ++ * ++ * CHECKME: Some of the places which do that could be wrapped ++ * into local_bh_disable/enable pairs. Though it's unclear ++ * whether this is worth the effort. To find those places just ++ * raise a WARN() if the condition is met. ++ */ ++ if (!current->softirq_nestcnt) ++ wakeup_softirqd(); ++} ++ ++static inline int ksoftirqd_softirq_pending(void) ++{ ++ return current->softirqs_raised; ++} ++ ++static inline void local_bh_disable_nort(void) { } ++static inline void _local_bh_enable_nort(void) { } ++ ++static inline void ksoftirqd_set_sched_params(unsigned int cpu) ++{ ++ struct sched_param param = { .sched_priority = 1 }; ++ ++ sched_setscheduler(current, SCHED_FIFO, ¶m); ++ /* Take over all pending softirqs when starting */ ++ local_irq_disable(); ++ current->softirqs_raised = local_softirq_pending(); ++ local_irq_enable(); ++} ++ ++static inline void ksoftirqd_clr_sched_params(unsigned int cpu, bool online) ++{ ++ struct sched_param param = { .sched_priority = 0 }; ++ ++ sched_setscheduler(current, SCHED_NORMAL, ¶m); ++} ++ ++#endif /* PREEMPT_RT_FULL */ ++/* + * Enter an interrupt context. + */ + void irq_enter(void) +@@ -326,9 +732,9 @@ + * Prevent raise_softirq from needlessly waking up ksoftirqd + * here, as softirq will be serviced on return from interrupt. + */ +- local_bh_disable(); ++ local_bh_disable_nort(); + tick_irq_enter(); +- _local_bh_enable(); ++ _local_bh_enable_nort(); + } + + __irq_enter(); +@@ -336,6 +742,7 @@ + + static inline void invoke_softirq(void) + { ++#ifndef CONFIG_PREEMPT_RT_FULL + if (!force_irqthreads) { + #ifdef CONFIG_HAVE_IRQ_EXIT_ON_IRQ_STACK + /* +@@ -355,6 +762,15 @@ + } else { + wakeup_softirqd(); + } ++#else /* PREEMPT_RT_FULL */ ++ unsigned long flags; ++ ++ local_irq_save(flags); ++ if (__this_cpu_read(ksoftirqd) && ++ __this_cpu_read(ksoftirqd)->softirqs_raised) ++ wakeup_softirqd(); ++ local_irq_restore(flags); ++#endif + } + + static inline void tick_irq_exit(void) +@@ -391,26 +807,6 @@ + trace_hardirq_exit(); /* must be last! */ + } + +-/* +- * This function must run with irqs disabled! +- */ +-inline void raise_softirq_irqoff(unsigned int nr) +-{ +- __raise_softirq_irqoff(nr); +- +- /* +- * If we're in an interrupt or softirq, we're done +- * (this also catches softirq-disabled code). We will +- * actually run the softirq once we return from +- * the irq or softirq. +- * +- * Otherwise we wake up ksoftirqd to make sure we +- * schedule the softirq soon. +- */ +- if (!in_interrupt()) +- wakeup_softirqd(); +-} +- + void raise_softirq(unsigned int nr) + { + unsigned long flags; +@@ -420,12 +816,6 @@ + local_irq_restore(flags); + } + +-void __raise_softirq_irqoff(unsigned int nr) +-{ +- trace_softirq_raise(nr); +- or_softirq_pending(1UL << nr); +-} +- + void open_softirq(int nr, void (*action)(struct softirq_action *)) + { + softirq_vec[nr].action = action; +@@ -442,15 +832,45 @@ + static DEFINE_PER_CPU(struct tasklet_head, tasklet_vec); + static DEFINE_PER_CPU(struct tasklet_head, tasklet_hi_vec); + ++static void inline ++__tasklet_common_schedule(struct tasklet_struct *t, struct tasklet_head *head, unsigned int nr) ++{ ++ if (tasklet_trylock(t)) { ++again: ++ /* We may have been preempted before tasklet_trylock ++ * and __tasklet_action may have already run. ++ * So double check the sched bit while the takslet ++ * is locked before adding it to the list. ++ */ ++ if (test_bit(TASKLET_STATE_SCHED, &t->state)) { ++ t->next = NULL; ++ *head->tail = t; ++ head->tail = &(t->next); ++ raise_softirq_irqoff(nr); ++ tasklet_unlock(t); ++ } else { ++ /* This is subtle. If we hit the corner case above ++ * It is possible that we get preempted right here, ++ * and another task has successfully called ++ * tasklet_schedule(), then this function, and ++ * failed on the trylock. Thus we must be sure ++ * before releasing the tasklet lock, that the ++ * SCHED_BIT is clear. Otherwise the tasklet ++ * may get its SCHED_BIT set, but not added to the ++ * list ++ */ ++ if (!tasklet_tryunlock(t)) ++ goto again; ++ } ++ } ++} ++ + void __tasklet_schedule(struct tasklet_struct *t) + { + unsigned long flags; + + local_irq_save(flags); +- t->next = NULL; +- *__this_cpu_read(tasklet_vec.tail) = t; +- __this_cpu_write(tasklet_vec.tail, &(t->next)); +- raise_softirq_irqoff(TASKLET_SOFTIRQ); ++ __tasklet_common_schedule(t, &__get_cpu_var(tasklet_vec), TASKLET_SOFTIRQ); + local_irq_restore(flags); + } + EXPORT_SYMBOL(__tasklet_schedule); +@@ -460,10 +880,7 @@ + unsigned long flags; + + local_irq_save(flags); +- t->next = NULL; +- *__this_cpu_read(tasklet_hi_vec.tail) = t; +- __this_cpu_write(tasklet_hi_vec.tail, &(t->next)); +- raise_softirq_irqoff(HI_SOFTIRQ); ++ __tasklet_common_schedule(t, &__get_cpu_var(tasklet_hi_vec), HI_SOFTIRQ); + local_irq_restore(flags); + } + EXPORT_SYMBOL(__tasklet_hi_schedule); +@@ -472,48 +889,116 @@ + { + BUG_ON(!irqs_disabled()); + +- t->next = __this_cpu_read(tasklet_hi_vec.head); +- __this_cpu_write(tasklet_hi_vec.head, t); +- __raise_softirq_irqoff(HI_SOFTIRQ); ++ __tasklet_hi_schedule(t); + } + EXPORT_SYMBOL(__tasklet_hi_schedule_first); + +-static void tasklet_action(struct softirq_action *a) ++void tasklet_enable(struct tasklet_struct *t) + { +- struct tasklet_struct *list; ++ if (!atomic_dec_and_test(&t->count)) ++ return; ++ if (test_and_clear_bit(TASKLET_STATE_PENDING, &t->state)) ++ tasklet_schedule(t); ++} ++EXPORT_SYMBOL(tasklet_enable); + +- local_irq_disable(); +- list = __this_cpu_read(tasklet_vec.head); +- __this_cpu_write(tasklet_vec.head, NULL); +- __this_cpu_write(tasklet_vec.tail, this_cpu_ptr(&tasklet_vec.head)); +- local_irq_enable(); ++void tasklet_hi_enable(struct tasklet_struct *t) ++{ ++ if (!atomic_dec_and_test(&t->count)) ++ return; ++ if (test_and_clear_bit(TASKLET_STATE_PENDING, &t->state)) ++ tasklet_hi_schedule(t); ++} ++EXPORT_SYMBOL(tasklet_hi_enable); ++ ++static void __tasklet_action(struct softirq_action *a, ++ struct tasklet_struct *list) ++{ ++ int loops = 1000000; + + while (list) { + struct tasklet_struct *t = list; + + list = list->next; + +- if (tasklet_trylock(t)) { +- if (!atomic_read(&t->count)) { +- if (!test_and_clear_bit(TASKLET_STATE_SCHED, +- &t->state)) +- BUG(); +- t->func(t->data); +- tasklet_unlock(t); +- continue; +- } +- tasklet_unlock(t); ++ /* ++ * Should always succeed - after a tasklist got on the ++ * list (after getting the SCHED bit set from 0 to 1), ++ * nothing but the tasklet softirq it got queued to can ++ * lock it: ++ */ ++ if (!tasklet_trylock(t)) { ++ WARN_ON(1); ++ continue; + } + +- local_irq_disable(); + t->next = NULL; +- *__this_cpu_read(tasklet_vec.tail) = t; +- __this_cpu_write(tasklet_vec.tail, &(t->next)); +- __raise_softirq_irqoff(TASKLET_SOFTIRQ); +- local_irq_enable(); ++ ++ /* ++ * If we cannot handle the tasklet because it's disabled, ++ * mark it as pending. tasklet_enable() will later ++ * re-schedule the tasklet. ++ */ ++ if (unlikely(atomic_read(&t->count))) { ++out_disabled: ++ /* implicit unlock: */ ++ wmb(); ++ t->state = TASKLET_STATEF_PENDING; ++ continue; ++ } ++ ++ /* ++ * After this point on the tasklet might be rescheduled ++ * on another CPU, but it can only be added to another ++ * CPU's tasklet list if we unlock the tasklet (which we ++ * dont do yet). ++ */ ++ if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) ++ WARN_ON(1); ++ ++again: ++ t->func(t->data); ++ ++ /* ++ * Try to unlock the tasklet. We must use cmpxchg, because ++ * another CPU might have scheduled or disabled the tasklet. ++ * We only allow the STATE_RUN -> 0 transition here. ++ */ ++ while (!tasklet_tryunlock(t)) { ++ /* ++ * If it got disabled meanwhile, bail out: ++ */ ++ if (atomic_read(&t->count)) ++ goto out_disabled; ++ /* ++ * If it got scheduled meanwhile, re-execute ++ * the tasklet function: ++ */ ++ if (test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) ++ goto again; ++ if (!--loops) { ++ printk("hm, tasklet state: %08lx\n", t->state); ++ WARN_ON(1); ++ tasklet_unlock(t); ++ break; ++ } ++ } + } + } + ++static void tasklet_action(struct softirq_action *a) ++{ ++ struct tasklet_struct *list; ++ ++ local_irq_disable(); ++ list = __get_cpu_var(tasklet_vec).head; ++ __get_cpu_var(tasklet_vec).head = NULL; ++ __get_cpu_var(tasklet_vec).tail = &__get_cpu_var(tasklet_vec).head; ++ local_irq_enable(); ++ ++ __tasklet_action(a, list); ++} ++ + static void tasklet_hi_action(struct softirq_action *a) + { + struct tasklet_struct *list; +@@ -524,30 +1009,7 @@ + __this_cpu_write(tasklet_hi_vec.tail, this_cpu_ptr(&tasklet_hi_vec.head)); + local_irq_enable(); + +- while (list) { +- struct tasklet_struct *t = list; +- +- list = list->next; +- +- if (tasklet_trylock(t)) { +- if (!atomic_read(&t->count)) { +- if (!test_and_clear_bit(TASKLET_STATE_SCHED, +- &t->state)) +- BUG(); +- t->func(t->data); +- tasklet_unlock(t); +- continue; +- } +- tasklet_unlock(t); +- } +- +- local_irq_disable(); +- t->next = NULL; +- *__this_cpu_read(tasklet_hi_vec.tail) = t; +- __this_cpu_write(tasklet_hi_vec.tail, &(t->next)); +- __raise_softirq_irqoff(HI_SOFTIRQ); +- local_irq_enable(); +- } ++ __tasklet_action(a, list); + } + + void tasklet_init(struct tasklet_struct *t, +@@ -568,7 +1030,7 @@ + + while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) { + do { +- yield(); ++ msleep(1); + } while (test_bit(TASKLET_STATE_SCHED, &t->state)); + } + tasklet_unlock_wait(t); +@@ -642,26 +1104,26 @@ + open_softirq(HI_SOFTIRQ, tasklet_hi_action); + } + +-static int ksoftirqd_should_run(unsigned int cpu) +-{ +- return local_softirq_pending(); +-} +- +-static void run_ksoftirqd(unsigned int cpu) ++#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT_FULL) ++void tasklet_unlock_wait(struct tasklet_struct *t) + { +- local_irq_disable(); +- if (local_softirq_pending()) { ++ while (test_bit(TASKLET_STATE_RUN, &(t)->state)) { + /* +- * We can safely run softirq on inline stack, as we are not deep +- * in the task stack here. ++ * Hack for now to avoid this busy-loop: + */ +- __do_softirq(); +- rcu_note_context_switch(cpu); +- local_irq_enable(); +- cond_resched(); +- return; ++#ifdef CONFIG_PREEMPT_RT_FULL ++ msleep(1); ++#else ++ barrier(); ++#endif + } +- local_irq_enable(); ++} ++EXPORT_SYMBOL(tasklet_unlock_wait); ++#endif ++ ++static int ksoftirqd_should_run(unsigned int cpu) ++{ ++ return ksoftirqd_softirq_pending(); + } + + #ifdef CONFIG_HOTPLUG_CPU +@@ -743,6 +1205,8 @@ + + static struct smp_hotplug_thread softirq_threads = { + .store = &ksoftirqd, ++ .setup = ksoftirqd_set_sched_params, ++ .cleanup = ksoftirqd_clr_sched_params, + .thread_should_run = ksoftirqd_should_run, + .thread_fn = run_ksoftirqd, + .thread_comm = "ksoftirqd/%u", +diff -Nur linux-3.18.12.orig/kernel/stop_machine.c linux-3.18.12/kernel/stop_machine.c +--- linux-3.18.12.orig/kernel/stop_machine.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/stop_machine.c 2015-04-26 13:32:22.451684003 -0500 +@@ -30,12 +30,12 @@ + atomic_t nr_todo; /* nr left to execute */ + bool executed; /* actually executed? */ + int ret; /* collected return value */ +- struct completion completion; /* fired if nr_todo reaches 0 */ ++ struct task_struct *waiter; /* woken when nr_todo reaches 0 */ + }; + + /* the actual stopper, one per every possible cpu, enabled on online cpus */ + struct cpu_stopper { +- spinlock_t lock; ++ raw_spinlock_t lock; + bool enabled; /* is this stopper enabled? */ + struct list_head works; /* list of pending works */ + }; +@@ -56,7 +56,7 @@ + { + memset(done, 0, sizeof(*done)); + atomic_set(&done->nr_todo, nr_todo); +- init_completion(&done->completion); ++ done->waiter = current; + } + + /* signal completion unless @done is NULL */ +@@ -65,8 +65,10 @@ + if (done) { + if (executed) + done->executed = true; +- if (atomic_dec_and_test(&done->nr_todo)) +- complete(&done->completion); ++ if (atomic_dec_and_test(&done->nr_todo)) { ++ wake_up_process(done->waiter); ++ done->waiter = NULL; ++ } + } + } + +@@ -78,7 +80,7 @@ + + unsigned long flags; + +- spin_lock_irqsave(&stopper->lock, flags); ++ raw_spin_lock_irqsave(&stopper->lock, flags); + + if (stopper->enabled) { + list_add_tail(&work->list, &stopper->works); +@@ -86,7 +88,23 @@ + } else + cpu_stop_signal_done(work->done, false); + +- spin_unlock_irqrestore(&stopper->lock, flags); ++ raw_spin_unlock_irqrestore(&stopper->lock, flags); ++} ++ ++static void wait_for_stop_done(struct cpu_stop_done *done) ++{ ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ while (atomic_read(&done->nr_todo)) { ++ schedule(); ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ } ++ /* ++ * We need to wait until cpu_stop_signal_done() has cleared ++ * done->waiter. ++ */ ++ while (done->waiter) ++ cpu_relax(); ++ set_current_state(TASK_RUNNING); + } + + /** +@@ -120,7 +138,7 @@ + + cpu_stop_init_done(&done, 1); + cpu_stop_queue_work(cpu, &work); +- wait_for_completion(&done.completion); ++ wait_for_stop_done(&done); + return done.executed ? done.ret : -ENOENT; + } + +@@ -248,7 +266,7 @@ + struct irq_cpu_stop_queue_work_info call_args; + struct multi_stop_data msdata; + +- preempt_disable(); ++ preempt_disable_nort(); + msdata = (struct multi_stop_data){ + .fn = fn, + .data = arg, +@@ -281,7 +299,7 @@ + * This relies on the stopper workqueues to be FIFO. + */ + if (!cpu_active(cpu1) || !cpu_active(cpu2)) { +- preempt_enable(); ++ preempt_enable_nort(); + return -ENOENT; + } + +@@ -295,9 +313,9 @@ + &irq_cpu_stop_queue_work, + &call_args, 1); + lg_local_unlock(&stop_cpus_lock); +- preempt_enable(); ++ preempt_enable_nort(); + +- wait_for_completion(&done.completion); ++ wait_for_stop_done(&done); + + return done.executed ? done.ret : -ENOENT; + } +@@ -329,7 +347,7 @@ + + static void queue_stop_cpus_work(const struct cpumask *cpumask, + cpu_stop_fn_t fn, void *arg, +- struct cpu_stop_done *done) ++ struct cpu_stop_done *done, bool inactive) + { + struct cpu_stop_work *work; + unsigned int cpu; +@@ -343,11 +361,13 @@ + } + + /* +- * Disable preemption while queueing to avoid getting +- * preempted by a stopper which might wait for other stoppers +- * to enter @fn which can lead to deadlock. ++ * Make sure that all work is queued on all cpus before ++ * any of the cpus can execute it. + */ +- lg_global_lock(&stop_cpus_lock); ++ if (!inactive) ++ lg_global_lock(&stop_cpus_lock); ++ else ++ lg_global_trylock_relax(&stop_cpus_lock); + for_each_cpu(cpu, cpumask) + cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu)); + lg_global_unlock(&stop_cpus_lock); +@@ -359,8 +379,8 @@ + struct cpu_stop_done done; + + cpu_stop_init_done(&done, cpumask_weight(cpumask)); +- queue_stop_cpus_work(cpumask, fn, arg, &done); +- wait_for_completion(&done.completion); ++ queue_stop_cpus_work(cpumask, fn, arg, &done, false); ++ wait_for_stop_done(&done); + return done.executed ? done.ret : -ENOENT; + } + +@@ -439,9 +459,9 @@ + unsigned long flags; + int run; + +- spin_lock_irqsave(&stopper->lock, flags); ++ raw_spin_lock_irqsave(&stopper->lock, flags); + run = !list_empty(&stopper->works); +- spin_unlock_irqrestore(&stopper->lock, flags); ++ raw_spin_unlock_irqrestore(&stopper->lock, flags); + return run; + } + +@@ -453,13 +473,13 @@ + + repeat: + work = NULL; +- spin_lock_irq(&stopper->lock); ++ raw_spin_lock_irq(&stopper->lock); + if (!list_empty(&stopper->works)) { + work = list_first_entry(&stopper->works, + struct cpu_stop_work, list); + list_del_init(&work->list); + } +- spin_unlock_irq(&stopper->lock); ++ raw_spin_unlock_irq(&stopper->lock); + + if (work) { + cpu_stop_fn_t fn = work->fn; +@@ -467,6 +487,16 @@ + struct cpu_stop_done *done = work->done; + char ksym_buf[KSYM_NAME_LEN] __maybe_unused; + ++ /* ++ * Wait until the stopper finished scheduling on all ++ * cpus ++ */ ++ lg_global_lock(&stop_cpus_lock); ++ /* ++ * Let other cpu threads continue as well ++ */ ++ lg_global_unlock(&stop_cpus_lock); ++ + /* cpu stop callbacks are not allowed to sleep */ + preempt_disable(); + +@@ -481,7 +511,13 @@ + kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL, + ksym_buf), arg); + ++ /* ++ * Make sure that the wakeup and setting done->waiter ++ * to NULL is atomic. ++ */ ++ local_irq_disable(); + cpu_stop_signal_done(done, true); ++ local_irq_enable(); + goto repeat; + } + } +@@ -500,20 +536,20 @@ + unsigned long flags; + + /* drain remaining works */ +- spin_lock_irqsave(&stopper->lock, flags); ++ raw_spin_lock_irqsave(&stopper->lock, flags); + list_for_each_entry(work, &stopper->works, list) + cpu_stop_signal_done(work->done, false); + stopper->enabled = false; +- spin_unlock_irqrestore(&stopper->lock, flags); ++ raw_spin_unlock_irqrestore(&stopper->lock, flags); + } + + static void cpu_stop_unpark(unsigned int cpu) + { + struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); + +- spin_lock_irq(&stopper->lock); ++ raw_spin_lock_irq(&stopper->lock); + stopper->enabled = true; +- spin_unlock_irq(&stopper->lock); ++ raw_spin_unlock_irq(&stopper->lock); + } + + static struct smp_hotplug_thread cpu_stop_threads = { +@@ -535,10 +571,12 @@ + for_each_possible_cpu(cpu) { + struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); + +- spin_lock_init(&stopper->lock); ++ raw_spin_lock_init(&stopper->lock); + INIT_LIST_HEAD(&stopper->works); + } + ++ lg_lock_init(&stop_cpus_lock, "stop_cpus_lock"); ++ + BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); + stop_machine_initialized = true; + return 0; +@@ -634,11 +672,11 @@ + set_state(&msdata, MULTI_STOP_PREPARE); + cpu_stop_init_done(&done, num_active_cpus()); + queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, +- &done); ++ &done, true); + ret = multi_cpu_stop(&msdata); + + /* Busy wait for completion. */ +- while (!completion_done(&done.completion)) ++ while (atomic_read(&done.nr_todo)) + cpu_relax(); + + mutex_unlock(&stop_cpus_mutex); +diff -Nur linux-3.18.12.orig/kernel/time/hrtimer.c linux-3.18.12/kernel/time/hrtimer.c +--- linux-3.18.12.orig/kernel/time/hrtimer.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/hrtimer.c 2015-04-26 13:32:22.451684003 -0500 +@@ -48,11 +48,13 @@ + #include + #include + #include ++#include + #include + + #include + + #include ++#include + + #include "timekeeping.h" + +@@ -568,8 +570,7 @@ + * When the callback is running, we do not reprogram the clock event + * device. The timer callback is either running on a different CPU or + * the callback is executed in the hrtimer_interrupt context. The +- * reprogramming is handled either by the softirq, which called the +- * callback or at the end of the hrtimer_interrupt. ++ * reprogramming is handled at the end of the hrtimer_interrupt. + */ + if (hrtimer_callback_running(timer)) + return 0; +@@ -604,6 +605,9 @@ + return res; + } + ++static void __run_hrtimer(struct hrtimer *timer, ktime_t *now); ++static int hrtimer_rt_defer(struct hrtimer *timer); ++ + /* + * Initialize the high resolution related parts of cpu_base + */ +@@ -613,6 +617,21 @@ + base->hres_active = 0; + } + ++static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, ++ struct hrtimer_clock_base *base, ++ int wakeup) ++{ ++ if (!hrtimer_reprogram(timer, base)) ++ return 0; ++ if (!wakeup) ++ return -ETIME; ++#ifdef CONFIG_PREEMPT_RT_BASE ++ if (!hrtimer_rt_defer(timer)) ++ return -ETIME; ++#endif ++ return 1; ++} ++ + static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) + { + ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; +@@ -678,6 +697,44 @@ + + static DECLARE_WORK(hrtimer_work, clock_was_set_work); + ++#ifdef CONFIG_PREEMPT_RT_FULL ++/* ++ * RT can not call schedule_work from real interrupt context. ++ * Need to make a thread to do the real work. ++ */ ++static struct task_struct *clock_set_delay_thread; ++static bool do_clock_set_delay; ++ ++static int run_clock_set_delay(void *ignore) ++{ ++ while (!kthread_should_stop()) { ++ set_current_state(TASK_INTERRUPTIBLE); ++ if (do_clock_set_delay) { ++ do_clock_set_delay = false; ++ schedule_work(&hrtimer_work); ++ } ++ schedule(); ++ } ++ __set_current_state(TASK_RUNNING); ++ return 0; ++} ++ ++void clock_was_set_delayed(void) ++{ ++ do_clock_set_delay = true; ++ /* Make visible before waking up process */ ++ smp_wmb(); ++ wake_up_process(clock_set_delay_thread); ++} ++ ++static __init int create_clock_set_delay_thread(void) ++{ ++ clock_set_delay_thread = kthread_run(run_clock_set_delay, NULL, "kclksetdelayd"); ++ BUG_ON(!clock_set_delay_thread); ++ return 0; ++} ++early_initcall(create_clock_set_delay_thread); ++#else /* PREEMPT_RT_FULL */ + /* + * Called from timekeeping and resume code to reprogramm the hrtimer + * interrupt device on all cpus. +@@ -686,6 +743,7 @@ + { + schedule_work(&hrtimer_work); + } ++#endif + + #else + +@@ -694,6 +752,13 @@ + static inline int hrtimer_switch_to_hres(void) { return 0; } + static inline void + hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } ++static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, ++ struct hrtimer_clock_base *base, ++ int wakeup) ++{ ++ return 0; ++} ++ + static inline int hrtimer_reprogram(struct hrtimer *timer, + struct hrtimer_clock_base *base) + { +@@ -701,7 +766,6 @@ + } + static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } + static inline void retrigger_next_event(void *arg) { } +- + #endif /* CONFIG_HIGH_RES_TIMERS */ + + /* +@@ -819,6 +883,32 @@ + } + EXPORT_SYMBOL_GPL(hrtimer_forward); + ++#ifdef CONFIG_PREEMPT_RT_BASE ++# define wake_up_timer_waiters(b) wake_up(&(b)->wait) ++ ++/** ++ * hrtimer_wait_for_timer - Wait for a running timer ++ * ++ * @timer: timer to wait for ++ * ++ * The function waits in case the timers callback function is ++ * currently executed on the waitqueue of the timer base. The ++ * waitqueue is woken up after the timer callback function has ++ * finished execution. ++ */ ++void hrtimer_wait_for_timer(const struct hrtimer *timer) ++{ ++ struct hrtimer_clock_base *base = timer->base; ++ ++ if (base && base->cpu_base && !timer->irqsafe) ++ wait_event(base->cpu_base->wait, ++ !(timer->state & HRTIMER_STATE_CALLBACK)); ++} ++ ++#else ++# define wake_up_timer_waiters(b) do { } while (0) ++#endif ++ + /* + * enqueue_hrtimer - internal function to (re)start a timer + * +@@ -862,6 +952,11 @@ + if (!(timer->state & HRTIMER_STATE_ENQUEUED)) + goto out; + ++ if (unlikely(!list_empty(&timer->cb_entry))) { ++ list_del_init(&timer->cb_entry); ++ goto out; ++ } ++ + next_timer = timerqueue_getnext(&base->active); + timerqueue_del(&base->active, &timer->node); + if (&timer->node == next_timer) { +@@ -949,7 +1044,16 @@ + new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); + + timer_stats_hrtimer_set_start_info(timer); ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ { ++ ktime_t now = new_base->get_time(); + ++ if (ktime_to_ns(tim) < ktime_to_ns(now)) ++ timer->praecox = now; ++ else ++ timer->praecox = ktime_set(0, 0); ++ } ++#endif + leftmost = enqueue_hrtimer(timer, new_base); + + if (!leftmost) { +@@ -963,15 +1067,26 @@ + * on dynticks target. + */ + wake_up_nohz_cpu(new_base->cpu_base->cpu); +- } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) && +- hrtimer_reprogram(timer, new_base)) { ++ } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases)) { ++ ++ ret = hrtimer_enqueue_reprogram(timer, new_base, wakeup); ++ if (ret < 0) { ++ /* ++ * In case we failed to reprogram the timer (mostly ++ * because out current timer is already elapsed), ++ * remove it again and report a failure. This avoids ++ * stale base->first entries. ++ */ ++ debug_deactivate(timer); ++ __remove_hrtimer(timer, new_base, ++ timer->state & HRTIMER_STATE_CALLBACK, 0); ++ } else if (ret > 0) { + /* + * Only allow reprogramming if the new base is on this CPU. + * (it might still be on another CPU if the timer was pending) + * + * XXX send_remote_softirq() ? + */ +- if (wakeup) { + /* + * We need to drop cpu_base->lock to avoid a + * lock ordering issue vs. rq->lock. +@@ -979,9 +1094,7 @@ + raw_spin_unlock(&new_base->cpu_base->lock); + raise_softirq_irqoff(HRTIMER_SOFTIRQ); + local_irq_restore(flags); +- return ret; +- } else { +- __raise_softirq_irqoff(HRTIMER_SOFTIRQ); ++ return 0; + } + } + +@@ -1072,7 +1185,7 @@ + + if (ret >= 0) + return ret; +- cpu_relax(); ++ hrtimer_wait_for_timer(timer); + } + } + EXPORT_SYMBOL_GPL(hrtimer_cancel); +@@ -1151,6 +1264,7 @@ + + base = hrtimer_clockid_to_base(clock_id); + timer->base = &cpu_base->clock_base[base]; ++ INIT_LIST_HEAD(&timer->cb_entry); + timerqueue_init(&timer->node); + + #ifdef CONFIG_TIMER_STATS +@@ -1234,6 +1348,126 @@ + timer->state &= ~HRTIMER_STATE_CALLBACK; + } + ++static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer); ++ ++#ifdef CONFIG_PREEMPT_RT_BASE ++static void hrtimer_rt_reprogram(int restart, struct hrtimer *timer, ++ struct hrtimer_clock_base *base) ++{ ++ /* ++ * Note, we clear the callback flag before we requeue the ++ * timer otherwise we trigger the callback_running() check ++ * in hrtimer_reprogram(). ++ */ ++ timer->state &= ~HRTIMER_STATE_CALLBACK; ++ ++ if (restart != HRTIMER_NORESTART) { ++ BUG_ON(hrtimer_active(timer)); ++ /* ++ * Enqueue the timer, if it's the leftmost timer then ++ * we need to reprogram it. ++ */ ++ if (!enqueue_hrtimer(timer, base)) ++ return; ++ ++#ifndef CONFIG_HIGH_RES_TIMERS ++ } ++#else ++ if (base->cpu_base->hres_active && ++ hrtimer_reprogram(timer, base)) ++ goto requeue; ++ ++ } else if (hrtimer_active(timer)) { ++ /* ++ * If the timer was rearmed on another CPU, reprogram ++ * the event device. ++ */ ++ if (&timer->node == base->active.next && ++ base->cpu_base->hres_active && ++ hrtimer_reprogram(timer, base)) ++ goto requeue; ++ } ++ return; ++ ++requeue: ++ /* ++ * Timer is expired. Thus move it from tree to pending list ++ * again. ++ */ ++ __remove_hrtimer(timer, base, timer->state, 0); ++ list_add_tail(&timer->cb_entry, &base->expired); ++#endif ++} ++ ++/* ++ * The changes in mainline which removed the callback modes from ++ * hrtimer are not yet working with -rt. The non wakeup_process() ++ * based callbacks which involve sleeping locks need to be treated ++ * seperately. ++ */ ++static void hrtimer_rt_run_pending(void) ++{ ++ enum hrtimer_restart (*fn)(struct hrtimer *); ++ struct hrtimer_cpu_base *cpu_base; ++ struct hrtimer_clock_base *base; ++ struct hrtimer *timer; ++ int index, restart; ++ ++ local_irq_disable(); ++ cpu_base = &per_cpu(hrtimer_bases, smp_processor_id()); ++ ++ raw_spin_lock(&cpu_base->lock); ++ ++ for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { ++ base = &cpu_base->clock_base[index]; ++ ++ while (!list_empty(&base->expired)) { ++ timer = list_first_entry(&base->expired, ++ struct hrtimer, cb_entry); ++ ++ /* ++ * Same as the above __run_hrtimer function ++ * just we run with interrupts enabled. ++ */ ++ debug_hrtimer_deactivate(timer); ++ __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); ++ timer_stats_account_hrtimer(timer); ++ fn = timer->function; ++ ++ raw_spin_unlock_irq(&cpu_base->lock); ++ restart = fn(timer); ++ raw_spin_lock_irq(&cpu_base->lock); ++ ++ hrtimer_rt_reprogram(restart, timer, base); ++ } ++ } ++ ++ raw_spin_unlock_irq(&cpu_base->lock); ++ ++ wake_up_timer_waiters(cpu_base); ++} ++ ++static int hrtimer_rt_defer(struct hrtimer *timer) ++{ ++ if (timer->irqsafe) ++ return 0; ++ ++ __remove_hrtimer(timer, timer->base, timer->state, 0); ++ list_add_tail(&timer->cb_entry, &timer->base->expired); ++ return 1; ++} ++ ++#else ++ ++static inline void hrtimer_rt_run_pending(void) ++{ ++ hrtimer_peek_ahead_timers(); ++} ++ ++static inline int hrtimer_rt_defer(struct hrtimer *timer) { return 0; } ++ ++#endif ++ + #ifdef CONFIG_HIGH_RES_TIMERS + + /* +@@ -1244,7 +1478,7 @@ + { + struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); + ktime_t expires_next, now, entry_time, delta; +- int i, retries = 0; ++ int i, retries = 0, raise = 0; + + BUG_ON(!cpu_base->hres_active); + cpu_base->nr_events++; +@@ -1279,6 +1513,15 @@ + + timer = container_of(node, struct hrtimer, node); + ++ trace_hrtimer_interrupt(raw_smp_processor_id(), ++ ktime_to_ns(ktime_sub(ktime_to_ns(timer->praecox) ? ++ timer->praecox : hrtimer_get_expires(timer), ++ basenow)), ++ current, ++ timer->function == hrtimer_wakeup ? ++ container_of(timer, struct hrtimer_sleeper, ++ timer)->task : NULL); ++ + /* + * The immediate goal for using the softexpires is + * minimizing wakeups, not running timers at the +@@ -1304,7 +1547,10 @@ + break; + } + +- __run_hrtimer(timer, &basenow); ++ if (!hrtimer_rt_defer(timer)) ++ __run_hrtimer(timer, &basenow); ++ else ++ raise = 1; + } + } + +@@ -1319,7 +1565,7 @@ + if (expires_next.tv64 == KTIME_MAX || + !tick_program_event(expires_next, 0)) { + cpu_base->hang_detected = 0; +- return; ++ goto out; + } + + /* +@@ -1363,6 +1609,9 @@ + tick_program_event(expires_next, 1); + printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", + ktime_to_ns(delta)); ++out: ++ if (raise) ++ raise_softirq_irqoff(HRTIMER_SOFTIRQ); + } + + /* +@@ -1398,18 +1647,18 @@ + __hrtimer_peek_ahead_timers(); + local_irq_restore(flags); + } +- +-static void run_hrtimer_softirq(struct softirq_action *h) +-{ +- hrtimer_peek_ahead_timers(); +-} +- + #else /* CONFIG_HIGH_RES_TIMERS */ + + static inline void __hrtimer_peek_ahead_timers(void) { } + + #endif /* !CONFIG_HIGH_RES_TIMERS */ + ++ ++static void run_hrtimer_softirq(struct softirq_action *h) ++{ ++ hrtimer_rt_run_pending(); ++} ++ + /* + * Called from timer softirq every jiffy, expire hrtimers: + * +@@ -1442,7 +1691,7 @@ + struct timerqueue_node *node; + struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); + struct hrtimer_clock_base *base; +- int index, gettime = 1; ++ int index, gettime = 1, raise = 0; + + if (hrtimer_hres_active()) + return; +@@ -1467,10 +1716,16 @@ + hrtimer_get_expires_tv64(timer)) + break; + +- __run_hrtimer(timer, &base->softirq_time); ++ if (!hrtimer_rt_defer(timer)) ++ __run_hrtimer(timer, &base->softirq_time); ++ else ++ raise = 1; + } + raw_spin_unlock(&cpu_base->lock); + } ++ ++ if (raise) ++ raise_softirq_irqoff(HRTIMER_SOFTIRQ); + } + + /* +@@ -1492,16 +1747,18 @@ + void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) + { + sl->timer.function = hrtimer_wakeup; ++ sl->timer.irqsafe = 1; + sl->task = task; + } + EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); + +-static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) ++static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode, ++ unsigned long state) + { + hrtimer_init_sleeper(t, current); + + do { +- set_current_state(TASK_INTERRUPTIBLE); ++ set_current_state(state); + hrtimer_start_expires(&t->timer, mode); + if (!hrtimer_active(&t->timer)) + t->task = NULL; +@@ -1545,7 +1802,8 @@ + HRTIMER_MODE_ABS); + hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); + +- if (do_nanosleep(&t, HRTIMER_MODE_ABS)) ++ /* cpu_chill() does not care about restart state. */ ++ if (do_nanosleep(&t, HRTIMER_MODE_ABS, TASK_INTERRUPTIBLE)) + goto out; + + rmtp = restart->nanosleep.rmtp; +@@ -1562,8 +1820,10 @@ + return ret; + } + +-long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, +- const enum hrtimer_mode mode, const clockid_t clockid) ++static long ++__hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, ++ const enum hrtimer_mode mode, const clockid_t clockid, ++ unsigned long state) + { + struct restart_block *restart; + struct hrtimer_sleeper t; +@@ -1576,7 +1836,7 @@ + + hrtimer_init_on_stack(&t.timer, clockid, mode); + hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); +- if (do_nanosleep(&t, mode)) ++ if (do_nanosleep(&t, mode, state)) + goto out; + + /* Absolute timers do not update the rmtp value and restart: */ +@@ -1603,6 +1863,12 @@ + return ret; + } + ++long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, ++ const enum hrtimer_mode mode, const clockid_t clockid) ++{ ++ return __hrtimer_nanosleep(rqtp, rmtp, mode, clockid, TASK_INTERRUPTIBLE); ++} ++ + SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, + struct timespec __user *, rmtp) + { +@@ -1617,6 +1883,26 @@ + return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++/* ++ * Sleep for 1 ms in hope whoever holds what we want will let it go. ++ */ ++void cpu_chill(void) ++{ ++ struct timespec tu = { ++ .tv_nsec = NSEC_PER_MSEC, ++ }; ++ unsigned int freeze_flag = current->flags & PF_NOFREEZE; ++ ++ current->flags |= PF_NOFREEZE; ++ __hrtimer_nanosleep(&tu, NULL, HRTIMER_MODE_REL, CLOCK_MONOTONIC, ++ TASK_UNINTERRUPTIBLE); ++ if (!freeze_flag) ++ current->flags &= ~PF_NOFREEZE; ++} ++EXPORT_SYMBOL(cpu_chill); ++#endif ++ + /* + * Functions related to boot-time initialization: + */ +@@ -1628,10 +1914,14 @@ + for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { + cpu_base->clock_base[i].cpu_base = cpu_base; + timerqueue_init_head(&cpu_base->clock_base[i].active); ++ INIT_LIST_HEAD(&cpu_base->clock_base[i].expired); + } + + cpu_base->cpu = cpu; + hrtimer_init_hres(cpu_base); ++#ifdef CONFIG_PREEMPT_RT_BASE ++ init_waitqueue_head(&cpu_base->wait); ++#endif + } + + #ifdef CONFIG_HOTPLUG_CPU +@@ -1744,9 +2034,7 @@ + hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, + (void *)(long)smp_processor_id()); + register_cpu_notifier(&hrtimers_nb); +-#ifdef CONFIG_HIGH_RES_TIMERS + open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); +-#endif + } + + /** +diff -Nur linux-3.18.12.orig/kernel/time/itimer.c linux-3.18.12/kernel/time/itimer.c +--- linux-3.18.12.orig/kernel/time/itimer.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/itimer.c 2015-04-26 13:32:22.451684003 -0500 +@@ -213,6 +213,7 @@ + /* We are sharing ->siglock with it_real_fn() */ + if (hrtimer_try_to_cancel(timer) < 0) { + spin_unlock_irq(&tsk->sighand->siglock); ++ hrtimer_wait_for_timer(&tsk->signal->real_timer); + goto again; + } + expires = timeval_to_ktime(value->it_value); +diff -Nur linux-3.18.12.orig/kernel/time/jiffies.c linux-3.18.12/kernel/time/jiffies.c +--- linux-3.18.12.orig/kernel/time/jiffies.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/jiffies.c 2015-04-26 13:32:22.451684003 -0500 +@@ -73,7 +73,8 @@ + .shift = JIFFIES_SHIFT, + }; + +-__cacheline_aligned_in_smp DEFINE_SEQLOCK(jiffies_lock); ++__cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(jiffies_lock); ++__cacheline_aligned_in_smp seqcount_t jiffies_seq; + + #if (BITS_PER_LONG < 64) + u64 get_jiffies_64(void) +@@ -82,9 +83,9 @@ + u64 ret; + + do { +- seq = read_seqbegin(&jiffies_lock); ++ seq = read_seqcount_begin(&jiffies_seq); + ret = jiffies_64; +- } while (read_seqretry(&jiffies_lock, seq)); ++ } while (read_seqcount_retry(&jiffies_seq, seq)); + return ret; + } + EXPORT_SYMBOL(get_jiffies_64); +diff -Nur linux-3.18.12.orig/kernel/time/ntp.c linux-3.18.12/kernel/time/ntp.c +--- linux-3.18.12.orig/kernel/time/ntp.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/ntp.c 2015-04-26 13:32:22.451684003 -0500 +@@ -10,6 +10,7 @@ + #include + #include + #include ++#include + #include + #include + #include +@@ -519,10 +520,52 @@ + &sync_cmos_work, timespec_to_jiffies(&next)); + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++/* ++ * RT can not call schedule_delayed_work from real interrupt context. ++ * Need to make a thread to do the real work. ++ */ ++static struct task_struct *cmos_delay_thread; ++static bool do_cmos_delay; ++ ++static int run_cmos_delay(void *ignore) ++{ ++ while (!kthread_should_stop()) { ++ set_current_state(TASK_INTERRUPTIBLE); ++ if (do_cmos_delay) { ++ do_cmos_delay = false; ++ queue_delayed_work(system_power_efficient_wq, ++ &sync_cmos_work, 0); ++ } ++ schedule(); ++ } ++ __set_current_state(TASK_RUNNING); ++ return 0; ++} ++ ++void ntp_notify_cmos_timer(void) ++{ ++ do_cmos_delay = true; ++ /* Make visible before waking up process */ ++ smp_wmb(); ++ wake_up_process(cmos_delay_thread); ++} ++ ++static __init int create_cmos_delay_thread(void) ++{ ++ cmos_delay_thread = kthread_run(run_cmos_delay, NULL, "kcmosdelayd"); ++ BUG_ON(!cmos_delay_thread); ++ return 0; ++} ++early_initcall(create_cmos_delay_thread); ++ ++#else ++ + void ntp_notify_cmos_timer(void) + { + queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0); + } ++#endif /* CONFIG_PREEMPT_RT_FULL */ + + #else + void ntp_notify_cmos_timer(void) { } +diff -Nur linux-3.18.12.orig/kernel/time/posix-cpu-timers.c linux-3.18.12/kernel/time/posix-cpu-timers.c +--- linux-3.18.12.orig/kernel/time/posix-cpu-timers.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/posix-cpu-timers.c 2015-04-26 13:32:22.451684003 -0500 +@@ -3,6 +3,7 @@ + */ + + #include ++#include + #include + #include + #include +@@ -626,7 +627,7 @@ + /* + * Disarm any old timer after extracting its expiry time. + */ +- WARN_ON_ONCE(!irqs_disabled()); ++ WARN_ON_ONCE_NONRT(!irqs_disabled()); + + ret = 0; + old_incr = timer->it.cpu.incr; +@@ -1047,7 +1048,7 @@ + /* + * Now re-arm for the new expiry time. + */ +- WARN_ON_ONCE(!irqs_disabled()); ++ WARN_ON_ONCE_NONRT(!irqs_disabled()); + arm_timer(timer); + unlock_task_sighand(p, &flags); + +@@ -1113,10 +1114,11 @@ + sig = tsk->signal; + if (sig->cputimer.running) { + struct task_cputime group_sample; ++ unsigned long flags; + +- raw_spin_lock(&sig->cputimer.lock); ++ raw_spin_lock_irqsave(&sig->cputimer.lock, flags); + group_sample = sig->cputimer.cputime; +- raw_spin_unlock(&sig->cputimer.lock); ++ raw_spin_unlock_irqrestore(&sig->cputimer.lock, flags); + + if (task_cputime_expired(&group_sample, &sig->cputime_expires)) + return 1; +@@ -1130,13 +1132,13 @@ + * already updated our counts. We need to check if any timers fire now. + * Interrupts are disabled. + */ +-void run_posix_cpu_timers(struct task_struct *tsk) ++static void __run_posix_cpu_timers(struct task_struct *tsk) + { + LIST_HEAD(firing); + struct k_itimer *timer, *next; + unsigned long flags; + +- WARN_ON_ONCE(!irqs_disabled()); ++ WARN_ON_ONCE_NONRT(!irqs_disabled()); + + /* + * The fast path checks that there are no expired thread or thread +@@ -1194,6 +1196,190 @@ + } + } + ++#ifdef CONFIG_PREEMPT_RT_BASE ++#include ++#include ++DEFINE_PER_CPU(struct task_struct *, posix_timer_task); ++DEFINE_PER_CPU(struct task_struct *, posix_timer_tasklist); ++ ++static int posix_cpu_timers_thread(void *data) ++{ ++ int cpu = (long)data; ++ ++ BUG_ON(per_cpu(posix_timer_task,cpu) != current); ++ ++ while (!kthread_should_stop()) { ++ struct task_struct *tsk = NULL; ++ struct task_struct *next = NULL; ++ ++ if (cpu_is_offline(cpu)) ++ goto wait_to_die; ++ ++ /* grab task list */ ++ raw_local_irq_disable(); ++ tsk = per_cpu(posix_timer_tasklist, cpu); ++ per_cpu(posix_timer_tasklist, cpu) = NULL; ++ raw_local_irq_enable(); ++ ++ /* its possible the list is empty, just return */ ++ if (!tsk) { ++ set_current_state(TASK_INTERRUPTIBLE); ++ schedule(); ++ __set_current_state(TASK_RUNNING); ++ continue; ++ } ++ ++ /* Process task list */ ++ while (1) { ++ /* save next */ ++ next = tsk->posix_timer_list; ++ ++ /* run the task timers, clear its ptr and ++ * unreference it ++ */ ++ __run_posix_cpu_timers(tsk); ++ tsk->posix_timer_list = NULL; ++ put_task_struct(tsk); ++ ++ /* check if this is the last on the list */ ++ if (next == tsk) ++ break; ++ tsk = next; ++ } ++ } ++ return 0; ++ ++wait_to_die: ++ /* Wait for kthread_stop */ ++ set_current_state(TASK_INTERRUPTIBLE); ++ while (!kthread_should_stop()) { ++ schedule(); ++ set_current_state(TASK_INTERRUPTIBLE); ++ } ++ __set_current_state(TASK_RUNNING); ++ return 0; ++} ++ ++static inline int __fastpath_timer_check(struct task_struct *tsk) ++{ ++ /* tsk == current, ensure it is safe to use ->signal/sighand */ ++ if (unlikely(tsk->exit_state)) ++ return 0; ++ ++ if (!task_cputime_zero(&tsk->cputime_expires)) ++ return 1; ++ ++ if (!task_cputime_zero(&tsk->signal->cputime_expires)) ++ return 1; ++ ++ return 0; ++} ++ ++void run_posix_cpu_timers(struct task_struct *tsk) ++{ ++ unsigned long cpu = smp_processor_id(); ++ struct task_struct *tasklist; ++ ++ BUG_ON(!irqs_disabled()); ++ if(!per_cpu(posix_timer_task, cpu)) ++ return; ++ /* get per-cpu references */ ++ tasklist = per_cpu(posix_timer_tasklist, cpu); ++ ++ /* check to see if we're already queued */ ++ if (!tsk->posix_timer_list && __fastpath_timer_check(tsk)) { ++ get_task_struct(tsk); ++ if (tasklist) { ++ tsk->posix_timer_list = tasklist; ++ } else { ++ /* ++ * The list is terminated by a self-pointing ++ * task_struct ++ */ ++ tsk->posix_timer_list = tsk; ++ } ++ per_cpu(posix_timer_tasklist, cpu) = tsk; ++ ++ wake_up_process(per_cpu(posix_timer_task, cpu)); ++ } ++} ++ ++/* ++ * posix_cpu_thread_call - callback that gets triggered when a CPU is added. ++ * Here we can start up the necessary migration thread for the new CPU. ++ */ ++static int posix_cpu_thread_call(struct notifier_block *nfb, ++ unsigned long action, void *hcpu) ++{ ++ int cpu = (long)hcpu; ++ struct task_struct *p; ++ struct sched_param param; ++ ++ switch (action) { ++ case CPU_UP_PREPARE: ++ p = kthread_create(posix_cpu_timers_thread, hcpu, ++ "posixcputmr/%d",cpu); ++ if (IS_ERR(p)) ++ return NOTIFY_BAD; ++ p->flags |= PF_NOFREEZE; ++ kthread_bind(p, cpu); ++ /* Must be high prio to avoid getting starved */ ++ param.sched_priority = MAX_RT_PRIO-1; ++ sched_setscheduler(p, SCHED_FIFO, ¶m); ++ per_cpu(posix_timer_task,cpu) = p; ++ break; ++ case CPU_ONLINE: ++ /* Strictly unneccessary, as first user will wake it. */ ++ wake_up_process(per_cpu(posix_timer_task,cpu)); ++ break; ++#ifdef CONFIG_HOTPLUG_CPU ++ case CPU_UP_CANCELED: ++ /* Unbind it from offline cpu so it can run. Fall thru. */ ++ kthread_bind(per_cpu(posix_timer_task, cpu), ++ cpumask_any(cpu_online_mask)); ++ kthread_stop(per_cpu(posix_timer_task,cpu)); ++ per_cpu(posix_timer_task,cpu) = NULL; ++ break; ++ case CPU_DEAD: ++ kthread_stop(per_cpu(posix_timer_task,cpu)); ++ per_cpu(posix_timer_task,cpu) = NULL; ++ break; ++#endif ++ } ++ return NOTIFY_OK; ++} ++ ++/* Register at highest priority so that task migration (migrate_all_tasks) ++ * happens before everything else. ++ */ ++static struct notifier_block posix_cpu_thread_notifier = { ++ .notifier_call = posix_cpu_thread_call, ++ .priority = 10 ++}; ++ ++static int __init posix_cpu_thread_init(void) ++{ ++ void *hcpu = (void *)(long)smp_processor_id(); ++ /* Start one for boot CPU. */ ++ unsigned long cpu; ++ ++ /* init the per-cpu posix_timer_tasklets */ ++ for_each_possible_cpu(cpu) ++ per_cpu(posix_timer_tasklist, cpu) = NULL; ++ ++ posix_cpu_thread_call(&posix_cpu_thread_notifier, CPU_UP_PREPARE, hcpu); ++ posix_cpu_thread_call(&posix_cpu_thread_notifier, CPU_ONLINE, hcpu); ++ register_cpu_notifier(&posix_cpu_thread_notifier); ++ return 0; ++} ++early_initcall(posix_cpu_thread_init); ++#else /* CONFIG_PREEMPT_RT_BASE */ ++void run_posix_cpu_timers(struct task_struct *tsk) ++{ ++ __run_posix_cpu_timers(tsk); ++} ++#endif /* CONFIG_PREEMPT_RT_BASE */ ++ + /* + * Set one of the process-wide special case CPU timers or RLIMIT_CPU. + * The tsk->sighand->siglock must be held by the caller. +diff -Nur linux-3.18.12.orig/kernel/time/posix-timers.c linux-3.18.12/kernel/time/posix-timers.c +--- linux-3.18.12.orig/kernel/time/posix-timers.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/posix-timers.c 2015-04-26 13:32:22.451684003 -0500 +@@ -499,6 +499,7 @@ + static struct pid *good_sigevent(sigevent_t * event) + { + struct task_struct *rtn = current->group_leader; ++ int sig = event->sigev_signo; + + if ((event->sigev_notify & SIGEV_THREAD_ID ) && + (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) || +@@ -507,7 +508,8 @@ + return NULL; + + if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && +- ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) ++ (sig <= 0 || sig > SIGRTMAX || sig_kernel_only(sig) || ++ sig_kernel_coredump(sig))) + return NULL; + + return task_pid(rtn); +@@ -819,6 +821,20 @@ + return overrun; + } + ++/* ++ * Protected by RCU! ++ */ ++static void timer_wait_for_callback(struct k_clock *kc, struct k_itimer *timr) ++{ ++#ifdef CONFIG_PREEMPT_RT_FULL ++ if (kc->timer_set == common_timer_set) ++ hrtimer_wait_for_timer(&timr->it.real.timer); ++ else ++ /* FIXME: Whacky hack for posix-cpu-timers */ ++ schedule_timeout(1); ++#endif ++} ++ + /* Set a POSIX.1b interval timer. */ + /* timr->it_lock is taken. */ + static int +@@ -896,6 +912,7 @@ + if (!timr) + return -EINVAL; + ++ rcu_read_lock(); + kc = clockid_to_kclock(timr->it_clock); + if (WARN_ON_ONCE(!kc || !kc->timer_set)) + error = -EINVAL; +@@ -904,9 +921,12 @@ + + unlock_timer(timr, flag); + if (error == TIMER_RETRY) { ++ timer_wait_for_callback(kc, timr); + rtn = NULL; // We already got the old time... ++ rcu_read_unlock(); + goto retry; + } ++ rcu_read_unlock(); + + if (old_setting && !error && + copy_to_user(old_setting, &old_spec, sizeof (old_spec))) +@@ -944,10 +964,15 @@ + if (!timer) + return -EINVAL; + ++ rcu_read_lock(); + if (timer_delete_hook(timer) == TIMER_RETRY) { + unlock_timer(timer, flags); ++ timer_wait_for_callback(clockid_to_kclock(timer->it_clock), ++ timer); ++ rcu_read_unlock(); + goto retry_delete; + } ++ rcu_read_unlock(); + + spin_lock(¤t->sighand->siglock); + list_del(&timer->list); +@@ -973,8 +998,18 @@ + retry_delete: + spin_lock_irqsave(&timer->it_lock, flags); + ++ /* On RT we can race with a deletion */ ++ if (!timer->it_signal) { ++ unlock_timer(timer, flags); ++ return; ++ } ++ + if (timer_delete_hook(timer) == TIMER_RETRY) { ++ rcu_read_lock(); + unlock_timer(timer, flags); ++ timer_wait_for_callback(clockid_to_kclock(timer->it_clock), ++ timer); ++ rcu_read_unlock(); + goto retry_delete; + } + list_del(&timer->list); +diff -Nur linux-3.18.12.orig/kernel/time/tick-common.c linux-3.18.12/kernel/time/tick-common.c +--- linux-3.18.12.orig/kernel/time/tick-common.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/tick-common.c 2015-04-26 13:32:22.451684003 -0500 +@@ -78,13 +78,15 @@ + static void tick_periodic(int cpu) + { + if (tick_do_timer_cpu == cpu) { +- write_seqlock(&jiffies_lock); ++ raw_spin_lock(&jiffies_lock); ++ write_seqcount_begin(&jiffies_seq); + + /* Keep track of the next tick event */ + tick_next_period = ktime_add(tick_next_period, tick_period); + + do_timer(1); +- write_sequnlock(&jiffies_lock); ++ write_seqcount_end(&jiffies_seq); ++ raw_spin_unlock(&jiffies_lock); + update_wall_time(); + } + +@@ -146,9 +148,9 @@ + ktime_t next; + + do { +- seq = read_seqbegin(&jiffies_lock); ++ seq = read_seqcount_begin(&jiffies_seq); + next = tick_next_period; +- } while (read_seqretry(&jiffies_lock, seq)); ++ } while (read_seqcount_retry(&jiffies_seq, seq)); + + clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); + +diff -Nur linux-3.18.12.orig/kernel/time/tick-internal.h linux-3.18.12/kernel/time/tick-internal.h +--- linux-3.18.12.orig/kernel/time/tick-internal.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/tick-internal.h 2015-04-26 13:32:22.451684003 -0500 +@@ -6,7 +6,8 @@ + + #include "timekeeping.h" + +-extern seqlock_t jiffies_lock; ++extern raw_spinlock_t jiffies_lock; ++extern seqcount_t jiffies_seq; + + #define CS_NAME_LEN 32 + +diff -Nur linux-3.18.12.orig/kernel/time/tick-sched.c linux-3.18.12/kernel/time/tick-sched.c +--- linux-3.18.12.orig/kernel/time/tick-sched.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/tick-sched.c 2015-04-26 13:32:22.451684003 -0500 +@@ -62,7 +62,8 @@ + return; + + /* Reevalute with jiffies_lock held */ +- write_seqlock(&jiffies_lock); ++ raw_spin_lock(&jiffies_lock); ++ write_seqcount_begin(&jiffies_seq); + + delta = ktime_sub(now, last_jiffies_update); + if (delta.tv64 >= tick_period.tv64) { +@@ -85,10 +86,12 @@ + /* Keep the tick_next_period variable up to date */ + tick_next_period = ktime_add(last_jiffies_update, tick_period); + } else { +- write_sequnlock(&jiffies_lock); ++ write_seqcount_end(&jiffies_seq); ++ raw_spin_unlock(&jiffies_lock); + return; + } +- write_sequnlock(&jiffies_lock); ++ write_seqcount_end(&jiffies_seq); ++ raw_spin_unlock(&jiffies_lock); + update_wall_time(); + } + +@@ -99,12 +102,14 @@ + { + ktime_t period; + +- write_seqlock(&jiffies_lock); ++ raw_spin_lock(&jiffies_lock); ++ write_seqcount_begin(&jiffies_seq); + /* Did we start the jiffies update yet ? */ + if (last_jiffies_update.tv64 == 0) + last_jiffies_update = tick_next_period; + period = last_jiffies_update; +- write_sequnlock(&jiffies_lock); ++ write_seqcount_end(&jiffies_seq); ++ raw_spin_unlock(&jiffies_lock); + return period; + } + +@@ -176,6 +181,11 @@ + return false; + } + ++ if (!arch_irq_work_has_interrupt()) { ++ trace_tick_stop(0, "missing irq work interrupt\n"); ++ return false; ++ } ++ + /* sched_clock_tick() needs us? */ + #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK + /* +@@ -217,11 +227,17 @@ + + static void nohz_full_kick_work_func(struct irq_work *work) + { ++ unsigned long flags; ++ ++ /* ksoftirqd processes sirqs with interrupts enabled */ ++ local_irq_save(flags); + __tick_nohz_full_check(); ++ local_irq_restore(flags); + } + + static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { + .func = nohz_full_kick_work_func, ++ .flags = IRQ_WORK_HARD_IRQ, + }; + + /* +@@ -580,10 +596,10 @@ + + /* Read jiffies and the time when jiffies were updated last */ + do { +- seq = read_seqbegin(&jiffies_lock); ++ seq = read_seqcount_begin(&jiffies_seq); + last_update = last_jiffies_update; + last_jiffies = jiffies; +- } while (read_seqretry(&jiffies_lock, seq)); ++ } while (read_seqcount_retry(&jiffies_seq, seq)); + + if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || + arch_needs_cpu() || irq_work_needs_cpu()) { +@@ -761,14 +777,7 @@ + return false; + + if (unlikely(local_softirq_pending() && cpu_online(cpu))) { +- static int ratelimit; +- +- if (ratelimit < 10 && +- (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { +- pr_warn("NOHZ: local_softirq_pending %02x\n", +- (unsigned int) local_softirq_pending()); +- ratelimit++; +- } ++ softirq_check_pending_idle(); + return false; + } + +@@ -1156,6 +1165,7 @@ + * Emulate tick processing via per-CPU hrtimers: + */ + hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); ++ ts->sched_timer.irqsafe = 1; + ts->sched_timer.function = tick_sched_timer; + + /* Get the next period (per cpu) */ +diff -Nur linux-3.18.12.orig/kernel/time/timekeeping.c linux-3.18.12/kernel/time/timekeeping.c +--- linux-3.18.12.orig/kernel/time/timekeeping.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/timekeeping.c 2015-04-26 13:32:22.451684003 -0500 +@@ -1814,8 +1814,10 @@ + */ + void xtime_update(unsigned long ticks) + { +- write_seqlock(&jiffies_lock); ++ raw_spin_lock(&jiffies_lock); ++ write_seqcount_begin(&jiffies_seq); + do_timer(ticks); +- write_sequnlock(&jiffies_lock); ++ write_seqcount_end(&jiffies_seq); ++ raw_spin_unlock(&jiffies_lock); + update_wall_time(); + } +diff -Nur linux-3.18.12.orig/kernel/time/timer.c linux-3.18.12/kernel/time/timer.c +--- linux-3.18.12.orig/kernel/time/timer.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/time/timer.c 2015-04-26 13:32:22.455684003 -0500 +@@ -78,6 +78,9 @@ + struct tvec_base { + spinlock_t lock; + struct timer_list *running_timer; ++#ifdef CONFIG_PREEMPT_RT_FULL ++ wait_queue_head_t wait_for_running_timer; ++#endif + unsigned long timer_jiffies; + unsigned long next_timer; + unsigned long active_timers; +@@ -758,6 +761,36 @@ + } + } + ++#ifndef CONFIG_PREEMPT_RT_FULL ++static inline struct tvec_base *switch_timer_base(struct timer_list *timer, ++ struct tvec_base *old, ++ struct tvec_base *new) ++{ ++ /* See the comment in lock_timer_base() */ ++ timer_set_base(timer, NULL); ++ spin_unlock(&old->lock); ++ spin_lock(&new->lock); ++ timer_set_base(timer, new); ++ return new; ++} ++#else ++static inline struct tvec_base *switch_timer_base(struct timer_list *timer, ++ struct tvec_base *old, ++ struct tvec_base *new) ++{ ++ /* ++ * We cannot do the above because we might be preempted and ++ * then the preempter would see NULL and loop forever. ++ */ ++ if (spin_trylock(&new->lock)) { ++ timer_set_base(timer, new); ++ spin_unlock(&old->lock); ++ return new; ++ } ++ return old; ++} ++#endif ++ + static inline int + __mod_timer(struct timer_list *timer, unsigned long expires, + bool pending_only, int pinned) +@@ -788,14 +821,8 @@ + * handler yet has not finished. This also guarantees that + * the timer is serialized wrt itself. + */ +- if (likely(base->running_timer != timer)) { +- /* See the comment in lock_timer_base() */ +- timer_set_base(timer, NULL); +- spin_unlock(&base->lock); +- base = new_base; +- spin_lock(&base->lock); +- timer_set_base(timer, base); +- } ++ if (likely(base->running_timer != timer)) ++ base = switch_timer_base(timer, base, new_base); + } + + timer->expires = expires; +@@ -969,6 +996,29 @@ + } + EXPORT_SYMBOL_GPL(add_timer_on); + ++#ifdef CONFIG_PREEMPT_RT_FULL ++/* ++ * Wait for a running timer ++ */ ++static void wait_for_running_timer(struct timer_list *timer) ++{ ++ struct tvec_base *base = timer->base; ++ ++ if (base->running_timer == timer) ++ wait_event(base->wait_for_running_timer, ++ base->running_timer != timer); ++} ++ ++# define wakeup_timer_waiters(b) wake_up(&(b)->wait_for_running_timer) ++#else ++static inline void wait_for_running_timer(struct timer_list *timer) ++{ ++ cpu_relax(); ++} ++ ++# define wakeup_timer_waiters(b) do { } while (0) ++#endif ++ + /** + * del_timer - deactive a timer. + * @timer: the timer to be deactivated +@@ -1026,7 +1076,7 @@ + } + EXPORT_SYMBOL(try_to_del_timer_sync); + +-#ifdef CONFIG_SMP ++#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT_FULL) + /** + * del_timer_sync - deactivate a timer and wait for the handler to finish. + * @timer: the timer to be deactivated +@@ -1086,7 +1136,7 @@ + int ret = try_to_del_timer_sync(timer); + if (ret >= 0) + return ret; +- cpu_relax(); ++ wait_for_running_timer(timer); + } + } + EXPORT_SYMBOL(del_timer_sync); +@@ -1207,15 +1257,17 @@ + if (irqsafe) { + spin_unlock(&base->lock); + call_timer_fn(timer, fn, data); ++ base->running_timer = NULL; + spin_lock(&base->lock); + } else { + spin_unlock_irq(&base->lock); + call_timer_fn(timer, fn, data); ++ base->running_timer = NULL; + spin_lock_irq(&base->lock); + } + } + } +- base->running_timer = NULL; ++ wakeup_timer_waiters(base); + spin_unlock_irq(&base->lock); + } + +@@ -1355,17 +1407,31 @@ + if (cpu_is_offline(smp_processor_id())) + return expires; + ++#ifdef CONFIG_PREEMPT_RT_FULL ++ /* ++ * On PREEMPT_RT we cannot sleep here. If the trylock does not ++ * succeed then we return the worst-case 'expires in 1 tick' ++ * value. We use the rt functions here directly to avoid a ++ * migrate_disable() call. ++ */ ++ if (!spin_do_trylock(&base->lock)) ++ return now + 1; ++#else + spin_lock(&base->lock); ++#endif + if (base->active_timers) { + if (time_before_eq(base->next_timer, base->timer_jiffies)) + base->next_timer = __next_timer_interrupt(base); + expires = base->next_timer; + } ++#ifdef CONFIG_PREEMPT_RT_FULL ++ rt_spin_unlock_after_trylock_in_irq(&base->lock); ++#else + spin_unlock(&base->lock); ++#endif + + if (time_before_eq(expires, now)) + return now; +- + return cmp_next_hrtimer_event(now, expires); + } + #endif +@@ -1381,13 +1447,13 @@ + + /* Note: this timer irq context must be accounted for as well. */ + account_process_tick(p, user_tick); ++ scheduler_tick(); + run_local_timers(); + rcu_check_callbacks(cpu, user_tick); +-#ifdef CONFIG_IRQ_WORK +- if (in_irq()) +- irq_work_tick(); ++ ++#if defined(CONFIG_IRQ_WORK) && !defined(CONFIG_PREEMPT_RT_FULL) ++ irq_work_tick(); + #endif +- scheduler_tick(); + run_posix_cpu_timers(p); + } + +@@ -1400,6 +1466,10 @@ + + hrtimer_run_pending(); + ++#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_PREEMPT_RT_FULL) ++ irq_work_tick(); ++#endif ++ + if (time_after_eq(jiffies, base->timer_jiffies)) + __run_timers(base); + } +@@ -1574,6 +1644,9 @@ + base = per_cpu(tvec_bases, cpu); + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++ init_waitqueue_head(&base->wait_for_running_timer); ++#endif + + for (j = 0; j < TVN_SIZE; j++) { + INIT_LIST_HEAD(base->tv5.vec + j); +@@ -1613,7 +1686,7 @@ + + BUG_ON(cpu_online(cpu)); + old_base = per_cpu(tvec_bases, cpu); +- new_base = get_cpu_var(tvec_bases); ++ new_base = get_local_var(tvec_bases); + /* + * The caller is globally serialized and nobody else + * takes two locks at once, deadlock is not possible. +@@ -1634,7 +1707,7 @@ + + spin_unlock(&old_base->lock); + spin_unlock_irq(&new_base->lock); +- put_cpu_var(tvec_bases); ++ put_local_var(tvec_bases); + } + #endif /* CONFIG_HOTPLUG_CPU */ + +diff -Nur linux-3.18.12.orig/kernel/trace/Kconfig linux-3.18.12/kernel/trace/Kconfig +--- linux-3.18.12.orig/kernel/trace/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/trace/Kconfig 2015-04-26 13:32:22.455684003 -0500 +@@ -187,6 +187,24 @@ + enabled. This option and the preempt-off timing option can be + used together or separately.) + ++config INTERRUPT_OFF_HIST ++ bool "Interrupts-off Latency Histogram" ++ depends on IRQSOFF_TRACER ++ help ++ This option generates continuously updated histograms (one per cpu) ++ of the duration of time periods with interrupts disabled. The ++ histograms are disabled by default. To enable them, write a non-zero ++ number to ++ ++ /sys/kernel/debug/tracing/latency_hist/enable/preemptirqsoff ++ ++ If PREEMPT_OFF_HIST is also selected, additional histograms (one ++ per cpu) are generated that accumulate the duration of time periods ++ when both interrupts and preemption are disabled. The histogram data ++ will be located in the debug file system at ++ ++ /sys/kernel/debug/tracing/latency_hist/irqsoff ++ + config PREEMPT_TRACER + bool "Preemption-off Latency Tracer" + default n +@@ -211,6 +229,24 @@ + enabled. This option and the irqs-off timing option can be + used together or separately.) + ++config PREEMPT_OFF_HIST ++ bool "Preemption-off Latency Histogram" ++ depends on PREEMPT_TRACER ++ help ++ This option generates continuously updated histograms (one per cpu) ++ of the duration of time periods with preemption disabled. The ++ histograms are disabled by default. To enable them, write a non-zero ++ number to ++ ++ /sys/kernel/debug/tracing/latency_hist/enable/preemptirqsoff ++ ++ If INTERRUPT_OFF_HIST is also selected, additional histograms (one ++ per cpu) are generated that accumulate the duration of time periods ++ when both interrupts and preemption are disabled. The histogram data ++ will be located in the debug file system at ++ ++ /sys/kernel/debug/tracing/latency_hist/preemptoff ++ + config SCHED_TRACER + bool "Scheduling Latency Tracer" + select GENERIC_TRACER +@@ -221,6 +257,74 @@ + This tracer tracks the latency of the highest priority task + to be scheduled in, starting from the point it has woken up. + ++config WAKEUP_LATENCY_HIST ++ bool "Scheduling Latency Histogram" ++ depends on SCHED_TRACER ++ help ++ This option generates continuously updated histograms (one per cpu) ++ of the scheduling latency of the highest priority task. ++ The histograms are disabled by default. To enable them, write a ++ non-zero number to ++ ++ /sys/kernel/debug/tracing/latency_hist/enable/wakeup ++ ++ Two different algorithms are used, one to determine the latency of ++ processes that exclusively use the highest priority of the system and ++ another one to determine the latency of processes that share the ++ highest system priority with other processes. The former is used to ++ improve hardware and system software, the latter to optimize the ++ priority design of a given system. The histogram data will be ++ located in the debug file system at ++ ++ /sys/kernel/debug/tracing/latency_hist/wakeup ++ ++ and ++ ++ /sys/kernel/debug/tracing/latency_hist/wakeup/sharedprio ++ ++ If both Scheduling Latency Histogram and Missed Timer Offsets ++ Histogram are selected, additional histogram data will be collected ++ that contain, in addition to the wakeup latency, the timer latency, in ++ case the wakeup was triggered by an expired timer. These histograms ++ are available in the ++ ++ /sys/kernel/debug/tracing/latency_hist/timerandwakeup ++ ++ directory. They reflect the apparent interrupt and scheduling latency ++ and are best suitable to determine the worst-case latency of a given ++ system. To enable these histograms, write a non-zero number to ++ ++ /sys/kernel/debug/tracing/latency_hist/enable/timerandwakeup ++ ++config MISSED_TIMER_OFFSETS_HIST ++ depends on HIGH_RES_TIMERS ++ select GENERIC_TRACER ++ bool "Missed Timer Offsets Histogram" ++ help ++ Generate a histogram of missed timer offsets in microseconds. The ++ histograms are disabled by default. To enable them, write a non-zero ++ number to ++ ++ /sys/kernel/debug/tracing/latency_hist/enable/missed_timer_offsets ++ ++ The histogram data will be located in the debug file system at ++ ++ /sys/kernel/debug/tracing/latency_hist/missed_timer_offsets ++ ++ If both Scheduling Latency Histogram and Missed Timer Offsets ++ Histogram are selected, additional histogram data will be collected ++ that contain, in addition to the wakeup latency, the timer latency, in ++ case the wakeup was triggered by an expired timer. These histograms ++ are available in the ++ ++ /sys/kernel/debug/tracing/latency_hist/timerandwakeup ++ ++ directory. They reflect the apparent interrupt and scheduling latency ++ and are best suitable to determine the worst-case latency of a given ++ system. To enable these histograms, write a non-zero number to ++ ++ /sys/kernel/debug/tracing/latency_hist/enable/timerandwakeup ++ + config ENABLE_DEFAULT_TRACERS + bool "Trace process context switches and events" + depends on !GENERIC_TRACER +diff -Nur linux-3.18.12.orig/kernel/trace/latency_hist.c linux-3.18.12/kernel/trace/latency_hist.c +--- linux-3.18.12.orig/kernel/trace/latency_hist.c 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/kernel/trace/latency_hist.c 2015-04-26 13:32:22.455684003 -0500 +@@ -0,0 +1,1178 @@ ++/* ++ * kernel/trace/latency_hist.c ++ * ++ * Add support for histograms of preemption-off latency and ++ * interrupt-off latency and wakeup latency, it depends on ++ * Real-Time Preemption Support. ++ * ++ * Copyright (C) 2005 MontaVista Software, Inc. ++ * Yi Yang ++ * ++ * Converted to work with the new latency tracer. ++ * Copyright (C) 2008 Red Hat, Inc. ++ * Steven Rostedt ++ * ++ */ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "trace.h" ++#include ++ ++#define NSECS_PER_USECS 1000L ++ ++#define CREATE_TRACE_POINTS ++#include ++ ++enum { ++ IRQSOFF_LATENCY = 0, ++ PREEMPTOFF_LATENCY, ++ PREEMPTIRQSOFF_LATENCY, ++ WAKEUP_LATENCY, ++ WAKEUP_LATENCY_SHAREDPRIO, ++ MISSED_TIMER_OFFSETS, ++ TIMERANDWAKEUP_LATENCY, ++ MAX_LATENCY_TYPE, ++}; ++ ++#define MAX_ENTRY_NUM 10240 ++ ++struct hist_data { ++ atomic_t hist_mode; /* 0 log, 1 don't log */ ++ long offset; /* set it to MAX_ENTRY_NUM/2 for a bipolar scale */ ++ long min_lat; ++ long max_lat; ++ unsigned long long below_hist_bound_samples; ++ unsigned long long above_hist_bound_samples; ++ long long accumulate_lat; ++ unsigned long long total_samples; ++ unsigned long long hist_array[MAX_ENTRY_NUM]; ++}; ++ ++struct enable_data { ++ int latency_type; ++ int enabled; ++}; ++ ++static char *latency_hist_dir_root = "latency_hist"; ++ ++#ifdef CONFIG_INTERRUPT_OFF_HIST ++static DEFINE_PER_CPU(struct hist_data, irqsoff_hist); ++static char *irqsoff_hist_dir = "irqsoff"; ++static DEFINE_PER_CPU(cycles_t, hist_irqsoff_start); ++static DEFINE_PER_CPU(int, hist_irqsoff_counting); ++#endif ++ ++#ifdef CONFIG_PREEMPT_OFF_HIST ++static DEFINE_PER_CPU(struct hist_data, preemptoff_hist); ++static char *preemptoff_hist_dir = "preemptoff"; ++static DEFINE_PER_CPU(cycles_t, hist_preemptoff_start); ++static DEFINE_PER_CPU(int, hist_preemptoff_counting); ++#endif ++ ++#if defined(CONFIG_PREEMPT_OFF_HIST) && defined(CONFIG_INTERRUPT_OFF_HIST) ++static DEFINE_PER_CPU(struct hist_data, preemptirqsoff_hist); ++static char *preemptirqsoff_hist_dir = "preemptirqsoff"; ++static DEFINE_PER_CPU(cycles_t, hist_preemptirqsoff_start); ++static DEFINE_PER_CPU(int, hist_preemptirqsoff_counting); ++#endif ++ ++#if defined(CONFIG_PREEMPT_OFF_HIST) || defined(CONFIG_INTERRUPT_OFF_HIST) ++static notrace void probe_preemptirqsoff_hist(void *v, int reason, int start); ++static struct enable_data preemptirqsoff_enabled_data = { ++ .latency_type = PREEMPTIRQSOFF_LATENCY, ++ .enabled = 0, ++}; ++#endif ++ ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++struct maxlatproc_data { ++ char comm[FIELD_SIZEOF(struct task_struct, comm)]; ++ char current_comm[FIELD_SIZEOF(struct task_struct, comm)]; ++ int pid; ++ int current_pid; ++ int prio; ++ int current_prio; ++ long latency; ++ long timeroffset; ++ cycle_t timestamp; ++}; ++#endif ++ ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++static DEFINE_PER_CPU(struct hist_data, wakeup_latency_hist); ++static DEFINE_PER_CPU(struct hist_data, wakeup_latency_hist_sharedprio); ++static char *wakeup_latency_hist_dir = "wakeup"; ++static char *wakeup_latency_hist_dir_sharedprio = "sharedprio"; ++static notrace void probe_wakeup_latency_hist_start(void *v, ++ struct task_struct *p, int success); ++static notrace void probe_wakeup_latency_hist_stop(void *v, ++ struct task_struct *prev, struct task_struct *next); ++static notrace void probe_sched_migrate_task(void *, ++ struct task_struct *task, int cpu); ++static struct enable_data wakeup_latency_enabled_data = { ++ .latency_type = WAKEUP_LATENCY, ++ .enabled = 0, ++}; ++static DEFINE_PER_CPU(struct maxlatproc_data, wakeup_maxlatproc); ++static DEFINE_PER_CPU(struct maxlatproc_data, wakeup_maxlatproc_sharedprio); ++static DEFINE_PER_CPU(struct task_struct *, wakeup_task); ++static DEFINE_PER_CPU(int, wakeup_sharedprio); ++static unsigned long wakeup_pid; ++#endif ++ ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++static DEFINE_PER_CPU(struct hist_data, missed_timer_offsets); ++static char *missed_timer_offsets_dir = "missed_timer_offsets"; ++static notrace void probe_hrtimer_interrupt(void *v, int cpu, ++ long long offset, struct task_struct *curr, struct task_struct *task); ++static struct enable_data missed_timer_offsets_enabled_data = { ++ .latency_type = MISSED_TIMER_OFFSETS, ++ .enabled = 0, ++}; ++static DEFINE_PER_CPU(struct maxlatproc_data, missed_timer_offsets_maxlatproc); ++static unsigned long missed_timer_offsets_pid; ++#endif ++ ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) && \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++static DEFINE_PER_CPU(struct hist_data, timerandwakeup_latency_hist); ++static char *timerandwakeup_latency_hist_dir = "timerandwakeup"; ++static struct enable_data timerandwakeup_enabled_data = { ++ .latency_type = TIMERANDWAKEUP_LATENCY, ++ .enabled = 0, ++}; ++static DEFINE_PER_CPU(struct maxlatproc_data, timerandwakeup_maxlatproc); ++#endif ++ ++void notrace latency_hist(int latency_type, int cpu, long latency, ++ long timeroffset, cycle_t stop, ++ struct task_struct *p) ++{ ++ struct hist_data *my_hist; ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++ struct maxlatproc_data *mp = NULL; ++#endif ++ ++ if (!cpu_possible(cpu) || latency_type < 0 || ++ latency_type >= MAX_LATENCY_TYPE) ++ return; ++ ++ switch (latency_type) { ++#ifdef CONFIG_INTERRUPT_OFF_HIST ++ case IRQSOFF_LATENCY: ++ my_hist = &per_cpu(irqsoff_hist, cpu); ++ break; ++#endif ++#ifdef CONFIG_PREEMPT_OFF_HIST ++ case PREEMPTOFF_LATENCY: ++ my_hist = &per_cpu(preemptoff_hist, cpu); ++ break; ++#endif ++#if defined(CONFIG_PREEMPT_OFF_HIST) && defined(CONFIG_INTERRUPT_OFF_HIST) ++ case PREEMPTIRQSOFF_LATENCY: ++ my_hist = &per_cpu(preemptirqsoff_hist, cpu); ++ break; ++#endif ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++ case WAKEUP_LATENCY: ++ my_hist = &per_cpu(wakeup_latency_hist, cpu); ++ mp = &per_cpu(wakeup_maxlatproc, cpu); ++ break; ++ case WAKEUP_LATENCY_SHAREDPRIO: ++ my_hist = &per_cpu(wakeup_latency_hist_sharedprio, cpu); ++ mp = &per_cpu(wakeup_maxlatproc_sharedprio, cpu); ++ break; ++#endif ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ case MISSED_TIMER_OFFSETS: ++ my_hist = &per_cpu(missed_timer_offsets, cpu); ++ mp = &per_cpu(missed_timer_offsets_maxlatproc, cpu); ++ break; ++#endif ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) && \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++ case TIMERANDWAKEUP_LATENCY: ++ my_hist = &per_cpu(timerandwakeup_latency_hist, cpu); ++ mp = &per_cpu(timerandwakeup_maxlatproc, cpu); ++ break; ++#endif ++ ++ default: ++ return; ++ } ++ ++ latency += my_hist->offset; ++ ++ if (atomic_read(&my_hist->hist_mode) == 0) ++ return; ++ ++ if (latency < 0 || latency >= MAX_ENTRY_NUM) { ++ if (latency < 0) ++ my_hist->below_hist_bound_samples++; ++ else ++ my_hist->above_hist_bound_samples++; ++ } else ++ my_hist->hist_array[latency]++; ++ ++ if (unlikely(latency > my_hist->max_lat || ++ my_hist->min_lat == LONG_MAX)) { ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++ if (latency_type == WAKEUP_LATENCY || ++ latency_type == WAKEUP_LATENCY_SHAREDPRIO || ++ latency_type == MISSED_TIMER_OFFSETS || ++ latency_type == TIMERANDWAKEUP_LATENCY) { ++ strncpy(mp->comm, p->comm, sizeof(mp->comm)); ++ strncpy(mp->current_comm, current->comm, ++ sizeof(mp->current_comm)); ++ mp->pid = task_pid_nr(p); ++ mp->current_pid = task_pid_nr(current); ++ mp->prio = p->prio; ++ mp->current_prio = current->prio; ++ mp->latency = latency; ++ mp->timeroffset = timeroffset; ++ mp->timestamp = stop; ++ } ++#endif ++ my_hist->max_lat = latency; ++ } ++ if (unlikely(latency < my_hist->min_lat)) ++ my_hist->min_lat = latency; ++ my_hist->total_samples++; ++ my_hist->accumulate_lat += latency; ++} ++ ++static void *l_start(struct seq_file *m, loff_t *pos) ++{ ++ loff_t *index_ptr = NULL; ++ loff_t index = *pos; ++ struct hist_data *my_hist = m->private; ++ ++ if (index == 0) { ++ char minstr[32], avgstr[32], maxstr[32]; ++ ++ atomic_dec(&my_hist->hist_mode); ++ ++ if (likely(my_hist->total_samples)) { ++ long avg = (long) div64_s64(my_hist->accumulate_lat, ++ my_hist->total_samples); ++ snprintf(minstr, sizeof(minstr), "%ld", ++ my_hist->min_lat - my_hist->offset); ++ snprintf(avgstr, sizeof(avgstr), "%ld", ++ avg - my_hist->offset); ++ snprintf(maxstr, sizeof(maxstr), "%ld", ++ my_hist->max_lat - my_hist->offset); ++ } else { ++ strcpy(minstr, ""); ++ strcpy(avgstr, minstr); ++ strcpy(maxstr, minstr); ++ } ++ ++ seq_printf(m, "#Minimum latency: %s microseconds\n" ++ "#Average latency: %s microseconds\n" ++ "#Maximum latency: %s microseconds\n" ++ "#Total samples: %llu\n" ++ "#There are %llu samples lower than %ld" ++ " microseconds.\n" ++ "#There are %llu samples greater or equal" ++ " than %ld microseconds.\n" ++ "#usecs\t%16s\n", ++ minstr, avgstr, maxstr, ++ my_hist->total_samples, ++ my_hist->below_hist_bound_samples, ++ -my_hist->offset, ++ my_hist->above_hist_bound_samples, ++ MAX_ENTRY_NUM - my_hist->offset, ++ "samples"); ++ } ++ if (index < MAX_ENTRY_NUM) { ++ index_ptr = kmalloc(sizeof(loff_t), GFP_KERNEL); ++ if (index_ptr) ++ *index_ptr = index; ++ } ++ ++ return index_ptr; ++} ++ ++static void *l_next(struct seq_file *m, void *p, loff_t *pos) ++{ ++ loff_t *index_ptr = p; ++ struct hist_data *my_hist = m->private; ++ ++ if (++*pos >= MAX_ENTRY_NUM) { ++ atomic_inc(&my_hist->hist_mode); ++ return NULL; ++ } ++ *index_ptr = *pos; ++ return index_ptr; ++} ++ ++static void l_stop(struct seq_file *m, void *p) ++{ ++ kfree(p); ++} ++ ++static int l_show(struct seq_file *m, void *p) ++{ ++ int index = *(loff_t *) p; ++ struct hist_data *my_hist = m->private; ++ ++ seq_printf(m, "%6ld\t%16llu\n", index - my_hist->offset, ++ my_hist->hist_array[index]); ++ return 0; ++} ++ ++static const struct seq_operations latency_hist_seq_op = { ++ .start = l_start, ++ .next = l_next, ++ .stop = l_stop, ++ .show = l_show ++}; ++ ++static int latency_hist_open(struct inode *inode, struct file *file) ++{ ++ int ret; ++ ++ ret = seq_open(file, &latency_hist_seq_op); ++ if (!ret) { ++ struct seq_file *seq = file->private_data; ++ seq->private = inode->i_private; ++ } ++ return ret; ++} ++ ++static const struct file_operations latency_hist_fops = { ++ .open = latency_hist_open, ++ .read = seq_read, ++ .llseek = seq_lseek, ++ .release = seq_release, ++}; ++ ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++static void clear_maxlatprocdata(struct maxlatproc_data *mp) ++{ ++ mp->comm[0] = mp->current_comm[0] = '\0'; ++ mp->prio = mp->current_prio = mp->pid = mp->current_pid = ++ mp->latency = mp->timeroffset = -1; ++ mp->timestamp = 0; ++} ++#endif ++ ++static void hist_reset(struct hist_data *hist) ++{ ++ atomic_dec(&hist->hist_mode); ++ ++ memset(hist->hist_array, 0, sizeof(hist->hist_array)); ++ hist->below_hist_bound_samples = 0ULL; ++ hist->above_hist_bound_samples = 0ULL; ++ hist->min_lat = LONG_MAX; ++ hist->max_lat = LONG_MIN; ++ hist->total_samples = 0ULL; ++ hist->accumulate_lat = 0LL; ++ ++ atomic_inc(&hist->hist_mode); ++} ++ ++static ssize_t ++latency_hist_reset(struct file *file, const char __user *a, ++ size_t size, loff_t *off) ++{ ++ int cpu; ++ struct hist_data *hist = NULL; ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++ struct maxlatproc_data *mp = NULL; ++#endif ++ off_t latency_type = (off_t) file->private_data; ++ ++ for_each_online_cpu(cpu) { ++ ++ switch (latency_type) { ++#ifdef CONFIG_PREEMPT_OFF_HIST ++ case PREEMPTOFF_LATENCY: ++ hist = &per_cpu(preemptoff_hist, cpu); ++ break; ++#endif ++#ifdef CONFIG_INTERRUPT_OFF_HIST ++ case IRQSOFF_LATENCY: ++ hist = &per_cpu(irqsoff_hist, cpu); ++ break; ++#endif ++#if defined(CONFIG_INTERRUPT_OFF_HIST) && defined(CONFIG_PREEMPT_OFF_HIST) ++ case PREEMPTIRQSOFF_LATENCY: ++ hist = &per_cpu(preemptirqsoff_hist, cpu); ++ break; ++#endif ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++ case WAKEUP_LATENCY: ++ hist = &per_cpu(wakeup_latency_hist, cpu); ++ mp = &per_cpu(wakeup_maxlatproc, cpu); ++ break; ++ case WAKEUP_LATENCY_SHAREDPRIO: ++ hist = &per_cpu(wakeup_latency_hist_sharedprio, cpu); ++ mp = &per_cpu(wakeup_maxlatproc_sharedprio, cpu); ++ break; ++#endif ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ case MISSED_TIMER_OFFSETS: ++ hist = &per_cpu(missed_timer_offsets, cpu); ++ mp = &per_cpu(missed_timer_offsets_maxlatproc, cpu); ++ break; ++#endif ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) && \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++ case TIMERANDWAKEUP_LATENCY: ++ hist = &per_cpu(timerandwakeup_latency_hist, cpu); ++ mp = &per_cpu(timerandwakeup_maxlatproc, cpu); ++ break; ++#endif ++ } ++ ++ hist_reset(hist); ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++ if (latency_type == WAKEUP_LATENCY || ++ latency_type == WAKEUP_LATENCY_SHAREDPRIO || ++ latency_type == MISSED_TIMER_OFFSETS || ++ latency_type == TIMERANDWAKEUP_LATENCY) ++ clear_maxlatprocdata(mp); ++#endif ++ } ++ ++ return size; ++} ++ ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++static ssize_t ++show_pid(struct file *file, char __user *ubuf, size_t cnt, loff_t *ppos) ++{ ++ char buf[64]; ++ int r; ++ unsigned long *this_pid = file->private_data; ++ ++ r = snprintf(buf, sizeof(buf), "%lu\n", *this_pid); ++ return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); ++} ++ ++static ssize_t do_pid(struct file *file, const char __user *ubuf, ++ size_t cnt, loff_t *ppos) ++{ ++ char buf[64]; ++ unsigned long pid; ++ unsigned long *this_pid = file->private_data; ++ ++ if (cnt >= sizeof(buf)) ++ return -EINVAL; ++ ++ if (copy_from_user(&buf, ubuf, cnt)) ++ return -EFAULT; ++ ++ buf[cnt] = '\0'; ++ ++ if (kstrtoul(buf, 10, &pid)) ++ return -EINVAL; ++ ++ *this_pid = pid; ++ ++ return cnt; ++} ++#endif ++ ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++static ssize_t ++show_maxlatproc(struct file *file, char __user *ubuf, size_t cnt, loff_t *ppos) ++{ ++ int r; ++ struct maxlatproc_data *mp = file->private_data; ++ int strmaxlen = (TASK_COMM_LEN * 2) + (8 * 8); ++ unsigned long long t; ++ unsigned long usecs, secs; ++ char *buf; ++ ++ if (mp->pid == -1 || mp->current_pid == -1) { ++ buf = "(none)\n"; ++ return simple_read_from_buffer(ubuf, cnt, ppos, buf, ++ strlen(buf)); ++ } ++ ++ buf = kmalloc(strmaxlen, GFP_KERNEL); ++ if (buf == NULL) ++ return -ENOMEM; ++ ++ t = ns2usecs(mp->timestamp); ++ usecs = do_div(t, USEC_PER_SEC); ++ secs = (unsigned long) t; ++ r = snprintf(buf, strmaxlen, ++ "%d %d %ld (%ld) %s <- %d %d %s %lu.%06lu\n", mp->pid, ++ MAX_RT_PRIO-1 - mp->prio, mp->latency, mp->timeroffset, mp->comm, ++ mp->current_pid, MAX_RT_PRIO-1 - mp->current_prio, mp->current_comm, ++ secs, usecs); ++ r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r); ++ kfree(buf); ++ return r; ++} ++#endif ++ ++static ssize_t ++show_enable(struct file *file, char __user *ubuf, size_t cnt, loff_t *ppos) ++{ ++ char buf[64]; ++ struct enable_data *ed = file->private_data; ++ int r; ++ ++ r = snprintf(buf, sizeof(buf), "%d\n", ed->enabled); ++ return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); ++} ++ ++static ssize_t ++do_enable(struct file *file, const char __user *ubuf, size_t cnt, loff_t *ppos) ++{ ++ char buf[64]; ++ long enable; ++ struct enable_data *ed = file->private_data; ++ ++ if (cnt >= sizeof(buf)) ++ return -EINVAL; ++ ++ if (copy_from_user(&buf, ubuf, cnt)) ++ return -EFAULT; ++ ++ buf[cnt] = 0; ++ ++ if (kstrtoul(buf, 10, &enable)) ++ return -EINVAL; ++ ++ if ((enable && ed->enabled) || (!enable && !ed->enabled)) ++ return cnt; ++ ++ if (enable) { ++ int ret; ++ ++ switch (ed->latency_type) { ++#if defined(CONFIG_INTERRUPT_OFF_HIST) || defined(CONFIG_PREEMPT_OFF_HIST) ++ case PREEMPTIRQSOFF_LATENCY: ++ ret = register_trace_preemptirqsoff_hist( ++ probe_preemptirqsoff_hist, NULL); ++ if (ret) { ++ pr_info("wakeup trace: Couldn't assign " ++ "probe_preemptirqsoff_hist " ++ "to trace_preemptirqsoff_hist\n"); ++ return ret; ++ } ++ break; ++#endif ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++ case WAKEUP_LATENCY: ++ ret = register_trace_sched_wakeup( ++ probe_wakeup_latency_hist_start, NULL); ++ if (ret) { ++ pr_info("wakeup trace: Couldn't assign " ++ "probe_wakeup_latency_hist_start " ++ "to trace_sched_wakeup\n"); ++ return ret; ++ } ++ ret = register_trace_sched_wakeup_new( ++ probe_wakeup_latency_hist_start, NULL); ++ if (ret) { ++ pr_info("wakeup trace: Couldn't assign " ++ "probe_wakeup_latency_hist_start " ++ "to trace_sched_wakeup_new\n"); ++ unregister_trace_sched_wakeup( ++ probe_wakeup_latency_hist_start, NULL); ++ return ret; ++ } ++ ret = register_trace_sched_switch( ++ probe_wakeup_latency_hist_stop, NULL); ++ if (ret) { ++ pr_info("wakeup trace: Couldn't assign " ++ "probe_wakeup_latency_hist_stop " ++ "to trace_sched_switch\n"); ++ unregister_trace_sched_wakeup( ++ probe_wakeup_latency_hist_start, NULL); ++ unregister_trace_sched_wakeup_new( ++ probe_wakeup_latency_hist_start, NULL); ++ return ret; ++ } ++ ret = register_trace_sched_migrate_task( ++ probe_sched_migrate_task, NULL); ++ if (ret) { ++ pr_info("wakeup trace: Couldn't assign " ++ "probe_sched_migrate_task " ++ "to trace_sched_migrate_task\n"); ++ unregister_trace_sched_wakeup( ++ probe_wakeup_latency_hist_start, NULL); ++ unregister_trace_sched_wakeup_new( ++ probe_wakeup_latency_hist_start, NULL); ++ unregister_trace_sched_switch( ++ probe_wakeup_latency_hist_stop, NULL); ++ return ret; ++ } ++ break; ++#endif ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ case MISSED_TIMER_OFFSETS: ++ ret = register_trace_hrtimer_interrupt( ++ probe_hrtimer_interrupt, NULL); ++ if (ret) { ++ pr_info("wakeup trace: Couldn't assign " ++ "probe_hrtimer_interrupt " ++ "to trace_hrtimer_interrupt\n"); ++ return ret; ++ } ++ break; ++#endif ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) && \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++ case TIMERANDWAKEUP_LATENCY: ++ if (!wakeup_latency_enabled_data.enabled || ++ !missed_timer_offsets_enabled_data.enabled) ++ return -EINVAL; ++ break; ++#endif ++ default: ++ break; ++ } ++ } else { ++ switch (ed->latency_type) { ++#if defined(CONFIG_INTERRUPT_OFF_HIST) || defined(CONFIG_PREEMPT_OFF_HIST) ++ case PREEMPTIRQSOFF_LATENCY: ++ { ++ int cpu; ++ ++ unregister_trace_preemptirqsoff_hist( ++ probe_preemptirqsoff_hist, NULL); ++ for_each_online_cpu(cpu) { ++#ifdef CONFIG_INTERRUPT_OFF_HIST ++ per_cpu(hist_irqsoff_counting, ++ cpu) = 0; ++#endif ++#ifdef CONFIG_PREEMPT_OFF_HIST ++ per_cpu(hist_preemptoff_counting, ++ cpu) = 0; ++#endif ++#if defined(CONFIG_INTERRUPT_OFF_HIST) && defined(CONFIG_PREEMPT_OFF_HIST) ++ per_cpu(hist_preemptirqsoff_counting, ++ cpu) = 0; ++#endif ++ } ++ } ++ break; ++#endif ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++ case WAKEUP_LATENCY: ++ { ++ int cpu; ++ ++ unregister_trace_sched_wakeup( ++ probe_wakeup_latency_hist_start, NULL); ++ unregister_trace_sched_wakeup_new( ++ probe_wakeup_latency_hist_start, NULL); ++ unregister_trace_sched_switch( ++ probe_wakeup_latency_hist_stop, NULL); ++ unregister_trace_sched_migrate_task( ++ probe_sched_migrate_task, NULL); ++ ++ for_each_online_cpu(cpu) { ++ per_cpu(wakeup_task, cpu) = NULL; ++ per_cpu(wakeup_sharedprio, cpu) = 0; ++ } ++ } ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ timerandwakeup_enabled_data.enabled = 0; ++#endif ++ break; ++#endif ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ case MISSED_TIMER_OFFSETS: ++ unregister_trace_hrtimer_interrupt( ++ probe_hrtimer_interrupt, NULL); ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++ timerandwakeup_enabled_data.enabled = 0; ++#endif ++ break; ++#endif ++ default: ++ break; ++ } ++ } ++ ed->enabled = enable; ++ return cnt; ++} ++ ++static const struct file_operations latency_hist_reset_fops = { ++ .open = tracing_open_generic, ++ .write = latency_hist_reset, ++}; ++ ++static const struct file_operations enable_fops = { ++ .open = tracing_open_generic, ++ .read = show_enable, ++ .write = do_enable, ++}; ++ ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++static const struct file_operations pid_fops = { ++ .open = tracing_open_generic, ++ .read = show_pid, ++ .write = do_pid, ++}; ++ ++static const struct file_operations maxlatproc_fops = { ++ .open = tracing_open_generic, ++ .read = show_maxlatproc, ++}; ++#endif ++ ++#if defined(CONFIG_INTERRUPT_OFF_HIST) || defined(CONFIG_PREEMPT_OFF_HIST) ++static notrace void probe_preemptirqsoff_hist(void *v, int reason, ++ int starthist) ++{ ++ int cpu = raw_smp_processor_id(); ++ int time_set = 0; ++ ++ if (starthist) { ++ cycle_t uninitialized_var(start); ++ ++ if (!preempt_count() && !irqs_disabled()) ++ return; ++ ++#ifdef CONFIG_INTERRUPT_OFF_HIST ++ if ((reason == IRQS_OFF || reason == TRACE_START) && ++ !per_cpu(hist_irqsoff_counting, cpu)) { ++ per_cpu(hist_irqsoff_counting, cpu) = 1; ++ start = ftrace_now(cpu); ++ time_set++; ++ per_cpu(hist_irqsoff_start, cpu) = start; ++ } ++#endif ++ ++#ifdef CONFIG_PREEMPT_OFF_HIST ++ if ((reason == PREEMPT_OFF || reason == TRACE_START) && ++ !per_cpu(hist_preemptoff_counting, cpu)) { ++ per_cpu(hist_preemptoff_counting, cpu) = 1; ++ if (!(time_set++)) ++ start = ftrace_now(cpu); ++ per_cpu(hist_preemptoff_start, cpu) = start; ++ } ++#endif ++ ++#if defined(CONFIG_INTERRUPT_OFF_HIST) && defined(CONFIG_PREEMPT_OFF_HIST) ++ if (per_cpu(hist_irqsoff_counting, cpu) && ++ per_cpu(hist_preemptoff_counting, cpu) && ++ !per_cpu(hist_preemptirqsoff_counting, cpu)) { ++ per_cpu(hist_preemptirqsoff_counting, cpu) = 1; ++ if (!time_set) ++ start = ftrace_now(cpu); ++ per_cpu(hist_preemptirqsoff_start, cpu) = start; ++ } ++#endif ++ } else { ++ cycle_t uninitialized_var(stop); ++ ++#ifdef CONFIG_INTERRUPT_OFF_HIST ++ if ((reason == IRQS_ON || reason == TRACE_STOP) && ++ per_cpu(hist_irqsoff_counting, cpu)) { ++ cycle_t start = per_cpu(hist_irqsoff_start, cpu); ++ ++ stop = ftrace_now(cpu); ++ time_set++; ++ if (start) { ++ long latency = ((long) (stop - start)) / ++ NSECS_PER_USECS; ++ ++ latency_hist(IRQSOFF_LATENCY, cpu, latency, 0, ++ stop, NULL); ++ } ++ per_cpu(hist_irqsoff_counting, cpu) = 0; ++ } ++#endif ++ ++#ifdef CONFIG_PREEMPT_OFF_HIST ++ if ((reason == PREEMPT_ON || reason == TRACE_STOP) && ++ per_cpu(hist_preemptoff_counting, cpu)) { ++ cycle_t start = per_cpu(hist_preemptoff_start, cpu); ++ ++ if (!(time_set++)) ++ stop = ftrace_now(cpu); ++ if (start) { ++ long latency = ((long) (stop - start)) / ++ NSECS_PER_USECS; ++ ++ latency_hist(PREEMPTOFF_LATENCY, cpu, latency, ++ 0, stop, NULL); ++ } ++ per_cpu(hist_preemptoff_counting, cpu) = 0; ++ } ++#endif ++ ++#if defined(CONFIG_INTERRUPT_OFF_HIST) && defined(CONFIG_PREEMPT_OFF_HIST) ++ if ((!per_cpu(hist_irqsoff_counting, cpu) || ++ !per_cpu(hist_preemptoff_counting, cpu)) && ++ per_cpu(hist_preemptirqsoff_counting, cpu)) { ++ cycle_t start = per_cpu(hist_preemptirqsoff_start, cpu); ++ ++ if (!time_set) ++ stop = ftrace_now(cpu); ++ if (start) { ++ long latency = ((long) (stop - start)) / ++ NSECS_PER_USECS; ++ ++ latency_hist(PREEMPTIRQSOFF_LATENCY, cpu, ++ latency, 0, stop, NULL); ++ } ++ per_cpu(hist_preemptirqsoff_counting, cpu) = 0; ++ } ++#endif ++ } ++} ++#endif ++ ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++static DEFINE_RAW_SPINLOCK(wakeup_lock); ++static notrace void probe_sched_migrate_task(void *v, struct task_struct *task, ++ int cpu) ++{ ++ int old_cpu = task_cpu(task); ++ ++ if (cpu != old_cpu) { ++ unsigned long flags; ++ struct task_struct *cpu_wakeup_task; ++ ++ raw_spin_lock_irqsave(&wakeup_lock, flags); ++ ++ cpu_wakeup_task = per_cpu(wakeup_task, old_cpu); ++ if (task == cpu_wakeup_task) { ++ put_task_struct(cpu_wakeup_task); ++ per_cpu(wakeup_task, old_cpu) = NULL; ++ cpu_wakeup_task = per_cpu(wakeup_task, cpu) = task; ++ get_task_struct(cpu_wakeup_task); ++ } ++ ++ raw_spin_unlock_irqrestore(&wakeup_lock, flags); ++ } ++} ++ ++static notrace void probe_wakeup_latency_hist_start(void *v, ++ struct task_struct *p, int success) ++{ ++ unsigned long flags; ++ struct task_struct *curr = current; ++ int cpu = task_cpu(p); ++ struct task_struct *cpu_wakeup_task; ++ ++ raw_spin_lock_irqsave(&wakeup_lock, flags); ++ ++ cpu_wakeup_task = per_cpu(wakeup_task, cpu); ++ ++ if (wakeup_pid) { ++ if ((cpu_wakeup_task && p->prio == cpu_wakeup_task->prio) || ++ p->prio == curr->prio) ++ per_cpu(wakeup_sharedprio, cpu) = 1; ++ if (likely(wakeup_pid != task_pid_nr(p))) ++ goto out; ++ } else { ++ if (likely(!rt_task(p)) || ++ (cpu_wakeup_task && p->prio > cpu_wakeup_task->prio) || ++ p->prio > curr->prio) ++ goto out; ++ if ((cpu_wakeup_task && p->prio == cpu_wakeup_task->prio) || ++ p->prio == curr->prio) ++ per_cpu(wakeup_sharedprio, cpu) = 1; ++ } ++ ++ if (cpu_wakeup_task) ++ put_task_struct(cpu_wakeup_task); ++ cpu_wakeup_task = per_cpu(wakeup_task, cpu) = p; ++ get_task_struct(cpu_wakeup_task); ++ cpu_wakeup_task->preempt_timestamp_hist = ++ ftrace_now(raw_smp_processor_id()); ++out: ++ raw_spin_unlock_irqrestore(&wakeup_lock, flags); ++} ++ ++static notrace void probe_wakeup_latency_hist_stop(void *v, ++ struct task_struct *prev, struct task_struct *next) ++{ ++ unsigned long flags; ++ int cpu = task_cpu(next); ++ long latency; ++ cycle_t stop; ++ struct task_struct *cpu_wakeup_task; ++ ++ raw_spin_lock_irqsave(&wakeup_lock, flags); ++ ++ cpu_wakeup_task = per_cpu(wakeup_task, cpu); ++ ++ if (cpu_wakeup_task == NULL) ++ goto out; ++ ++ /* Already running? */ ++ if (unlikely(current == cpu_wakeup_task)) ++ goto out_reset; ++ ++ if (next != cpu_wakeup_task) { ++ if (next->prio < cpu_wakeup_task->prio) ++ goto out_reset; ++ ++ if (next->prio == cpu_wakeup_task->prio) ++ per_cpu(wakeup_sharedprio, cpu) = 1; ++ ++ goto out; ++ } ++ ++ if (current->prio == cpu_wakeup_task->prio) ++ per_cpu(wakeup_sharedprio, cpu) = 1; ++ ++ /* ++ * The task we are waiting for is about to be switched to. ++ * Calculate latency and store it in histogram. ++ */ ++ stop = ftrace_now(raw_smp_processor_id()); ++ ++ latency = ((long) (stop - next->preempt_timestamp_hist)) / ++ NSECS_PER_USECS; ++ ++ if (per_cpu(wakeup_sharedprio, cpu)) { ++ latency_hist(WAKEUP_LATENCY_SHAREDPRIO, cpu, latency, 0, stop, ++ next); ++ per_cpu(wakeup_sharedprio, cpu) = 0; ++ } else { ++ latency_hist(WAKEUP_LATENCY, cpu, latency, 0, stop, next); ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ if (timerandwakeup_enabled_data.enabled) { ++ latency_hist(TIMERANDWAKEUP_LATENCY, cpu, ++ next->timer_offset + latency, next->timer_offset, ++ stop, next); ++ } ++#endif ++ } ++ ++out_reset: ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ next->timer_offset = 0; ++#endif ++ put_task_struct(cpu_wakeup_task); ++ per_cpu(wakeup_task, cpu) = NULL; ++out: ++ raw_spin_unlock_irqrestore(&wakeup_lock, flags); ++} ++#endif ++ ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++static notrace void probe_hrtimer_interrupt(void *v, int cpu, ++ long long latency_ns, struct task_struct *curr, ++ struct task_struct *task) ++{ ++ if (latency_ns <= 0 && task != NULL && rt_task(task) && ++ (task->prio < curr->prio || ++ (task->prio == curr->prio && ++ !cpumask_test_cpu(cpu, &task->cpus_allowed)))) { ++ long latency; ++ cycle_t now; ++ ++ if (missed_timer_offsets_pid) { ++ if (likely(missed_timer_offsets_pid != ++ task_pid_nr(task))) ++ return; ++ } ++ ++ now = ftrace_now(cpu); ++ latency = (long) div_s64(-latency_ns, NSECS_PER_USECS); ++ latency_hist(MISSED_TIMER_OFFSETS, cpu, latency, latency, now, ++ task); ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++ task->timer_offset = latency; ++#endif ++ } ++} ++#endif ++ ++static __init int latency_hist_init(void) ++{ ++ struct dentry *latency_hist_root = NULL; ++ struct dentry *dentry; ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++ struct dentry *dentry_sharedprio; ++#endif ++ struct dentry *entry; ++ struct dentry *enable_root; ++ int i = 0; ++ struct hist_data *my_hist; ++ char name[64]; ++ char *cpufmt = "CPU%d"; ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) || \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++ char *cpufmt_maxlatproc = "max_latency-CPU%d"; ++ struct maxlatproc_data *mp = NULL; ++#endif ++ ++ dentry = tracing_init_dentry(); ++ latency_hist_root = debugfs_create_dir(latency_hist_dir_root, dentry); ++ enable_root = debugfs_create_dir("enable", latency_hist_root); ++ ++#ifdef CONFIG_INTERRUPT_OFF_HIST ++ dentry = debugfs_create_dir(irqsoff_hist_dir, latency_hist_root); ++ for_each_possible_cpu(i) { ++ sprintf(name, cpufmt, i); ++ entry = debugfs_create_file(name, 0444, dentry, ++ &per_cpu(irqsoff_hist, i), &latency_hist_fops); ++ my_hist = &per_cpu(irqsoff_hist, i); ++ atomic_set(&my_hist->hist_mode, 1); ++ my_hist->min_lat = LONG_MAX; ++ } ++ entry = debugfs_create_file("reset", 0644, dentry, ++ (void *)IRQSOFF_LATENCY, &latency_hist_reset_fops); ++#endif ++ ++#ifdef CONFIG_PREEMPT_OFF_HIST ++ dentry = debugfs_create_dir(preemptoff_hist_dir, ++ latency_hist_root); ++ for_each_possible_cpu(i) { ++ sprintf(name, cpufmt, i); ++ entry = debugfs_create_file(name, 0444, dentry, ++ &per_cpu(preemptoff_hist, i), &latency_hist_fops); ++ my_hist = &per_cpu(preemptoff_hist, i); ++ atomic_set(&my_hist->hist_mode, 1); ++ my_hist->min_lat = LONG_MAX; ++ } ++ entry = debugfs_create_file("reset", 0644, dentry, ++ (void *)PREEMPTOFF_LATENCY, &latency_hist_reset_fops); ++#endif ++ ++#if defined(CONFIG_INTERRUPT_OFF_HIST) && defined(CONFIG_PREEMPT_OFF_HIST) ++ dentry = debugfs_create_dir(preemptirqsoff_hist_dir, ++ latency_hist_root); ++ for_each_possible_cpu(i) { ++ sprintf(name, cpufmt, i); ++ entry = debugfs_create_file(name, 0444, dentry, ++ &per_cpu(preemptirqsoff_hist, i), &latency_hist_fops); ++ my_hist = &per_cpu(preemptirqsoff_hist, i); ++ atomic_set(&my_hist->hist_mode, 1); ++ my_hist->min_lat = LONG_MAX; ++ } ++ entry = debugfs_create_file("reset", 0644, dentry, ++ (void *)PREEMPTIRQSOFF_LATENCY, &latency_hist_reset_fops); ++#endif ++ ++#if defined(CONFIG_INTERRUPT_OFF_HIST) || defined(CONFIG_PREEMPT_OFF_HIST) ++ entry = debugfs_create_file("preemptirqsoff", 0644, ++ enable_root, (void *)&preemptirqsoff_enabled_data, ++ &enable_fops); ++#endif ++ ++#ifdef CONFIG_WAKEUP_LATENCY_HIST ++ dentry = debugfs_create_dir(wakeup_latency_hist_dir, ++ latency_hist_root); ++ dentry_sharedprio = debugfs_create_dir( ++ wakeup_latency_hist_dir_sharedprio, dentry); ++ for_each_possible_cpu(i) { ++ sprintf(name, cpufmt, i); ++ ++ entry = debugfs_create_file(name, 0444, dentry, ++ &per_cpu(wakeup_latency_hist, i), ++ &latency_hist_fops); ++ my_hist = &per_cpu(wakeup_latency_hist, i); ++ atomic_set(&my_hist->hist_mode, 1); ++ my_hist->min_lat = LONG_MAX; ++ ++ entry = debugfs_create_file(name, 0444, dentry_sharedprio, ++ &per_cpu(wakeup_latency_hist_sharedprio, i), ++ &latency_hist_fops); ++ my_hist = &per_cpu(wakeup_latency_hist_sharedprio, i); ++ atomic_set(&my_hist->hist_mode, 1); ++ my_hist->min_lat = LONG_MAX; ++ ++ sprintf(name, cpufmt_maxlatproc, i); ++ ++ mp = &per_cpu(wakeup_maxlatproc, i); ++ entry = debugfs_create_file(name, 0444, dentry, mp, ++ &maxlatproc_fops); ++ clear_maxlatprocdata(mp); ++ ++ mp = &per_cpu(wakeup_maxlatproc_sharedprio, i); ++ entry = debugfs_create_file(name, 0444, dentry_sharedprio, mp, ++ &maxlatproc_fops); ++ clear_maxlatprocdata(mp); ++ } ++ entry = debugfs_create_file("pid", 0644, dentry, ++ (void *)&wakeup_pid, &pid_fops); ++ entry = debugfs_create_file("reset", 0644, dentry, ++ (void *)WAKEUP_LATENCY, &latency_hist_reset_fops); ++ entry = debugfs_create_file("reset", 0644, dentry_sharedprio, ++ (void *)WAKEUP_LATENCY_SHAREDPRIO, &latency_hist_reset_fops); ++ entry = debugfs_create_file("wakeup", 0644, ++ enable_root, (void *)&wakeup_latency_enabled_data, ++ &enable_fops); ++#endif ++ ++#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST ++ dentry = debugfs_create_dir(missed_timer_offsets_dir, ++ latency_hist_root); ++ for_each_possible_cpu(i) { ++ sprintf(name, cpufmt, i); ++ entry = debugfs_create_file(name, 0444, dentry, ++ &per_cpu(missed_timer_offsets, i), &latency_hist_fops); ++ my_hist = &per_cpu(missed_timer_offsets, i); ++ atomic_set(&my_hist->hist_mode, 1); ++ my_hist->min_lat = LONG_MAX; ++ ++ sprintf(name, cpufmt_maxlatproc, i); ++ mp = &per_cpu(missed_timer_offsets_maxlatproc, i); ++ entry = debugfs_create_file(name, 0444, dentry, mp, ++ &maxlatproc_fops); ++ clear_maxlatprocdata(mp); ++ } ++ entry = debugfs_create_file("pid", 0644, dentry, ++ (void *)&missed_timer_offsets_pid, &pid_fops); ++ entry = debugfs_create_file("reset", 0644, dentry, ++ (void *)MISSED_TIMER_OFFSETS, &latency_hist_reset_fops); ++ entry = debugfs_create_file("missed_timer_offsets", 0644, ++ enable_root, (void *)&missed_timer_offsets_enabled_data, ++ &enable_fops); ++#endif ++ ++#if defined(CONFIG_WAKEUP_LATENCY_HIST) && \ ++ defined(CONFIG_MISSED_TIMER_OFFSETS_HIST) ++ dentry = debugfs_create_dir(timerandwakeup_latency_hist_dir, ++ latency_hist_root); ++ for_each_possible_cpu(i) { ++ sprintf(name, cpufmt, i); ++ entry = debugfs_create_file(name, 0444, dentry, ++ &per_cpu(timerandwakeup_latency_hist, i), ++ &latency_hist_fops); ++ my_hist = &per_cpu(timerandwakeup_latency_hist, i); ++ atomic_set(&my_hist->hist_mode, 1); ++ my_hist->min_lat = LONG_MAX; ++ ++ sprintf(name, cpufmt_maxlatproc, i); ++ mp = &per_cpu(timerandwakeup_maxlatproc, i); ++ entry = debugfs_create_file(name, 0444, dentry, mp, ++ &maxlatproc_fops); ++ clear_maxlatprocdata(mp); ++ } ++ entry = debugfs_create_file("reset", 0644, dentry, ++ (void *)TIMERANDWAKEUP_LATENCY, &latency_hist_reset_fops); ++ entry = debugfs_create_file("timerandwakeup", 0644, ++ enable_root, (void *)&timerandwakeup_enabled_data, ++ &enable_fops); ++#endif ++ return 0; ++} ++ ++device_initcall(latency_hist_init); +diff -Nur linux-3.18.12.orig/kernel/trace/Makefile linux-3.18.12/kernel/trace/Makefile +--- linux-3.18.12.orig/kernel/trace/Makefile 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/trace/Makefile 2015-04-26 13:32:22.455684003 -0500 +@@ -36,6 +36,10 @@ + obj-$(CONFIG_IRQSOFF_TRACER) += trace_irqsoff.o + obj-$(CONFIG_PREEMPT_TRACER) += trace_irqsoff.o + obj-$(CONFIG_SCHED_TRACER) += trace_sched_wakeup.o ++obj-$(CONFIG_INTERRUPT_OFF_HIST) += latency_hist.o ++obj-$(CONFIG_PREEMPT_OFF_HIST) += latency_hist.o ++obj-$(CONFIG_WAKEUP_LATENCY_HIST) += latency_hist.o ++obj-$(CONFIG_MISSED_TIMER_OFFSETS_HIST) += latency_hist.o + obj-$(CONFIG_NOP_TRACER) += trace_nop.o + obj-$(CONFIG_STACK_TRACER) += trace_stack.o + obj-$(CONFIG_MMIOTRACE) += trace_mmiotrace.o +diff -Nur linux-3.18.12.orig/kernel/trace/trace.c linux-3.18.12/kernel/trace/trace.c +--- linux-3.18.12.orig/kernel/trace/trace.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/trace/trace.c 2015-04-26 13:32:22.455684003 -0500 +@@ -1579,6 +1579,7 @@ + struct task_struct *tsk = current; + + entry->preempt_count = pc & 0xff; ++ entry->preempt_lazy_count = preempt_lazy_count(); + entry->pid = (tsk) ? tsk->pid : 0; + entry->flags = + #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT +@@ -1588,8 +1589,11 @@ + #endif + ((pc & HARDIRQ_MASK) ? TRACE_FLAG_HARDIRQ : 0) | + ((pc & SOFTIRQ_MASK) ? TRACE_FLAG_SOFTIRQ : 0) | +- (tif_need_resched() ? TRACE_FLAG_NEED_RESCHED : 0) | ++ (tif_need_resched_now() ? TRACE_FLAG_NEED_RESCHED : 0) | ++ (need_resched_lazy() ? TRACE_FLAG_NEED_RESCHED_LAZY : 0) | + (test_preempt_need_resched() ? TRACE_FLAG_PREEMPT_RESCHED : 0); ++ ++ entry->migrate_disable = (tsk) ? __migrate_disabled(tsk) & 0xFF : 0; + } + EXPORT_SYMBOL_GPL(tracing_generic_entry_update); + +@@ -2509,14 +2513,17 @@ + + static void print_lat_help_header(struct seq_file *m) + { +- seq_puts(m, "# _------=> CPU# \n"); +- seq_puts(m, "# / _-----=> irqs-off \n"); +- seq_puts(m, "# | / _----=> need-resched \n"); +- seq_puts(m, "# || / _---=> hardirq/softirq \n"); +- seq_puts(m, "# ||| / _--=> preempt-depth \n"); +- seq_puts(m, "# |||| / delay \n"); +- seq_puts(m, "# cmd pid ||||| time | caller \n"); +- seq_puts(m, "# \\ / ||||| \\ | / \n"); ++ seq_puts(m, "# _--------=> CPU# \n"); ++ seq_puts(m, "# / _-------=> irqs-off \n"); ++ seq_puts(m, "# | / _------=> need-resched \n"); ++ seq_puts(m, "# || / _-----=> need-resched_lazy \n"); ++ seq_puts(m, "# ||| / _----=> hardirq/softirq \n"); ++ seq_puts(m, "# |||| / _---=> preempt-depth \n"); ++ seq_puts(m, "# ||||| / _--=> preempt-lazy-depth\n"); ++ seq_puts(m, "# |||||| / _-=> migrate-disable \n"); ++ seq_puts(m, "# ||||||| / delay \n"); ++ seq_puts(m, "# cmd pid |||||||| time | caller \n"); ++ seq_puts(m, "# \\ / |||||||| \\ | / \n"); + } + + static void print_event_info(struct trace_buffer *buf, struct seq_file *m) +@@ -2540,13 +2547,16 @@ + static void print_func_help_header_irq(struct trace_buffer *buf, struct seq_file *m) + { + print_event_info(buf, m); +- seq_puts(m, "# _-----=> irqs-off\n"); +- seq_puts(m, "# / _----=> need-resched\n"); +- seq_puts(m, "# | / _---=> hardirq/softirq\n"); +- seq_puts(m, "# || / _--=> preempt-depth\n"); +- seq_puts(m, "# ||| / delay\n"); +- seq_puts(m, "# TASK-PID CPU# |||| TIMESTAMP FUNCTION\n"); +- seq_puts(m, "# | | | |||| | |\n"); ++ seq_puts(m, "# _-------=> irqs-off \n"); ++ seq_puts(m, "# / _------=> need-resched \n"); ++ seq_puts(m, "# |/ _-----=> need-resched_lazy \n"); ++ seq_puts(m, "# ||/ _----=> hardirq/softirq \n"); ++ seq_puts(m, "# |||/ _---=> preempt-depth \n"); ++ seq_puts(m, "# ||||/ _--=> preempt-lazy-depth\n"); ++ seq_puts(m, "# ||||| / _-=> migrate-disable \n"); ++ seq_puts(m, "# |||||| / delay\n"); ++ seq_puts(m, "# TASK-PID CPU# |||||| TIMESTAMP FUNCTION\n"); ++ seq_puts(m, "# | | | |||||| | |\n"); + } + + void +diff -Nur linux-3.18.12.orig/kernel/trace/trace_events.c linux-3.18.12/kernel/trace/trace_events.c +--- linux-3.18.12.orig/kernel/trace/trace_events.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/trace/trace_events.c 2015-04-26 13:32:22.455684003 -0500 +@@ -162,6 +162,8 @@ + __common_field(unsigned char, flags); + __common_field(unsigned char, preempt_count); + __common_field(int, pid); ++ __common_field(unsigned short, migrate_disable); ++ __common_field(unsigned short, padding); + + return ret; + } +diff -Nur linux-3.18.12.orig/kernel/trace/trace.h linux-3.18.12/kernel/trace/trace.h +--- linux-3.18.12.orig/kernel/trace/trace.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/trace/trace.h 2015-04-26 13:32:22.455684003 -0500 +@@ -119,6 +119,7 @@ + * NEED_RESCHED - reschedule is requested + * HARDIRQ - inside an interrupt handler + * SOFTIRQ - inside a softirq handler ++ * NEED_RESCHED_LAZY - lazy reschedule is requested + */ + enum trace_flag_type { + TRACE_FLAG_IRQS_OFF = 0x01, +@@ -127,6 +128,7 @@ + TRACE_FLAG_HARDIRQ = 0x08, + TRACE_FLAG_SOFTIRQ = 0x10, + TRACE_FLAG_PREEMPT_RESCHED = 0x20, ++ TRACE_FLAG_NEED_RESCHED_LAZY = 0x40, + }; + + #define TRACE_BUF_SIZE 1024 +diff -Nur linux-3.18.12.orig/kernel/trace/trace_irqsoff.c linux-3.18.12/kernel/trace/trace_irqsoff.c +--- linux-3.18.12.orig/kernel/trace/trace_irqsoff.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/trace/trace_irqsoff.c 2015-04-26 13:32:22.455684003 -0500 +@@ -17,6 +17,7 @@ + #include + + #include "trace.h" ++#include + + static struct trace_array *irqsoff_trace __read_mostly; + static int tracer_enabled __read_mostly; +@@ -435,11 +436,13 @@ + { + if (preempt_trace() || irq_trace()) + start_critical_timing(CALLER_ADDR0, CALLER_ADDR1); ++ trace_preemptirqsoff_hist(TRACE_START, 1); + } + EXPORT_SYMBOL_GPL(start_critical_timings); + + void stop_critical_timings(void) + { ++ trace_preemptirqsoff_hist(TRACE_STOP, 0); + if (preempt_trace() || irq_trace()) + stop_critical_timing(CALLER_ADDR0, CALLER_ADDR1); + } +@@ -449,6 +452,7 @@ + #ifdef CONFIG_PROVE_LOCKING + void time_hardirqs_on(unsigned long a0, unsigned long a1) + { ++ trace_preemptirqsoff_hist(IRQS_ON, 0); + if (!preempt_trace() && irq_trace()) + stop_critical_timing(a0, a1); + } +@@ -457,6 +461,7 @@ + { + if (!preempt_trace() && irq_trace()) + start_critical_timing(a0, a1); ++ trace_preemptirqsoff_hist(IRQS_OFF, 1); + } + + #else /* !CONFIG_PROVE_LOCKING */ +@@ -482,6 +487,7 @@ + */ + void trace_hardirqs_on(void) + { ++ trace_preemptirqsoff_hist(IRQS_ON, 0); + if (!preempt_trace() && irq_trace()) + stop_critical_timing(CALLER_ADDR0, CALLER_ADDR1); + } +@@ -491,11 +497,13 @@ + { + if (!preempt_trace() && irq_trace()) + start_critical_timing(CALLER_ADDR0, CALLER_ADDR1); ++ trace_preemptirqsoff_hist(IRQS_OFF, 1); + } + EXPORT_SYMBOL(trace_hardirqs_off); + + __visible void trace_hardirqs_on_caller(unsigned long caller_addr) + { ++ trace_preemptirqsoff_hist(IRQS_ON, 0); + if (!preempt_trace() && irq_trace()) + stop_critical_timing(CALLER_ADDR0, caller_addr); + } +@@ -505,6 +513,7 @@ + { + if (!preempt_trace() && irq_trace()) + start_critical_timing(CALLER_ADDR0, caller_addr); ++ trace_preemptirqsoff_hist(IRQS_OFF, 1); + } + EXPORT_SYMBOL(trace_hardirqs_off_caller); + +@@ -514,12 +523,14 @@ + #ifdef CONFIG_PREEMPT_TRACER + void trace_preempt_on(unsigned long a0, unsigned long a1) + { ++ trace_preemptirqsoff_hist(PREEMPT_ON, 0); + if (preempt_trace() && !irq_trace()) + stop_critical_timing(a0, a1); + } + + void trace_preempt_off(unsigned long a0, unsigned long a1) + { ++ trace_preemptirqsoff_hist(PREEMPT_ON, 1); + if (preempt_trace() && !irq_trace()) + start_critical_timing(a0, a1); + } +diff -Nur linux-3.18.12.orig/kernel/trace/trace_output.c linux-3.18.12/kernel/trace/trace_output.c +--- linux-3.18.12.orig/kernel/trace/trace_output.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/trace/trace_output.c 2015-04-26 13:32:22.455684003 -0500 +@@ -410,6 +410,7 @@ + { + char hardsoft_irq; + char need_resched; ++ char need_resched_lazy; + char irqs_off; + int hardirq; + int softirq; +@@ -438,6 +439,8 @@ + need_resched = '.'; + break; + } ++ need_resched_lazy = ++ (entry->flags & TRACE_FLAG_NEED_RESCHED_LAZY) ? 'L' : '.'; + + hardsoft_irq = + (hardirq && softirq) ? 'H' : +@@ -445,8 +448,9 @@ + softirq ? 's' : + '.'; + +- if (!trace_seq_printf(s, "%c%c%c", +- irqs_off, need_resched, hardsoft_irq)) ++ if (!trace_seq_printf(s, "%c%c%c%c", ++ irqs_off, need_resched, need_resched_lazy, ++ hardsoft_irq)) + return 0; + + if (entry->preempt_count) +@@ -454,6 +458,16 @@ + else + ret = trace_seq_putc(s, '.'); + ++ if (entry->preempt_lazy_count) ++ ret = trace_seq_printf(s, "%x", entry->preempt_lazy_count); ++ else ++ ret = trace_seq_putc(s, '.'); ++ ++ if (entry->migrate_disable) ++ ret = trace_seq_printf(s, "%x", entry->migrate_disable); ++ else ++ ret = trace_seq_putc(s, '.'); ++ + return ret; + } + +diff -Nur linux-3.18.12.orig/kernel/user.c linux-3.18.12/kernel/user.c +--- linux-3.18.12.orig/kernel/user.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/user.c 2015-04-26 13:32:22.455684003 -0500 +@@ -158,11 +158,11 @@ + if (!up) + return; + +- local_irq_save(flags); ++ local_irq_save_nort(flags); + if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) + free_user(up, flags); + else +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + } + + struct user_struct *alloc_uid(kuid_t uid) +diff -Nur linux-3.18.12.orig/kernel/watchdog.c linux-3.18.12/kernel/watchdog.c +--- linux-3.18.12.orig/kernel/watchdog.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/watchdog.c 2015-04-26 13:32:22.459684003 -0500 +@@ -248,6 +248,8 @@ + + #ifdef CONFIG_HARDLOCKUP_DETECTOR + ++static DEFINE_RAW_SPINLOCK(watchdog_output_lock); ++ + static struct perf_event_attr wd_hw_attr = { + .type = PERF_TYPE_HARDWARE, + .config = PERF_COUNT_HW_CPU_CYCLES, +@@ -281,13 +283,21 @@ + /* only print hardlockups once */ + if (__this_cpu_read(hard_watchdog_warn) == true) + return; ++ /* ++ * If early-printk is enabled then make sure we do not ++ * lock up in printk() and kill console logging: ++ */ ++ printk_kill(); + +- if (hardlockup_panic) ++ if (hardlockup_panic) { + panic("Watchdog detected hard LOCKUP on cpu %d", + this_cpu); +- else ++ } else { ++ raw_spin_lock(&watchdog_output_lock); + WARN(1, "Watchdog detected hard LOCKUP on cpu %d", + this_cpu); ++ raw_spin_unlock(&watchdog_output_lock); ++ } + + __this_cpu_write(hard_watchdog_warn, true); + return; +@@ -430,6 +440,7 @@ + /* kick off the timer for the hardlockup detector */ + hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + hrtimer->function = watchdog_timer_fn; ++ hrtimer->irqsafe = 1; + + /* Enable the perf event */ + watchdog_nmi_enable(cpu); +diff -Nur linux-3.18.12.orig/kernel/workqueue.c linux-3.18.12/kernel/workqueue.c +--- linux-3.18.12.orig/kernel/workqueue.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/workqueue.c 2015-04-26 13:32:22.459684003 -0500 +@@ -48,6 +48,8 @@ + #include + #include + #include ++#include ++#include + + #include "workqueue_internal.h" + +@@ -121,15 +123,20 @@ + * cpu or grabbing pool->lock is enough for read access. If + * POOL_DISASSOCIATED is set, it's identical to L. + * ++ * On RT we need the extra protection via rt_lock_idle_list() for ++ * the list manipulations against read access from ++ * wq_worker_sleeping(). All other places are nicely serialized via ++ * pool->lock. ++ * + * A: pool->attach_mutex protected. + * + * PL: wq_pool_mutex protected. + * +- * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. ++ * PR: wq_pool_mutex protected for writes. RCU protected for reads. + * + * WQ: wq->mutex protected. + * +- * WR: wq->mutex protected for writes. Sched-RCU protected for reads. ++ * WR: wq->mutex protected for writes. RCU protected for reads. + * + * MD: wq_mayday_lock protected. + */ +@@ -177,7 +184,7 @@ + atomic_t nr_running ____cacheline_aligned_in_smp; + + /* +- * Destruction of pool is sched-RCU protected to allow dereferences ++ * Destruction of pool is RCU protected to allow dereferences + * from get_work_pool(). + */ + struct rcu_head rcu; +@@ -206,7 +213,7 @@ + /* + * Release of unbound pwq is punted to system_wq. See put_pwq() + * and pwq_unbound_release_workfn() for details. pool_workqueue +- * itself is also sched-RCU protected so that the first pwq can be ++ * itself is also RCU protected so that the first pwq can be + * determined without grabbing wq->mutex. + */ + struct work_struct unbound_release_work; +@@ -321,6 +328,8 @@ + struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; + EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); + ++static DEFINE_LOCAL_IRQ_LOCK(pendingb_lock); ++ + static int worker_thread(void *__worker); + static void copy_workqueue_attrs(struct workqueue_attrs *to, + const struct workqueue_attrs *from); +@@ -329,14 +338,14 @@ + #include + + #define assert_rcu_or_pool_mutex() \ +- rcu_lockdep_assert(rcu_read_lock_sched_held() || \ ++ rcu_lockdep_assert(rcu_read_lock_held() || \ + lockdep_is_held(&wq_pool_mutex), \ +- "sched RCU or wq_pool_mutex should be held") ++ "RCU or wq_pool_mutex should be held") + + #define assert_rcu_or_wq_mutex(wq) \ +- rcu_lockdep_assert(rcu_read_lock_sched_held() || \ ++ rcu_lockdep_assert(rcu_read_lock_held() || \ + lockdep_is_held(&wq->mutex), \ +- "sched RCU or wq->mutex should be held") ++ "RCU or wq->mutex should be held") + + #define for_each_cpu_worker_pool(pool, cpu) \ + for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ +@@ -348,7 +357,7 @@ + * @pool: iteration cursor + * @pi: integer used for iteration + * +- * This must be called either with wq_pool_mutex held or sched RCU read ++ * This must be called either with wq_pool_mutex held or RCU read + * locked. If the pool needs to be used beyond the locking in effect, the + * caller is responsible for guaranteeing that the pool stays online. + * +@@ -380,7 +389,7 @@ + * @pwq: iteration cursor + * @wq: the target workqueue + * +- * This must be called either with wq->mutex held or sched RCU read locked. ++ * This must be called either with wq->mutex held or RCU read locked. + * If the pwq needs to be used beyond the locking in effect, the caller is + * responsible for guaranteeing that the pwq stays online. + * +@@ -392,6 +401,31 @@ + if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ + else + ++#ifdef CONFIG_PREEMPT_RT_BASE ++static inline void rt_lock_idle_list(struct worker_pool *pool) ++{ ++ preempt_disable(); ++} ++static inline void rt_unlock_idle_list(struct worker_pool *pool) ++{ ++ preempt_enable(); ++} ++static inline void sched_lock_idle_list(struct worker_pool *pool) { } ++static inline void sched_unlock_idle_list(struct worker_pool *pool) { } ++#else ++static inline void rt_lock_idle_list(struct worker_pool *pool) { } ++static inline void rt_unlock_idle_list(struct worker_pool *pool) { } ++static inline void sched_lock_idle_list(struct worker_pool *pool) ++{ ++ spin_lock_irq(&pool->lock); ++} ++static inline void sched_unlock_idle_list(struct worker_pool *pool) ++{ ++ spin_unlock_irq(&pool->lock); ++} ++#endif ++ ++ + #ifdef CONFIG_DEBUG_OBJECTS_WORK + + static struct debug_obj_descr work_debug_descr; +@@ -542,7 +576,7 @@ + * @wq: the target workqueue + * @node: the node ID + * +- * This must be called either with pwq_lock held or sched RCU read locked. ++ * This must be called either with pwq_lock held or RCU read locked. + * If the pwq needs to be used beyond the locking in effect, the caller is + * responsible for guaranteeing that the pwq stays online. + * +@@ -646,8 +680,8 @@ + * @work: the work item of interest + * + * Pools are created and destroyed under wq_pool_mutex, and allows read +- * access under sched-RCU read lock. As such, this function should be +- * called under wq_pool_mutex or with preemption disabled. ++ * access under RCU read lock. As such, this function should be ++ * called under wq_pool_mutex or inside of a rcu_read_lock() region. + * + * All fields of the returned pool are accessible as long as the above + * mentioned locking is in effect. If the returned pool needs to be used +@@ -784,51 +818,44 @@ + */ + static void wake_up_worker(struct worker_pool *pool) + { +- struct worker *worker = first_idle_worker(pool); ++ struct worker *worker; ++ ++ rt_lock_idle_list(pool); ++ ++ worker = first_idle_worker(pool); + + if (likely(worker)) + wake_up_process(worker->task); ++ ++ rt_unlock_idle_list(pool); + } + + /** +- * wq_worker_waking_up - a worker is waking up +- * @task: task waking up +- * @cpu: CPU @task is waking up to +- * +- * This function is called during try_to_wake_up() when a worker is +- * being awoken. ++ * wq_worker_running - a worker is running again ++ * @task: task returning from sleep + * +- * CONTEXT: +- * spin_lock_irq(rq->lock) ++ * This function is called when a worker returns from schedule() + */ +-void wq_worker_waking_up(struct task_struct *task, int cpu) ++void wq_worker_running(struct task_struct *task) + { + struct worker *worker = kthread_data(task); + +- if (!(worker->flags & WORKER_NOT_RUNNING)) { +- WARN_ON_ONCE(worker->pool->cpu != cpu); ++ if (!worker->sleeping) ++ return; ++ if (!(worker->flags & WORKER_NOT_RUNNING)) + atomic_inc(&worker->pool->nr_running); +- } ++ worker->sleeping = 0; + } + + /** + * wq_worker_sleeping - a worker is going to sleep + * @task: task going to sleep +- * @cpu: CPU in question, must be the current CPU number +- * +- * This function is called during schedule() when a busy worker is +- * going to sleep. Worker on the same cpu can be woken up by +- * returning pointer to its task. +- * +- * CONTEXT: +- * spin_lock_irq(rq->lock) +- * +- * Return: +- * Worker task on @cpu to wake up, %NULL if none. ++ * This function is called from schedule() when a busy worker is ++ * going to sleep. + */ +-struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) ++void wq_worker_sleeping(struct task_struct *task) + { +- struct worker *worker = kthread_data(task), *to_wakeup = NULL; ++ struct worker *worker = kthread_data(task); + struct worker_pool *pool; + + /* +@@ -837,29 +864,26 @@ + * checking NOT_RUNNING. + */ + if (worker->flags & WORKER_NOT_RUNNING) +- return NULL; ++ return; + + pool = worker->pool; + +- /* this can only happen on the local cpu */ +- if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu)) +- return NULL; ++ if (WARN_ON_ONCE(worker->sleeping)) ++ return; ++ ++ worker->sleeping = 1; + + /* + * The counterpart of the following dec_and_test, implied mb, + * worklist not empty test sequence is in insert_work(). + * Please read comment there. +- * +- * NOT_RUNNING is clear. This means that we're bound to and +- * running on the local cpu w/ rq lock held and preemption +- * disabled, which in turn means that none else could be +- * manipulating idle_list, so dereferencing idle_list without pool +- * lock is safe. + */ + if (atomic_dec_and_test(&pool->nr_running) && +- !list_empty(&pool->worklist)) +- to_wakeup = first_idle_worker(pool); +- return to_wakeup ? to_wakeup->task : NULL; ++ !list_empty(&pool->worklist)) { ++ sched_lock_idle_list(pool); ++ wake_up_worker(pool); ++ sched_unlock_idle_list(pool); ++ } + } + + /** +@@ -1053,12 +1077,12 @@ + { + if (pwq) { + /* +- * As both pwqs and pools are sched-RCU protected, the ++ * As both pwqs and pools are RCU protected, the + * following lock operations are safe. + */ +- spin_lock_irq(&pwq->pool->lock); ++ local_spin_lock_irq(pendingb_lock, &pwq->pool->lock); + put_pwq(pwq); +- spin_unlock_irq(&pwq->pool->lock); ++ local_spin_unlock_irq(pendingb_lock, &pwq->pool->lock); + } + } + +@@ -1160,7 +1184,7 @@ + struct worker_pool *pool; + struct pool_workqueue *pwq; + +- local_irq_save(*flags); ++ local_lock_irqsave(pendingb_lock, *flags); + + /* try to steal the timer if it exists */ + if (is_dwork) { +@@ -1179,6 +1203,7 @@ + if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) + return 0; + ++ rcu_read_lock(); + /* + * The queueing is in progress, or it is already queued. Try to + * steal it from ->worklist without clearing WORK_STRUCT_PENDING. +@@ -1217,14 +1242,16 @@ + set_work_pool_and_keep_pending(work, pool->id); + + spin_unlock(&pool->lock); ++ rcu_read_unlock(); + return 1; + } + spin_unlock(&pool->lock); + fail: +- local_irq_restore(*flags); ++ rcu_read_unlock(); ++ local_unlock_irqrestore(pendingb_lock, *flags); + if (work_is_canceling(work)) + return -ENOENT; +- cpu_relax(); ++ cpu_chill(); + return -EAGAIN; + } + +@@ -1293,7 +1320,7 @@ + * queued or lose PENDING. Grabbing PENDING and queueing should + * happen with IRQ disabled. + */ +- WARN_ON_ONCE(!irqs_disabled()); ++ WARN_ON_ONCE_NONRT(!irqs_disabled()); + + debug_work_activate(work); + +@@ -1301,6 +1328,8 @@ + if (unlikely(wq->flags & __WQ_DRAINING) && + WARN_ON_ONCE(!is_chained_work(wq))) + return; ++ ++ rcu_read_lock(); + retry: + if (req_cpu == WORK_CPU_UNBOUND) + cpu = raw_smp_processor_id(); +@@ -1357,10 +1386,8 @@ + /* pwq determined, queue */ + trace_workqueue_queue_work(req_cpu, pwq, work); + +- if (WARN_ON(!list_empty(&work->entry))) { +- spin_unlock(&pwq->pool->lock); +- return; +- } ++ if (WARN_ON(!list_empty(&work->entry))) ++ goto out; + + pwq->nr_in_flight[pwq->work_color]++; + work_flags = work_color_to_flags(pwq->work_color); +@@ -1376,7 +1403,9 @@ + + insert_work(pwq, work, worklist, work_flags); + ++out: + spin_unlock(&pwq->pool->lock); ++ rcu_read_unlock(); + } + + /** +@@ -1396,14 +1425,14 @@ + bool ret = false; + unsigned long flags; + +- local_irq_save(flags); ++ local_lock_irqsave(pendingb_lock,flags); + + if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { + __queue_work(cpu, wq, work); + ret = true; + } + +- local_irq_restore(flags); ++ local_unlock_irqrestore(pendingb_lock, flags); + return ret; + } + EXPORT_SYMBOL(queue_work_on); +@@ -1470,14 +1499,14 @@ + unsigned long flags; + + /* read the comment in __queue_work() */ +- local_irq_save(flags); ++ local_lock_irqsave(pendingb_lock, flags); + + if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { + __queue_delayed_work(cpu, wq, dwork, delay); + ret = true; + } + +- local_irq_restore(flags); ++ local_unlock_irqrestore(pendingb_lock, flags); + return ret; + } + EXPORT_SYMBOL(queue_delayed_work_on); +@@ -1512,7 +1541,7 @@ + + if (likely(ret >= 0)) { + __queue_delayed_work(cpu, wq, dwork, delay); +- local_irq_restore(flags); ++ local_unlock_irqrestore(pendingb_lock, flags); + } + + /* -ENOENT from try_to_grab_pending() becomes %true */ +@@ -1545,7 +1574,9 @@ + worker->last_active = jiffies; + + /* idle_list is LIFO */ ++ rt_lock_idle_list(pool); + list_add(&worker->entry, &pool->idle_list); ++ rt_unlock_idle_list(pool); + + if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) + mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); +@@ -1578,7 +1609,9 @@ + return; + worker_clr_flags(worker, WORKER_IDLE); + pool->nr_idle--; ++ rt_lock_idle_list(pool); + list_del_init(&worker->entry); ++ rt_unlock_idle_list(pool); + } + + static struct worker *alloc_worker(int node) +@@ -1746,7 +1779,9 @@ + pool->nr_workers--; + pool->nr_idle--; + ++ rt_lock_idle_list(pool); + list_del_init(&worker->entry); ++ rt_unlock_idle_list(pool); + worker->flags |= WORKER_DIE; + wake_up_process(worker->task); + } +@@ -2641,14 +2676,14 @@ + + might_sleep(); + +- local_irq_disable(); ++ rcu_read_lock(); + pool = get_work_pool(work); + if (!pool) { +- local_irq_enable(); ++ rcu_read_unlock(); + return false; + } + +- spin_lock(&pool->lock); ++ spin_lock_irq(&pool->lock); + /* see the comment in try_to_grab_pending() with the same code */ + pwq = get_work_pwq(work); + if (pwq) { +@@ -2675,10 +2710,11 @@ + else + lock_map_acquire_read(&pwq->wq->lockdep_map); + lock_map_release(&pwq->wq->lockdep_map); +- ++ rcu_read_unlock(); + return true; + already_gone: + spin_unlock_irq(&pool->lock); ++ rcu_read_unlock(); + return false; + } + +@@ -2765,7 +2801,7 @@ + + /* tell other tasks trying to grab @work to back off */ + mark_work_canceling(work); +- local_irq_restore(flags); ++ local_unlock_irqrestore(pendingb_lock, flags); + + flush_work(work); + clear_work_data(work); +@@ -2820,10 +2856,10 @@ + */ + bool flush_delayed_work(struct delayed_work *dwork) + { +- local_irq_disable(); ++ local_lock_irq(pendingb_lock); + if (del_timer_sync(&dwork->timer)) + __queue_work(dwork->cpu, dwork->wq, &dwork->work); +- local_irq_enable(); ++ local_unlock_irq(pendingb_lock); + return flush_work(&dwork->work); + } + EXPORT_SYMBOL(flush_delayed_work); +@@ -2858,7 +2894,7 @@ + + set_work_pool_and_clear_pending(&dwork->work, + get_work_pool_id(&dwork->work)); +- local_irq_restore(flags); ++ local_unlock_irqrestore(pendingb_lock, flags); + return ret; + } + EXPORT_SYMBOL(cancel_delayed_work); +@@ -3044,7 +3080,8 @@ + const char *delim = ""; + int node, written = 0; + +- rcu_read_lock_sched(); ++ get_online_cpus(); ++ rcu_read_lock(); + for_each_node(node) { + written += scnprintf(buf + written, PAGE_SIZE - written, + "%s%d:%d", delim, node, +@@ -3052,7 +3089,8 @@ + delim = " "; + } + written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); +- rcu_read_unlock_sched(); ++ rcu_read_unlock(); ++ put_online_cpus(); + + return written; + } +@@ -3420,7 +3458,7 @@ + * put_unbound_pool - put a worker_pool + * @pool: worker_pool to put + * +- * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU ++ * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU + * safe manner. get_unbound_pool() calls this function on its failure path + * and this function should be able to release pools which went through, + * successfully or not, init_worker_pool(). +@@ -3474,8 +3512,8 @@ + del_timer_sync(&pool->idle_timer); + del_timer_sync(&pool->mayday_timer); + +- /* sched-RCU protected to allow dereferences from get_work_pool() */ +- call_rcu_sched(&pool->rcu, rcu_free_pool); ++ /* RCU protected to allow dereferences from get_work_pool() */ ++ call_rcu(&pool->rcu, rcu_free_pool); + } + + /** +@@ -3580,7 +3618,7 @@ + put_unbound_pool(pool); + mutex_unlock(&wq_pool_mutex); + +- call_rcu_sched(&pwq->rcu, rcu_free_pwq); ++ call_rcu(&pwq->rcu, rcu_free_pwq); + + /* + * If we're the last pwq going away, @wq is already dead and no one +@@ -4292,7 +4330,8 @@ + struct pool_workqueue *pwq; + bool ret; + +- rcu_read_lock_sched(); ++ rcu_read_lock(); ++ preempt_disable(); + + if (cpu == WORK_CPU_UNBOUND) + cpu = smp_processor_id(); +@@ -4303,7 +4342,8 @@ + pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); + + ret = !list_empty(&pwq->delayed_works); +- rcu_read_unlock_sched(); ++ preempt_enable(); ++ rcu_read_unlock(); + + return ret; + } +@@ -4329,16 +4369,15 @@ + if (work_pending(work)) + ret |= WORK_BUSY_PENDING; + +- local_irq_save(flags); ++ rcu_read_lock(); + pool = get_work_pool(work); + if (pool) { +- spin_lock(&pool->lock); ++ spin_lock_irqsave(&pool->lock, flags); + if (find_worker_executing_work(pool, work)) + ret |= WORK_BUSY_RUNNING; +- spin_unlock(&pool->lock); ++ spin_unlock_irqrestore(&pool->lock, flags); + } +- local_irq_restore(flags); +- ++ rcu_read_unlock(); + return ret; + } + EXPORT_SYMBOL_GPL(work_busy); +@@ -4767,16 +4806,16 @@ + * nr_active is monotonically decreasing. It's safe + * to peek without lock. + */ +- rcu_read_lock_sched(); ++ rcu_read_lock(); + for_each_pwq(pwq, wq) { + WARN_ON_ONCE(pwq->nr_active < 0); + if (pwq->nr_active) { + busy = true; +- rcu_read_unlock_sched(); ++ rcu_read_unlock(); + goto out_unlock; + } + } +- rcu_read_unlock_sched(); ++ rcu_read_unlock(); + } + out_unlock: + mutex_unlock(&wq_pool_mutex); +diff -Nur linux-3.18.12.orig/kernel/workqueue_internal.h linux-3.18.12/kernel/workqueue_internal.h +--- linux-3.18.12.orig/kernel/workqueue_internal.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/kernel/workqueue_internal.h 2015-04-26 13:32:22.459684003 -0500 +@@ -43,6 +43,7 @@ + unsigned long last_active; /* L: last active timestamp */ + unsigned int flags; /* X: flags */ + int id; /* I: worker id */ ++ int sleeping; /* None */ + + /* + * Opaque string set with work_set_desc(). Printed out with task +@@ -68,7 +69,7 @@ + * Scheduler hooks for concurrency managed workqueue. Only to be used from + * sched/core.c and workqueue.c. + */ +-void wq_worker_waking_up(struct task_struct *task, int cpu); +-struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu); ++void wq_worker_running(struct task_struct *task); ++void wq_worker_sleeping(struct task_struct *task); + + #endif /* _KERNEL_WORKQUEUE_INTERNAL_H */ +diff -Nur linux-3.18.12.orig/lib/debugobjects.c linux-3.18.12/lib/debugobjects.c +--- linux-3.18.12.orig/lib/debugobjects.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/lib/debugobjects.c 2015-04-26 13:32:22.459684003 -0500 +@@ -309,7 +309,10 @@ + struct debug_obj *obj; + unsigned long flags; + +- fill_pool(); ++#ifdef CONFIG_PREEMPT_RT_FULL ++ if (preempt_count() == 0 && !irqs_disabled()) ++#endif ++ fill_pool(); + + db = get_bucket((unsigned long) addr); + +diff -Nur linux-3.18.12.orig/lib/idr.c linux-3.18.12/lib/idr.c +--- linux-3.18.12.orig/lib/idr.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/lib/idr.c 2015-04-26 13:32:22.459684003 -0500 +@@ -31,6 +31,7 @@ + #include + #include + #include ++#include + + #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1) + #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT) +@@ -367,6 +368,35 @@ + idr_mark_full(pa, id); + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++static DEFINE_LOCAL_IRQ_LOCK(idr_lock); ++ ++static inline void idr_preload_lock(void) ++{ ++ local_lock(idr_lock); ++} ++ ++static inline void idr_preload_unlock(void) ++{ ++ local_unlock(idr_lock); ++} ++ ++void idr_preload_end(void) ++{ ++ idr_preload_unlock(); ++} ++EXPORT_SYMBOL(idr_preload_end); ++#else ++static inline void idr_preload_lock(void) ++{ ++ preempt_disable(); ++} ++ ++static inline void idr_preload_unlock(void) ++{ ++ preempt_enable(); ++} ++#endif + + /** + * idr_preload - preload for idr_alloc() +@@ -402,7 +432,7 @@ + WARN_ON_ONCE(in_interrupt()); + might_sleep_if(gfp_mask & __GFP_WAIT); + +- preempt_disable(); ++ idr_preload_lock(); + + /* + * idr_alloc() is likely to succeed w/o full idr_layer buffer and +@@ -414,9 +444,9 @@ + while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { + struct idr_layer *new; + +- preempt_enable(); ++ idr_preload_unlock(); + new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); +- preempt_disable(); ++ idr_preload_lock(); + if (!new) + break; + +diff -Nur linux-3.18.12.orig/lib/Kconfig linux-3.18.12/lib/Kconfig +--- linux-3.18.12.orig/lib/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/lib/Kconfig 2015-04-26 13:32:22.459684003 -0500 +@@ -383,6 +383,7 @@ + + config CPUMASK_OFFSTACK + bool "Force CPU masks off stack" if DEBUG_PER_CPU_MAPS ++ depends on !PREEMPT_RT_FULL + help + Use dynamic allocation for cpumask_var_t, instead of putting + them on the stack. This is a bit more expensive, but avoids +diff -Nur linux-3.18.12.orig/lib/Kconfig.debug linux-3.18.12/lib/Kconfig.debug +--- linux-3.18.12.orig/lib/Kconfig.debug 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/lib/Kconfig.debug 2015-04-26 13:32:22.459684003 -0500 +@@ -639,7 +639,7 @@ + + config DEBUG_SHIRQ + bool "Debug shared IRQ handlers" +- depends on DEBUG_KERNEL ++ depends on DEBUG_KERNEL && !PREEMPT_RT_BASE + help + Enable this to generate a spurious interrupt as soon as a shared + interrupt handler is registered, and just before one is deregistered. +diff -Nur linux-3.18.12.orig/lib/locking-selftest.c linux-3.18.12/lib/locking-selftest.c +--- linux-3.18.12.orig/lib/locking-selftest.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/lib/locking-selftest.c 2015-04-26 13:32:22.459684003 -0500 +@@ -590,6 +590,8 @@ + #include "locking-selftest-spin-hardirq.h" + GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_hard_spin) + ++#ifndef CONFIG_PREEMPT_RT_FULL ++ + #include "locking-selftest-rlock-hardirq.h" + GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_hard_rlock) + +@@ -605,9 +607,12 @@ + #include "locking-selftest-wlock-softirq.h" + GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_soft_wlock) + ++#endif ++ + #undef E1 + #undef E2 + ++#ifndef CONFIG_PREEMPT_RT_FULL + /* + * Enabling hardirqs with a softirq-safe lock held: + */ +@@ -640,6 +645,8 @@ + #undef E1 + #undef E2 + ++#endif ++ + /* + * Enabling irqs with an irq-safe lock held: + */ +@@ -663,6 +670,8 @@ + #include "locking-selftest-spin-hardirq.h" + GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_hard_spin) + ++#ifndef CONFIG_PREEMPT_RT_FULL ++ + #include "locking-selftest-rlock-hardirq.h" + GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_hard_rlock) + +@@ -678,6 +687,8 @@ + #include "locking-selftest-wlock-softirq.h" + GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_soft_wlock) + ++#endif ++ + #undef E1 + #undef E2 + +@@ -709,6 +720,8 @@ + #include "locking-selftest-spin-hardirq.h" + GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_hard_spin) + ++#ifndef CONFIG_PREEMPT_RT_FULL ++ + #include "locking-selftest-rlock-hardirq.h" + GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_hard_rlock) + +@@ -724,6 +737,8 @@ + #include "locking-selftest-wlock-softirq.h" + GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_soft_wlock) + ++#endif ++ + #undef E1 + #undef E2 + #undef E3 +@@ -757,6 +772,8 @@ + #include "locking-selftest-spin-hardirq.h" + GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_hard_spin) + ++#ifndef CONFIG_PREEMPT_RT_FULL ++ + #include "locking-selftest-rlock-hardirq.h" + GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_hard_rlock) + +@@ -772,10 +789,14 @@ + #include "locking-selftest-wlock-softirq.h" + GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_soft_wlock) + ++#endif ++ + #undef E1 + #undef E2 + #undef E3 + ++#ifndef CONFIG_PREEMPT_RT_FULL ++ + /* + * read-lock / write-lock irq inversion. + * +@@ -838,6 +859,10 @@ + #undef E2 + #undef E3 + ++#endif ++ ++#ifndef CONFIG_PREEMPT_RT_FULL ++ + /* + * read-lock / write-lock recursion that is actually safe. + */ +@@ -876,6 +901,8 @@ + #undef E2 + #undef E3 + ++#endif ++ + /* + * read-lock / write-lock recursion that is unsafe. + */ +@@ -1858,6 +1885,7 @@ + + printk(" --------------------------------------------------------------------------\n"); + ++#ifndef CONFIG_PREEMPT_RT_FULL + /* + * irq-context testcases: + */ +@@ -1870,6 +1898,28 @@ + + DO_TESTCASE_6x2("irq read-recursion", irq_read_recursion); + // DO_TESTCASE_6x2B("irq read-recursion #2", irq_read_recursion2); ++#else ++ /* On -rt, we only do hardirq context test for raw spinlock */ ++ DO_TESTCASE_1B("hard-irqs-on + irq-safe-A", irqsafe1_hard_spin, 12); ++ DO_TESTCASE_1B("hard-irqs-on + irq-safe-A", irqsafe1_hard_spin, 21); ++ ++ DO_TESTCASE_1B("hard-safe-A + irqs-on", irqsafe2B_hard_spin, 12); ++ DO_TESTCASE_1B("hard-safe-A + irqs-on", irqsafe2B_hard_spin, 21); ++ ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 123); ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 132); ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 213); ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 231); ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 312); ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 321); ++ ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 123); ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 132); ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 213); ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 231); ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 312); ++ DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 321); ++#endif + + ww_tests(); + +diff -Nur linux-3.18.12.orig/lib/percpu_ida.c linux-3.18.12/lib/percpu_ida.c +--- linux-3.18.12.orig/lib/percpu_ida.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/lib/percpu_ida.c 2015-04-26 13:32:22.459684003 -0500 +@@ -29,6 +29,9 @@ + #include + #include + #include ++#include ++ ++static DEFINE_LOCAL_IRQ_LOCK(irq_off_lock); + + struct percpu_ida_cpu { + /* +@@ -151,13 +154,13 @@ + unsigned long flags; + int tag; + +- local_irq_save(flags); ++ local_lock_irqsave(irq_off_lock, flags); + tags = this_cpu_ptr(pool->tag_cpu); + + /* Fastpath */ + tag = alloc_local_tag(tags); + if (likely(tag >= 0)) { +- local_irq_restore(flags); ++ local_unlock_irqrestore(irq_off_lock, flags); + return tag; + } + +@@ -176,6 +179,7 @@ + + if (!tags->nr_free) + alloc_global_tags(pool, tags); ++ + if (!tags->nr_free) + steal_tags(pool, tags); + +@@ -187,7 +191,7 @@ + } + + spin_unlock(&pool->lock); +- local_irq_restore(flags); ++ local_unlock_irqrestore(irq_off_lock, flags); + + if (tag >= 0 || state == TASK_RUNNING) + break; +@@ -199,7 +203,7 @@ + + schedule(); + +- local_irq_save(flags); ++ local_lock_irqsave(irq_off_lock, flags); + tags = this_cpu_ptr(pool->tag_cpu); + } + if (state != TASK_RUNNING) +@@ -224,7 +228,7 @@ + + BUG_ON(tag >= pool->nr_tags); + +- local_irq_save(flags); ++ local_lock_irqsave(irq_off_lock, flags); + tags = this_cpu_ptr(pool->tag_cpu); + + spin_lock(&tags->lock); +@@ -256,7 +260,7 @@ + spin_unlock(&pool->lock); + } + +- local_irq_restore(flags); ++ local_unlock_irqrestore(irq_off_lock, flags); + } + EXPORT_SYMBOL_GPL(percpu_ida_free); + +@@ -348,7 +352,7 @@ + struct percpu_ida_cpu *remote; + unsigned cpu, i, err = 0; + +- local_irq_save(flags); ++ local_lock_irqsave(irq_off_lock, flags); + for_each_possible_cpu(cpu) { + remote = per_cpu_ptr(pool->tag_cpu, cpu); + spin_lock(&remote->lock); +@@ -370,7 +374,7 @@ + } + spin_unlock(&pool->lock); + out: +- local_irq_restore(flags); ++ local_unlock_irqrestore(irq_off_lock, flags); + return err; + } + EXPORT_SYMBOL_GPL(percpu_ida_for_each_free); +diff -Nur linux-3.18.12.orig/lib/radix-tree.c linux-3.18.12/lib/radix-tree.c +--- linux-3.18.12.orig/lib/radix-tree.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/lib/radix-tree.c 2015-04-26 13:32:22.459684003 -0500 +@@ -195,12 +195,13 @@ + * succeed in getting a node here (and never reach + * kmem_cache_alloc) + */ +- rtp = this_cpu_ptr(&radix_tree_preloads); ++ rtp = &get_cpu_var(radix_tree_preloads); + if (rtp->nr) { + ret = rtp->nodes[rtp->nr - 1]; + rtp->nodes[rtp->nr - 1] = NULL; + rtp->nr--; + } ++ put_cpu_var(radix_tree_preloads); + /* + * Update the allocation stack trace as this is more useful + * for debugging. +@@ -240,6 +241,7 @@ + call_rcu(&node->rcu_head, radix_tree_node_rcu_free); + } + ++#ifndef CONFIG_PREEMPT_RT_FULL + /* + * Load up this CPU's radix_tree_node buffer with sufficient objects to + * ensure that the addition of a single element in the tree cannot fail. On +@@ -305,6 +307,7 @@ + return 0; + } + EXPORT_SYMBOL(radix_tree_maybe_preload); ++#endif + + /* + * Return the maximum key which can be store into a +diff -Nur linux-3.18.12.orig/lib/scatterlist.c linux-3.18.12/lib/scatterlist.c +--- linux-3.18.12.orig/lib/scatterlist.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/lib/scatterlist.c 2015-04-26 13:32:22.459684003 -0500 +@@ -592,7 +592,7 @@ + flush_kernel_dcache_page(miter->page); + + if (miter->__flags & SG_MITER_ATOMIC) { +- WARN_ON_ONCE(preemptible()); ++ WARN_ON_ONCE(!pagefault_disabled()); + kunmap_atomic(miter->addr); + } else + kunmap(miter->page); +@@ -637,7 +637,7 @@ + if (!sg_miter_skip(&miter, skip)) + return false; + +- local_irq_save(flags); ++ local_irq_save_nort(flags); + + while (sg_miter_next(&miter) && offset < buflen) { + unsigned int len; +@@ -654,7 +654,7 @@ + + sg_miter_stop(&miter); + +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + return offset; + } + +diff -Nur linux-3.18.12.orig/lib/smp_processor_id.c linux-3.18.12/lib/smp_processor_id.c +--- linux-3.18.12.orig/lib/smp_processor_id.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/lib/smp_processor_id.c 2015-04-26 13:32:22.459684003 -0500 +@@ -39,8 +39,9 @@ + if (!printk_ratelimit()) + goto out_enable; + +- printk(KERN_ERR "BUG: using %s%s() in preemptible [%08x] code: %s/%d\n", +- what1, what2, preempt_count() - 1, current->comm, current->pid); ++ printk(KERN_ERR "BUG: using %s%s() in preemptible [%08x %08x] code: %s/%d\n", ++ what1, what2, preempt_count() - 1, __migrate_disabled(current), ++ current->comm, current->pid); + + print_symbol("caller is %s\n", (long)__builtin_return_address(0)); + dump_stack(); +diff -Nur linux-3.18.12.orig/mm/filemap.c linux-3.18.12/mm/filemap.c +--- linux-3.18.12.orig/mm/filemap.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/filemap.c 2015-04-26 13:32:22.463684003 -0500 +@@ -168,7 +168,9 @@ + if (!workingset_node_pages(node) && + list_empty(&node->private_list)) { + node->private_data = mapping; +- list_lru_add(&workingset_shadow_nodes, &node->private_list); ++ local_lock(workingset_shadow_lock); ++ list_lru_add(&__workingset_shadow_nodes, &node->private_list); ++ local_unlock(workingset_shadow_lock); + } + } + +@@ -535,9 +537,12 @@ + * node->private_list is protected by + * mapping->tree_lock. + */ +- if (!list_empty(&node->private_list)) +- list_lru_del(&workingset_shadow_nodes, ++ if (!list_empty(&node->private_list)) { ++ local_lock(workingset_shadow_lock); ++ list_lru_del(&__workingset_shadow_nodes, + &node->private_list); ++ local_unlock(workingset_shadow_lock); ++ } + } + return 0; + } +diff -Nur linux-3.18.12.orig/mm/highmem.c linux-3.18.12/mm/highmem.c +--- linux-3.18.12.orig/mm/highmem.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/highmem.c 2015-04-26 13:32:22.463684003 -0500 +@@ -29,10 +29,11 @@ + #include + #include + +- ++#ifndef CONFIG_PREEMPT_RT_FULL + #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) + DEFINE_PER_CPU(int, __kmap_atomic_idx); + #endif ++#endif + + /* + * Virtual_count is not a pure "count". +@@ -107,8 +108,9 @@ + unsigned long totalhigh_pages __read_mostly; + EXPORT_SYMBOL(totalhigh_pages); + +- ++#ifndef CONFIG_PREEMPT_RT_FULL + EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx); ++#endif + + unsigned int nr_free_highpages (void) + { +diff -Nur linux-3.18.12.orig/mm/Kconfig linux-3.18.12/mm/Kconfig +--- linux-3.18.12.orig/mm/Kconfig 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/Kconfig 2015-04-26 13:32:22.463684003 -0500 +@@ -408,7 +408,7 @@ + + config TRANSPARENT_HUGEPAGE + bool "Transparent Hugepage Support" +- depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE ++ depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE && !PREEMPT_RT_FULL + select COMPACTION + help + Transparent Hugepages allows the kernel to use huge pages and +diff -Nur linux-3.18.12.orig/mm/memcontrol.c linux-3.18.12/mm/memcontrol.c +--- linux-3.18.12.orig/mm/memcontrol.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/memcontrol.c 2015-04-26 13:32:22.463684003 -0500 +@@ -60,6 +60,8 @@ + #include + #include + #include ++#include ++ + #include "slab.h" + + #include +@@ -87,6 +89,7 @@ + #define do_swap_account 0 + #endif + ++static DEFINE_LOCAL_IRQ_LOCK(event_lock); + + static const char * const mem_cgroup_stat_names[] = { + "cache", +@@ -2376,14 +2379,17 @@ + */ + static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) + { +- struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); ++ struct memcg_stock_pcp *stock; ++ int cpu = get_cpu_light(); ++ ++ stock = &per_cpu(memcg_stock, cpu); + + if (stock->cached != memcg) { /* reset if necessary */ + drain_stock(stock); + stock->cached = memcg; + } + stock->nr_pages += nr_pages; +- put_cpu_var(memcg_stock); ++ put_cpu_light(); + } + + /* +@@ -2397,7 +2403,7 @@ + + /* Notify other cpus that system-wide "drain" is running */ + get_online_cpus(); +- curcpu = get_cpu(); ++ curcpu = get_cpu_light(); + for_each_online_cpu(cpu) { + struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); + struct mem_cgroup *memcg; +@@ -2414,7 +2420,7 @@ + schedule_work_on(cpu, &stock->work); + } + } +- put_cpu(); ++ put_cpu_light(); + + if (!sync) + goto out; +@@ -3419,12 +3425,12 @@ + move_unlock_mem_cgroup(from, &flags); + ret = 0; + +- local_irq_disable(); ++ local_lock_irq(event_lock); + mem_cgroup_charge_statistics(to, page, nr_pages); + memcg_check_events(to, page); + mem_cgroup_charge_statistics(from, page, -nr_pages); + memcg_check_events(from, page); +- local_irq_enable(); ++ local_unlock_irq(event_lock); + out_unlock: + unlock_page(page); + out: +@@ -6406,10 +6412,10 @@ + VM_BUG_ON_PAGE(!PageTransHuge(page), page); + } + +- local_irq_disable(); ++ local_lock_irq(event_lock); + mem_cgroup_charge_statistics(memcg, page, nr_pages); + memcg_check_events(memcg, page); +- local_irq_enable(); ++ local_unlock_irq(event_lock); + + if (do_swap_account && PageSwapCache(page)) { + swp_entry_t entry = { .val = page_private(page) }; +@@ -6468,14 +6474,14 @@ + memcg_oom_recover(memcg); + } + +- local_irq_save(flags); ++ local_lock_irqsave(event_lock, flags); + __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); + __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); + __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); + __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); + __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file); + memcg_check_events(memcg, dummy_page); +- local_irq_restore(flags); ++ local_unlock_irqrestore(event_lock, flags); + } + + static void uncharge_list(struct list_head *page_list) +diff -Nur linux-3.18.12.orig/mm/memory.c linux-3.18.12/mm/memory.c +--- linux-3.18.12.orig/mm/memory.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/memory.c 2015-04-26 13:32:22.463684003 -0500 +@@ -3244,6 +3244,32 @@ + return 0; + } + ++#ifdef CONFIG_PREEMPT_RT_FULL ++void pagefault_disable(void) ++{ ++ migrate_disable(); ++ current->pagefault_disabled++; ++ /* ++ * make sure to have issued the store before a pagefault ++ * can hit. ++ */ ++ barrier(); ++} ++EXPORT_SYMBOL(pagefault_disable); ++ ++void pagefault_enable(void) ++{ ++ /* ++ * make sure to issue those last loads/stores before enabling ++ * the pagefault handler again. ++ */ ++ barrier(); ++ current->pagefault_disabled--; ++ migrate_enable(); ++} ++EXPORT_SYMBOL(pagefault_enable); ++#endif ++ + /* + * By the time we get here, we already hold the mm semaphore + * +diff -Nur linux-3.18.12.orig/mm/mmu_context.c linux-3.18.12/mm/mmu_context.c +--- linux-3.18.12.orig/mm/mmu_context.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/mmu_context.c 2015-04-26 13:32:22.463684003 -0500 +@@ -23,6 +23,7 @@ + struct task_struct *tsk = current; + + task_lock(tsk); ++ preempt_disable_rt(); + active_mm = tsk->active_mm; + if (active_mm != mm) { + atomic_inc(&mm->mm_count); +@@ -30,6 +31,7 @@ + } + tsk->mm = mm; + switch_mm(active_mm, mm, tsk); ++ preempt_enable_rt(); + task_unlock(tsk); + #ifdef finish_arch_post_lock_switch + finish_arch_post_lock_switch(); +diff -Nur linux-3.18.12.orig/mm/page_alloc.c linux-3.18.12/mm/page_alloc.c +--- linux-3.18.12.orig/mm/page_alloc.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/page_alloc.c 2015-04-26 13:32:22.463684003 -0500 +@@ -59,6 +59,7 @@ + #include + #include + #include ++#include + + #include + #include +@@ -230,6 +231,18 @@ + EXPORT_SYMBOL(nr_online_nodes); + #endif + ++static DEFINE_LOCAL_IRQ_LOCK(pa_lock); ++ ++#ifdef CONFIG_PREEMPT_RT_BASE ++# define cpu_lock_irqsave(cpu, flags) \ ++ local_lock_irqsave_on(pa_lock, flags, cpu) ++# define cpu_unlock_irqrestore(cpu, flags) \ ++ local_unlock_irqrestore_on(pa_lock, flags, cpu) ++#else ++# define cpu_lock_irqsave(cpu, flags) local_irq_save(flags) ++# define cpu_unlock_irqrestore(cpu, flags) local_irq_restore(flags) ++#endif ++ + int page_group_by_mobility_disabled __read_mostly; + + void set_pageblock_migratetype(struct page *page, int migratetype) +@@ -654,7 +667,7 @@ + } + + /* +- * Frees a number of pages from the PCP lists ++ * Frees a number of pages which have been collected from the pcp lists. + * Assumes all pages on list are in same zone, and of same order. + * count is the number of pages to free. + * +@@ -665,18 +678,51 @@ + * pinned" detection logic. + */ + static void free_pcppages_bulk(struct zone *zone, int count, +- struct per_cpu_pages *pcp) ++ struct list_head *list) + { +- int migratetype = 0; +- int batch_free = 0; + int to_free = count; + unsigned long nr_scanned; ++ unsigned long flags; ++ ++ spin_lock_irqsave(&zone->lock, flags); + +- spin_lock(&zone->lock); + nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); + if (nr_scanned) + __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); + ++ while (!list_empty(list)) { ++ struct page *page = list_first_entry(list, struct page, lru); ++ int mt; /* migratetype of the to-be-freed page */ ++ ++ /* must delete as __free_one_page list manipulates */ ++ list_del(&page->lru); ++ ++ mt = get_freepage_migratetype(page); ++ if (unlikely(has_isolate_pageblock(zone))) ++ mt = get_pageblock_migratetype(page); ++ ++ /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ ++ __free_one_page(page, page_to_pfn(page), zone, 0, mt); ++ trace_mm_page_pcpu_drain(page, 0, mt); ++ to_free--; ++ } ++ WARN_ON(to_free != 0); ++ spin_unlock_irqrestore(&zone->lock, flags); ++} ++ ++/* ++ * Moves a number of pages from the PCP lists to free list which ++ * is freed outside of the locked region. ++ * ++ * Assumes all pages on list are in same zone, and of same order. ++ * count is the number of pages to free. ++ */ ++static void isolate_pcp_pages(int to_free, struct per_cpu_pages *src, ++ struct list_head *dst) ++{ ++ int migratetype = 0; ++ int batch_free = 0; ++ + while (to_free) { + struct page *page; + struct list_head *list; +@@ -692,7 +738,7 @@ + batch_free++; + if (++migratetype == MIGRATE_PCPTYPES) + migratetype = 0; +- list = &pcp->lists[migratetype]; ++ list = &src->lists[migratetype]; + } while (list_empty(list)); + + /* This is the only non-empty list. Free them all. */ +@@ -700,21 +746,11 @@ + batch_free = to_free; + + do { +- int mt; /* migratetype of the to-be-freed page */ +- +- page = list_entry(list->prev, struct page, lru); +- /* must delete as __free_one_page list manipulates */ ++ page = list_last_entry(list, struct page, lru); + list_del(&page->lru); +- mt = get_freepage_migratetype(page); +- if (unlikely(has_isolate_pageblock(zone))) +- mt = get_pageblock_migratetype(page); +- +- /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ +- __free_one_page(page, page_to_pfn(page), zone, 0, mt); +- trace_mm_page_pcpu_drain(page, 0, mt); ++ list_add(&page->lru, dst); + } while (--to_free && --batch_free && !list_empty(list)); + } +- spin_unlock(&zone->lock); + } + + static void free_one_page(struct zone *zone, +@@ -723,7 +759,9 @@ + int migratetype) + { + unsigned long nr_scanned; +- spin_lock(&zone->lock); ++ unsigned long flags; ++ ++ spin_lock_irqsave(&zone->lock, flags); + nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); + if (nr_scanned) + __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); +@@ -733,7 +771,7 @@ + migratetype = get_pfnblock_migratetype(page, pfn); + } + __free_one_page(page, pfn, zone, order, migratetype); +- spin_unlock(&zone->lock); ++ spin_unlock_irqrestore(&zone->lock, flags); + } + + static bool free_pages_prepare(struct page *page, unsigned int order) +@@ -773,11 +811,11 @@ + return; + + migratetype = get_pfnblock_migratetype(page, pfn); +- local_irq_save(flags); ++ local_lock_irqsave(pa_lock, flags); + __count_vm_events(PGFREE, 1 << order); + set_freepage_migratetype(page, migratetype); + free_one_page(page_zone(page), page, pfn, order, migratetype); +- local_irq_restore(flags); ++ local_unlock_irqrestore(pa_lock, flags); + } + + void __init __free_pages_bootmem(struct page *page, unsigned int order) +@@ -1251,16 +1289,18 @@ + void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) + { + unsigned long flags; ++ LIST_HEAD(dst); + int to_drain, batch; + +- local_irq_save(flags); ++ local_lock_irqsave(pa_lock, flags); + batch = ACCESS_ONCE(pcp->batch); + to_drain = min(pcp->count, batch); + if (to_drain > 0) { +- free_pcppages_bulk(zone, to_drain, pcp); ++ isolate_pcp_pages(to_drain, pcp, &dst); + pcp->count -= to_drain; + } +- local_irq_restore(flags); ++ local_unlock_irqrestore(pa_lock, flags); ++ free_pcppages_bulk(zone, to_drain, &dst); + } + #endif + +@@ -1279,16 +1319,21 @@ + for_each_populated_zone(zone) { + struct per_cpu_pageset *pset; + struct per_cpu_pages *pcp; ++ LIST_HEAD(dst); ++ int count; + +- local_irq_save(flags); ++ cpu_lock_irqsave(cpu, flags); + pset = per_cpu_ptr(zone->pageset, cpu); + + pcp = &pset->pcp; +- if (pcp->count) { +- free_pcppages_bulk(zone, pcp->count, pcp); ++ count = pcp->count; ++ if (count) { ++ isolate_pcp_pages(count, pcp, &dst); + pcp->count = 0; + } +- local_irq_restore(flags); ++ cpu_unlock_irqrestore(cpu, flags); ++ if (count) ++ free_pcppages_bulk(zone, count, &dst); + } + } + +@@ -1341,7 +1386,12 @@ + else + cpumask_clear_cpu(cpu, &cpus_with_pcps); + } ++#ifndef CONFIG_PREEMPT_RT_BASE + on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); ++#else ++ for_each_cpu(cpu, &cpus_with_pcps) ++ drain_pages(cpu); ++#endif + } + + #ifdef CONFIG_HIBERNATION +@@ -1397,7 +1447,7 @@ + + migratetype = get_pfnblock_migratetype(page, pfn); + set_freepage_migratetype(page, migratetype); +- local_irq_save(flags); ++ local_lock_irqsave(pa_lock, flags); + __count_vm_event(PGFREE); + + /* +@@ -1423,12 +1473,17 @@ + pcp->count++; + if (pcp->count >= pcp->high) { + unsigned long batch = ACCESS_ONCE(pcp->batch); +- free_pcppages_bulk(zone, batch, pcp); ++ LIST_HEAD(dst); ++ ++ isolate_pcp_pages(batch, pcp, &dst); + pcp->count -= batch; ++ local_unlock_irqrestore(pa_lock, flags); ++ free_pcppages_bulk(zone, batch, &dst); ++ return; + } + + out: +- local_irq_restore(flags); ++ local_unlock_irqrestore(pa_lock, flags); + } + + /* +@@ -1558,7 +1613,7 @@ + struct per_cpu_pages *pcp; + struct list_head *list; + +- local_irq_save(flags); ++ local_lock_irqsave(pa_lock, flags); + pcp = &this_cpu_ptr(zone->pageset)->pcp; + list = &pcp->lists[migratetype]; + if (list_empty(list)) { +@@ -1590,13 +1645,15 @@ + */ + WARN_ON_ONCE(order > 1); + } +- spin_lock_irqsave(&zone->lock, flags); ++ local_spin_lock_irqsave(pa_lock, &zone->lock, flags); + page = __rmqueue(zone, order, migratetype); +- spin_unlock(&zone->lock); +- if (!page) ++ if (!page) { ++ spin_unlock(&zone->lock); + goto failed; ++ } + __mod_zone_freepage_state(zone, -(1 << order), + get_freepage_migratetype(page)); ++ spin_unlock(&zone->lock); + } + + __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); +@@ -1606,7 +1663,7 @@ + + __count_zone_vm_events(PGALLOC, zone, 1 << order); + zone_statistics(preferred_zone, zone, gfp_flags); +- local_irq_restore(flags); ++ local_unlock_irqrestore(pa_lock, flags); + + VM_BUG_ON_PAGE(bad_range(zone, page), page); + if (prep_new_page(page, order, gfp_flags)) +@@ -1614,7 +1671,7 @@ + return page; + + failed: +- local_irq_restore(flags); ++ local_unlock_irqrestore(pa_lock, flags); + return NULL; + } + +@@ -2325,8 +2382,8 @@ + count_vm_event(COMPACTSTALL); + + /* Page migration frees to the PCP lists but we want merging */ +- drain_pages(get_cpu()); +- put_cpu(); ++ drain_pages(get_cpu_light()); ++ put_cpu_light(); + + page = get_page_from_freelist(gfp_mask, nodemask, + order, zonelist, high_zoneidx, +@@ -5565,6 +5622,7 @@ + void __init page_alloc_init(void) + { + hotcpu_notifier(page_alloc_cpu_notify, 0); ++ local_irq_lock_init(pa_lock); + } + + /* +@@ -6459,7 +6517,7 @@ + struct per_cpu_pageset *pset; + + /* avoid races with drain_pages() */ +- local_irq_save(flags); ++ local_lock_irqsave(pa_lock, flags); + if (zone->pageset != &boot_pageset) { + for_each_online_cpu(cpu) { + pset = per_cpu_ptr(zone->pageset, cpu); +@@ -6468,7 +6526,7 @@ + free_percpu(zone->pageset); + zone->pageset = &boot_pageset; + } +- local_irq_restore(flags); ++ local_unlock_irqrestore(pa_lock, flags); + } + + #ifdef CONFIG_MEMORY_HOTREMOVE +diff -Nur linux-3.18.12.orig/mm/slab.h linux-3.18.12/mm/slab.h +--- linux-3.18.12.orig/mm/slab.h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/slab.h 2015-04-26 13:32:22.467684003 -0500 +@@ -315,7 +315,11 @@ + * The slab lists for all objects. + */ + struct kmem_cache_node { ++#ifdef CONFIG_SLUB ++ raw_spinlock_t list_lock; ++#else + spinlock_t list_lock; ++#endif + + #ifdef CONFIG_SLAB + struct list_head slabs_partial; /* partial list first, better asm code */ +diff -Nur linux-3.18.12.orig/mm/slub.c linux-3.18.12/mm/slub.c +--- linux-3.18.12.orig/mm/slub.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/slub.c 2015-04-26 13:32:22.467684003 -0500 +@@ -1044,7 +1044,7 @@ + { + struct kmem_cache_node *n = get_node(s, page_to_nid(page)); + +- spin_lock_irqsave(&n->list_lock, *flags); ++ raw_spin_lock_irqsave(&n->list_lock, *flags); + slab_lock(page); + + if (!check_slab(s, page)) +@@ -1091,7 +1091,7 @@ + + fail: + slab_unlock(page); +- spin_unlock_irqrestore(&n->list_lock, *flags); ++ raw_spin_unlock_irqrestore(&n->list_lock, *flags); + slab_fix(s, "Object at 0x%p not freed", object); + return NULL; + } +@@ -1219,6 +1219,12 @@ + + #endif /* CONFIG_SLUB_DEBUG */ + ++struct slub_free_list { ++ raw_spinlock_t lock; ++ struct list_head list; ++}; ++static DEFINE_PER_CPU(struct slub_free_list, slub_free_list); ++ + /* + * Hooks for other subsystems that check memory allocations. In a typical + * production configuration these hooks all should produce no code at all. +@@ -1303,10 +1309,15 @@ + struct page *page; + struct kmem_cache_order_objects oo = s->oo; + gfp_t alloc_gfp; ++ bool enableirqs; + + flags &= gfp_allowed_mask; + +- if (flags & __GFP_WAIT) ++ enableirqs = (flags & __GFP_WAIT) != 0; ++#ifdef CONFIG_PREEMPT_RT_FULL ++ enableirqs |= system_state == SYSTEM_RUNNING; ++#endif ++ if (enableirqs) + local_irq_enable(); + + flags |= s->allocflags; +@@ -1347,7 +1358,7 @@ + kmemcheck_mark_unallocated_pages(page, pages); + } + +- if (flags & __GFP_WAIT) ++ if (enableirqs) + local_irq_disable(); + if (!page) + return NULL; +@@ -1365,8 +1376,10 @@ + void *object) + { + setup_object_debug(s, page, object); ++#ifndef CONFIG_PREEMPT_RT_FULL + if (unlikely(s->ctor)) + s->ctor(object); ++#endif + } + + static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) +@@ -1442,6 +1455,16 @@ + memcg_uncharge_slab(s, order); + } + ++static void free_delayed(struct list_head *h) ++{ ++ while(!list_empty(h)) { ++ struct page *page = list_first_entry(h, struct page, lru); ++ ++ list_del(&page->lru); ++ __free_slab(page->slab_cache, page); ++ } ++} ++ + #define need_reserve_slab_rcu \ + (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) + +@@ -1476,6 +1499,12 @@ + } + + call_rcu(head, rcu_free_slab); ++ } else if (irqs_disabled()) { ++ struct slub_free_list *f = &__get_cpu_var(slub_free_list); ++ ++ raw_spin_lock(&f->lock); ++ list_add(&page->lru, &f->list); ++ raw_spin_unlock(&f->lock); + } else + __free_slab(s, page); + } +@@ -1589,7 +1618,7 @@ + if (!n || !n->nr_partial) + return NULL; + +- spin_lock(&n->list_lock); ++ raw_spin_lock(&n->list_lock); + list_for_each_entry_safe(page, page2, &n->partial, lru) { + void *t; + +@@ -1614,7 +1643,7 @@ + break; + + } +- spin_unlock(&n->list_lock); ++ raw_spin_unlock(&n->list_lock); + return object; + } + +@@ -1860,7 +1889,7 @@ + * that acquire_slab() will see a slab page that + * is frozen + */ +- spin_lock(&n->list_lock); ++ raw_spin_lock(&n->list_lock); + } + } else { + m = M_FULL; +@@ -1871,7 +1900,7 @@ + * slabs from diagnostic functions will not see + * any frozen slabs. + */ +- spin_lock(&n->list_lock); ++ raw_spin_lock(&n->list_lock); + } + } + +@@ -1906,7 +1935,7 @@ + goto redo; + + if (lock) +- spin_unlock(&n->list_lock); ++ raw_spin_unlock(&n->list_lock); + + if (m == M_FREE) { + stat(s, DEACTIVATE_EMPTY); +@@ -1938,10 +1967,10 @@ + n2 = get_node(s, page_to_nid(page)); + if (n != n2) { + if (n) +- spin_unlock(&n->list_lock); ++ raw_spin_unlock(&n->list_lock); + + n = n2; +- spin_lock(&n->list_lock); ++ raw_spin_lock(&n->list_lock); + } + + do { +@@ -1970,7 +1999,7 @@ + } + + if (n) +- spin_unlock(&n->list_lock); ++ raw_spin_unlock(&n->list_lock); + + while (discard_page) { + page = discard_page; +@@ -2008,14 +2037,21 @@ + pobjects = oldpage->pobjects; + pages = oldpage->pages; + if (drain && pobjects > s->cpu_partial) { ++ struct slub_free_list *f; + unsigned long flags; ++ LIST_HEAD(tofree); + /* + * partial array is full. Move the existing + * set to the per node partial list. + */ + local_irq_save(flags); + unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); ++ f = &__get_cpu_var(slub_free_list); ++ raw_spin_lock(&f->lock); ++ list_splice_init(&f->list, &tofree); ++ raw_spin_unlock(&f->lock); + local_irq_restore(flags); ++ free_delayed(&tofree); + oldpage = NULL; + pobjects = 0; + pages = 0; +@@ -2079,7 +2115,22 @@ + + static void flush_all(struct kmem_cache *s) + { ++ LIST_HEAD(tofree); ++ int cpu; ++ + on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); ++ for_each_online_cpu(cpu) { ++ struct slub_free_list *f; ++ ++ if (!has_cpu_slab(cpu, s)) ++ continue; ++ ++ f = &per_cpu(slub_free_list, cpu); ++ raw_spin_lock_irq(&f->lock); ++ list_splice_init(&f->list, &tofree); ++ raw_spin_unlock_irq(&f->lock); ++ free_delayed(&tofree); ++ } + } + + /* +@@ -2115,10 +2166,10 @@ + unsigned long x = 0; + struct page *page; + +- spin_lock_irqsave(&n->list_lock, flags); ++ raw_spin_lock_irqsave(&n->list_lock, flags); + list_for_each_entry(page, &n->partial, lru) + x += get_count(page); +- spin_unlock_irqrestore(&n->list_lock, flags); ++ raw_spin_unlock_irqrestore(&n->list_lock, flags); + return x; + } + #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ +@@ -2255,9 +2306,11 @@ + static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, + unsigned long addr, struct kmem_cache_cpu *c) + { ++ struct slub_free_list *f; + void *freelist; + struct page *page; + unsigned long flags; ++ LIST_HEAD(tofree); + + local_irq_save(flags); + #ifdef CONFIG_PREEMPT +@@ -2325,7 +2378,13 @@ + VM_BUG_ON(!c->page->frozen); + c->freelist = get_freepointer(s, freelist); + c->tid = next_tid(c->tid); ++out: ++ f = &__get_cpu_var(slub_free_list); ++ raw_spin_lock(&f->lock); ++ list_splice_init(&f->list, &tofree); ++ raw_spin_unlock(&f->lock); + local_irq_restore(flags); ++ free_delayed(&tofree); + return freelist; + + new_slab: +@@ -2342,8 +2401,7 @@ + + if (unlikely(!freelist)) { + slab_out_of_memory(s, gfpflags, node); +- local_irq_restore(flags); +- return NULL; ++ goto out; + } + + page = c->page; +@@ -2358,8 +2416,7 @@ + deactivate_slab(s, page, get_freepointer(s, freelist)); + c->page = NULL; + c->freelist = NULL; +- local_irq_restore(flags); +- return freelist; ++ goto out; + } + + /* +@@ -2444,6 +2501,10 @@ + + if (unlikely(gfpflags & __GFP_ZERO) && object) + memset(object, 0, s->object_size); ++#ifdef CONFIG_PREEMPT_RT_FULL ++ if (unlikely(s->ctor) && object) ++ s->ctor(object); ++#endif + + slab_post_alloc_hook(s, gfpflags, object); + +@@ -2531,7 +2592,7 @@ + + do { + if (unlikely(n)) { +- spin_unlock_irqrestore(&n->list_lock, flags); ++ raw_spin_unlock_irqrestore(&n->list_lock, flags); + n = NULL; + } + prior = page->freelist; +@@ -2563,7 +2624,7 @@ + * Otherwise the list_lock will synchronize with + * other processors updating the list of slabs. + */ +- spin_lock_irqsave(&n->list_lock, flags); ++ raw_spin_lock_irqsave(&n->list_lock, flags); + + } + } +@@ -2605,7 +2666,7 @@ + add_partial(n, page, DEACTIVATE_TO_TAIL); + stat(s, FREE_ADD_PARTIAL); + } +- spin_unlock_irqrestore(&n->list_lock, flags); ++ raw_spin_unlock_irqrestore(&n->list_lock, flags); + return; + + slab_empty: +@@ -2620,7 +2681,7 @@ + remove_full(s, n, page); + } + +- spin_unlock_irqrestore(&n->list_lock, flags); ++ raw_spin_unlock_irqrestore(&n->list_lock, flags); + stat(s, FREE_SLAB); + discard_slab(s, page); + } +@@ -2816,7 +2877,7 @@ + init_kmem_cache_node(struct kmem_cache_node *n) + { + n->nr_partial = 0; +- spin_lock_init(&n->list_lock); ++ raw_spin_lock_init(&n->list_lock); + INIT_LIST_HEAD(&n->partial); + #ifdef CONFIG_SLUB_DEBUG + atomic_long_set(&n->nr_slabs, 0); +@@ -3373,7 +3434,7 @@ + for (i = 0; i < objects; i++) + INIT_LIST_HEAD(slabs_by_inuse + i); + +- spin_lock_irqsave(&n->list_lock, flags); ++ raw_spin_lock_irqsave(&n->list_lock, flags); + + /* + * Build lists indexed by the items in use in each slab. +@@ -3394,7 +3455,7 @@ + for (i = objects - 1; i > 0; i--) + list_splice(slabs_by_inuse + i, n->partial.prev); + +- spin_unlock_irqrestore(&n->list_lock, flags); ++ raw_spin_unlock_irqrestore(&n->list_lock, flags); + + /* Release empty slabs */ + list_for_each_entry_safe(page, t, slabs_by_inuse, lru) +@@ -3567,6 +3628,12 @@ + { + static __initdata struct kmem_cache boot_kmem_cache, + boot_kmem_cache_node; ++ int cpu; ++ ++ for_each_possible_cpu(cpu) { ++ raw_spin_lock_init(&per_cpu(slub_free_list, cpu).lock); ++ INIT_LIST_HEAD(&per_cpu(slub_free_list, cpu).list); ++ } + + if (debug_guardpage_minorder()) + slub_max_order = 0; +@@ -3815,7 +3882,7 @@ + struct page *page; + unsigned long flags; + +- spin_lock_irqsave(&n->list_lock, flags); ++ raw_spin_lock_irqsave(&n->list_lock, flags); + + list_for_each_entry(page, &n->partial, lru) { + validate_slab_slab(s, page, map); +@@ -3837,7 +3904,7 @@ + s->name, count, atomic_long_read(&n->nr_slabs)); + + out: +- spin_unlock_irqrestore(&n->list_lock, flags); ++ raw_spin_unlock_irqrestore(&n->list_lock, flags); + return count; + } + +@@ -4025,12 +4092,12 @@ + if (!atomic_long_read(&n->nr_slabs)) + continue; + +- spin_lock_irqsave(&n->list_lock, flags); ++ raw_spin_lock_irqsave(&n->list_lock, flags); + list_for_each_entry(page, &n->partial, lru) + process_slab(&t, s, page, alloc, map); + list_for_each_entry(page, &n->full, lru) + process_slab(&t, s, page, alloc, map); +- spin_unlock_irqrestore(&n->list_lock, flags); ++ raw_spin_unlock_irqrestore(&n->list_lock, flags); + } + + for (i = 0; i < t.count; i++) { +diff -Nur linux-3.18.12.orig/mm/swap.c linux-3.18.12/mm/swap.c +--- linux-3.18.12.orig/mm/swap.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/swap.c 2015-04-26 13:32:22.467684003 -0500 +@@ -31,6 +31,7 @@ + #include + #include + #include ++#include + + #include "internal.h" + +@@ -44,6 +45,9 @@ + static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); + static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); + ++static DEFINE_LOCAL_IRQ_LOCK(rotate_lock); ++static DEFINE_LOCAL_IRQ_LOCK(swapvec_lock); ++ + /* + * This path almost never happens for VM activity - pages are normally + * freed via pagevecs. But it gets used by networking. +@@ -473,11 +477,11 @@ + unsigned long flags; + + page_cache_get(page); +- local_irq_save(flags); ++ local_lock_irqsave(rotate_lock, flags); + pvec = this_cpu_ptr(&lru_rotate_pvecs); + if (!pagevec_add(pvec, page)) + pagevec_move_tail(pvec); +- local_irq_restore(flags); ++ local_unlock_irqrestore(rotate_lock, flags); + } + } + +@@ -528,12 +532,13 @@ + void activate_page(struct page *page) + { + if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { +- struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); ++ struct pagevec *pvec = &get_locked_var(swapvec_lock, ++ activate_page_pvecs); + + page_cache_get(page); + if (!pagevec_add(pvec, page)) + pagevec_lru_move_fn(pvec, __activate_page, NULL); +- put_cpu_var(activate_page_pvecs); ++ put_locked_var(swapvec_lock, activate_page_pvecs); + } + } + +@@ -559,7 +564,7 @@ + + static void __lru_cache_activate_page(struct page *page) + { +- struct pagevec *pvec = &get_cpu_var(lru_add_pvec); ++ struct pagevec *pvec = &get_locked_var(swapvec_lock, lru_add_pvec); + int i; + + /* +@@ -581,7 +586,7 @@ + } + } + +- put_cpu_var(lru_add_pvec); ++ put_locked_var(swapvec_lock, lru_add_pvec); + } + + /* +@@ -620,13 +625,13 @@ + + static void __lru_cache_add(struct page *page) + { +- struct pagevec *pvec = &get_cpu_var(lru_add_pvec); ++ struct pagevec *pvec = &get_locked_var(swapvec_lock, lru_add_pvec); + + page_cache_get(page); + if (!pagevec_space(pvec)) + __pagevec_lru_add(pvec); + pagevec_add(pvec, page); +- put_cpu_var(lru_add_pvec); ++ put_locked_var(swapvec_lock, lru_add_pvec); + } + + /** +@@ -806,9 +811,9 @@ + unsigned long flags; + + /* No harm done if a racing interrupt already did this */ +- local_irq_save(flags); ++ local_lock_irqsave(rotate_lock, flags); + pagevec_move_tail(pvec); +- local_irq_restore(flags); ++ local_unlock_irqrestore(rotate_lock, flags); + } + + pvec = &per_cpu(lru_deactivate_pvecs, cpu); +@@ -836,18 +841,19 @@ + return; + + if (likely(get_page_unless_zero(page))) { +- struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); ++ struct pagevec *pvec = &get_locked_var(swapvec_lock, ++ lru_deactivate_pvecs); + + if (!pagevec_add(pvec, page)) + pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); +- put_cpu_var(lru_deactivate_pvecs); ++ put_locked_var(swapvec_lock, lru_deactivate_pvecs); + } + } + + void lru_add_drain(void) + { +- lru_add_drain_cpu(get_cpu()); +- put_cpu(); ++ lru_add_drain_cpu(local_lock_cpu(swapvec_lock)); ++ local_unlock_cpu(swapvec_lock); + } + + static void lru_add_drain_per_cpu(struct work_struct *dummy) +diff -Nur linux-3.18.12.orig/mm/truncate.c linux-3.18.12/mm/truncate.c +--- linux-3.18.12.orig/mm/truncate.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/truncate.c 2015-04-26 13:32:22.467684003 -0500 +@@ -56,8 +56,11 @@ + * protected by mapping->tree_lock. + */ + if (!workingset_node_shadows(node) && +- !list_empty(&node->private_list)) +- list_lru_del(&workingset_shadow_nodes, &node->private_list); ++ !list_empty(&node->private_list)) { ++ local_lock(workingset_shadow_lock); ++ list_lru_del(&__workingset_shadow_nodes, &node->private_list); ++ local_unlock(workingset_shadow_lock); ++ } + __radix_tree_delete_node(&mapping->page_tree, node); + unlock: + spin_unlock_irq(&mapping->tree_lock); +diff -Nur linux-3.18.12.orig/mm/vmalloc.c linux-3.18.12/mm/vmalloc.c +--- linux-3.18.12.orig/mm/vmalloc.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/vmalloc.c 2015-04-26 13:32:22.467684003 -0500 +@@ -798,7 +798,7 @@ + struct vmap_block *vb; + struct vmap_area *va; + unsigned long vb_idx; +- int node, err; ++ int node, err, cpu; + + node = numa_node_id(); + +@@ -836,11 +836,12 @@ + BUG_ON(err); + radix_tree_preload_end(); + +- vbq = &get_cpu_var(vmap_block_queue); ++ cpu = get_cpu_light(); ++ vbq = &__get_cpu_var(vmap_block_queue); + spin_lock(&vbq->lock); + list_add_rcu(&vb->free_list, &vbq->free); + spin_unlock(&vbq->lock); +- put_cpu_var(vmap_block_queue); ++ put_cpu_light(); + + return vb; + } +@@ -908,6 +909,7 @@ + struct vmap_block *vb; + unsigned long addr = 0; + unsigned int order; ++ int cpu = 0; + + BUG_ON(size & ~PAGE_MASK); + BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); +@@ -923,7 +925,8 @@ + + again: + rcu_read_lock(); +- vbq = &get_cpu_var(vmap_block_queue); ++ cpu = get_cpu_light(); ++ vbq = &__get_cpu_var(vmap_block_queue); + list_for_each_entry_rcu(vb, &vbq->free, free_list) { + int i; + +@@ -947,7 +950,7 @@ + spin_unlock(&vb->lock); + } + +- put_cpu_var(vmap_block_queue); ++ put_cpu_light(); + rcu_read_unlock(); + + if (!addr) { +diff -Nur linux-3.18.12.orig/mm/vmstat.c linux-3.18.12/mm/vmstat.c +--- linux-3.18.12.orig/mm/vmstat.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/vmstat.c 2015-04-26 13:32:22.467684003 -0500 +@@ -221,6 +221,7 @@ + long x; + long t; + ++ preempt_disable_rt(); + x = delta + __this_cpu_read(*p); + + t = __this_cpu_read(pcp->stat_threshold); +@@ -230,6 +231,7 @@ + x = 0; + } + __this_cpu_write(*p, x); ++ preempt_enable_rt(); + } + EXPORT_SYMBOL(__mod_zone_page_state); + +@@ -262,6 +264,7 @@ + s8 __percpu *p = pcp->vm_stat_diff + item; + s8 v, t; + ++ preempt_disable_rt(); + v = __this_cpu_inc_return(*p); + t = __this_cpu_read(pcp->stat_threshold); + if (unlikely(v > t)) { +@@ -270,6 +273,7 @@ + zone_page_state_add(v + overstep, zone, item); + __this_cpu_write(*p, -overstep); + } ++ preempt_enable_rt(); + } + + void __inc_zone_page_state(struct page *page, enum zone_stat_item item) +@@ -284,6 +288,7 @@ + s8 __percpu *p = pcp->vm_stat_diff + item; + s8 v, t; + ++ preempt_disable_rt(); + v = __this_cpu_dec_return(*p); + t = __this_cpu_read(pcp->stat_threshold); + if (unlikely(v < - t)) { +@@ -292,6 +297,7 @@ + zone_page_state_add(v - overstep, zone, item); + __this_cpu_write(*p, overstep); + } ++ preempt_enable_rt(); + } + + void __dec_zone_page_state(struct page *page, enum zone_stat_item item) +diff -Nur linux-3.18.12.orig/mm/workingset.c linux-3.18.12/mm/workingset.c +--- linux-3.18.12.orig/mm/workingset.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/mm/workingset.c 2015-04-26 13:32:22.467684003 -0500 +@@ -264,7 +264,8 @@ + * point where they would still be useful. + */ + +-struct list_lru workingset_shadow_nodes; ++struct list_lru __workingset_shadow_nodes; ++DEFINE_LOCAL_IRQ_LOCK(workingset_shadow_lock); + + static unsigned long count_shadow_nodes(struct shrinker *shrinker, + struct shrink_control *sc) +@@ -274,9 +275,9 @@ + unsigned long pages; + + /* list_lru lock nests inside IRQ-safe mapping->tree_lock */ +- local_irq_disable(); +- shadow_nodes = list_lru_count_node(&workingset_shadow_nodes, sc->nid); +- local_irq_enable(); ++ local_lock_irq(workingset_shadow_lock); ++ shadow_nodes = list_lru_count_node(&__workingset_shadow_nodes, sc->nid); ++ local_unlock_irq(workingset_shadow_lock); + + pages = node_present_pages(sc->nid); + /* +@@ -362,9 +363,9 @@ + spin_unlock(&mapping->tree_lock); + ret = LRU_REMOVED_RETRY; + out: +- local_irq_enable(); ++ local_unlock_irq(workingset_shadow_lock); + cond_resched(); +- local_irq_disable(); ++ local_lock_irq(workingset_shadow_lock); + spin_lock(lru_lock); + return ret; + } +@@ -375,10 +376,10 @@ + unsigned long ret; + + /* list_lru lock nests inside IRQ-safe mapping->tree_lock */ +- local_irq_disable(); +- ret = list_lru_walk_node(&workingset_shadow_nodes, sc->nid, ++ local_lock_irq(workingset_shadow_lock); ++ ret = list_lru_walk_node(&__workingset_shadow_nodes, sc->nid, + shadow_lru_isolate, NULL, &sc->nr_to_scan); +- local_irq_enable(); ++ local_unlock_irq(workingset_shadow_lock); + return ret; + } + +@@ -399,7 +400,7 @@ + { + int ret; + +- ret = list_lru_init_key(&workingset_shadow_nodes, &shadow_nodes_key); ++ ret = list_lru_init_key(&__workingset_shadow_nodes, &shadow_nodes_key); + if (ret) + goto err; + ret = register_shrinker(&workingset_shadow_shrinker); +@@ -407,7 +408,7 @@ + goto err_list_lru; + return 0; + err_list_lru: +- list_lru_destroy(&workingset_shadow_nodes); ++ list_lru_destroy(&__workingset_shadow_nodes); + err: + return ret; + } +diff -Nur linux-3.18.12.orig/net/core/dev.c linux-3.18.12/net/core/dev.c +--- linux-3.18.12.orig/net/core/dev.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/core/dev.c 2015-04-26 13:32:22.471684003 -0500 +@@ -182,6 +182,7 @@ + static DEFINE_HASHTABLE(napi_hash, 8); + + static seqcount_t devnet_rename_seq; ++static DEFINE_MUTEX(devnet_rename_mutex); + + static inline void dev_base_seq_inc(struct net *net) + { +@@ -203,14 +204,14 @@ + static inline void rps_lock(struct softnet_data *sd) + { + #ifdef CONFIG_RPS +- spin_lock(&sd->input_pkt_queue.lock); ++ raw_spin_lock(&sd->input_pkt_queue.raw_lock); + #endif + } + + static inline void rps_unlock(struct softnet_data *sd) + { + #ifdef CONFIG_RPS +- spin_unlock(&sd->input_pkt_queue.lock); ++ raw_spin_unlock(&sd->input_pkt_queue.raw_lock); + #endif + } + +@@ -832,7 +833,8 @@ + strcpy(name, dev->name); + rcu_read_unlock(); + if (read_seqcount_retry(&devnet_rename_seq, seq)) { +- cond_resched(); ++ mutex_lock(&devnet_rename_mutex); ++ mutex_unlock(&devnet_rename_mutex); + goto retry; + } + +@@ -1101,20 +1103,17 @@ + if (dev->flags & IFF_UP) + return -EBUSY; + +- write_seqcount_begin(&devnet_rename_seq); ++ mutex_lock(&devnet_rename_mutex); ++ __raw_write_seqcount_begin(&devnet_rename_seq); + +- if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { +- write_seqcount_end(&devnet_rename_seq); +- return 0; +- } ++ if (strncmp(newname, dev->name, IFNAMSIZ) == 0) ++ goto outunlock; + + memcpy(oldname, dev->name, IFNAMSIZ); + + err = dev_get_valid_name(net, dev, newname); +- if (err < 0) { +- write_seqcount_end(&devnet_rename_seq); +- return err; +- } ++ if (err < 0) ++ goto outunlock; + + if (oldname[0] && !strchr(oldname, '%')) + netdev_info(dev, "renamed from %s\n", oldname); +@@ -1127,11 +1126,12 @@ + if (ret) { + memcpy(dev->name, oldname, IFNAMSIZ); + dev->name_assign_type = old_assign_type; +- write_seqcount_end(&devnet_rename_seq); +- return ret; ++ err = ret; ++ goto outunlock; + } + +- write_seqcount_end(&devnet_rename_seq); ++ __raw_write_seqcount_end(&devnet_rename_seq); ++ mutex_unlock(&devnet_rename_mutex); + + netdev_adjacent_rename_links(dev, oldname); + +@@ -1152,7 +1152,8 @@ + /* err >= 0 after dev_alloc_name() or stores the first errno */ + if (err >= 0) { + err = ret; +- write_seqcount_begin(&devnet_rename_seq); ++ mutex_lock(&devnet_rename_mutex); ++ __raw_write_seqcount_begin(&devnet_rename_seq); + memcpy(dev->name, oldname, IFNAMSIZ); + memcpy(oldname, newname, IFNAMSIZ); + dev->name_assign_type = old_assign_type; +@@ -1165,6 +1166,11 @@ + } + + return err; ++ ++outunlock: ++ __raw_write_seqcount_end(&devnet_rename_seq); ++ mutex_unlock(&devnet_rename_mutex); ++ return err; + } + + /** +@@ -2160,6 +2166,7 @@ + sd->output_queue_tailp = &q->next_sched; + raise_softirq_irqoff(NET_TX_SOFTIRQ); + local_irq_restore(flags); ++ preempt_check_resched_rt(); + } + + void __netif_schedule(struct Qdisc *q) +@@ -2241,6 +2248,7 @@ + __this_cpu_write(softnet_data.completion_queue, skb); + raise_softirq_irqoff(NET_TX_SOFTIRQ); + local_irq_restore(flags); ++ preempt_check_resched_rt(); + } + EXPORT_SYMBOL(__dev_kfree_skb_irq); + +@@ -3336,6 +3344,7 @@ + rps_unlock(sd); + + local_irq_restore(flags); ++ preempt_check_resched_rt(); + + atomic_long_inc(&skb->dev->rx_dropped); + kfree_skb(skb); +@@ -3354,7 +3363,7 @@ + struct rps_dev_flow voidflow, *rflow = &voidflow; + int cpu; + +- preempt_disable(); ++ migrate_disable(); + rcu_read_lock(); + + cpu = get_rps_cpu(skb->dev, skb, &rflow); +@@ -3364,13 +3373,13 @@ + ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); + + rcu_read_unlock(); +- preempt_enable(); ++ migrate_enable(); + } else + #endif + { + unsigned int qtail; +- ret = enqueue_to_backlog(skb, get_cpu(), &qtail); +- put_cpu(); ++ ret = enqueue_to_backlog(skb, get_cpu_light(), &qtail); ++ put_cpu_light(); + } + return ret; + } +@@ -3404,16 +3413,44 @@ + + trace_netif_rx_ni_entry(skb); + +- preempt_disable(); ++ local_bh_disable(); + err = netif_rx_internal(skb); +- if (local_softirq_pending()) +- do_softirq(); +- preempt_enable(); ++ local_bh_enable(); + + return err; + } + EXPORT_SYMBOL(netif_rx_ni); + ++#ifdef CONFIG_PREEMPT_RT_FULL ++/* ++ * RT runs ksoftirqd as a real time thread and the root_lock is a ++ * "sleeping spinlock". If the trylock fails then we can go into an ++ * infinite loop when ksoftirqd preempted the task which actually ++ * holds the lock, because we requeue q and raise NET_TX softirq ++ * causing ksoftirqd to loop forever. ++ * ++ * It's safe to use spin_lock on RT here as softirqs run in thread ++ * context and cannot deadlock against the thread which is holding ++ * root_lock. ++ * ++ * On !RT the trylock might fail, but there we bail out from the ++ * softirq loop after 10 attempts which we can't do on RT. And the ++ * task holding root_lock cannot be preempted, so the only downside of ++ * that trylock is that we need 10 loops to decide that we should have ++ * given up in the first one :) ++ */ ++static inline int take_root_lock(spinlock_t *lock) ++{ ++ spin_lock(lock); ++ return 1; ++} ++#else ++static inline int take_root_lock(spinlock_t *lock) ++{ ++ return spin_trylock(lock); ++} ++#endif ++ + static void net_tx_action(struct softirq_action *h) + { + struct softnet_data *sd = this_cpu_ptr(&softnet_data); +@@ -3455,7 +3492,7 @@ + head = head->next_sched; + + root_lock = qdisc_lock(q); +- if (spin_trylock(root_lock)) { ++ if (take_root_lock(root_lock)) { + smp_mb__before_atomic(); + clear_bit(__QDISC_STATE_SCHED, + &q->state); +@@ -3848,7 +3885,7 @@ + skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { + if (skb->dev == dev) { + __skb_unlink(skb, &sd->input_pkt_queue); +- kfree_skb(skb); ++ __skb_queue_tail(&sd->tofree_queue, skb); + input_queue_head_incr(sd); + } + } +@@ -3857,10 +3894,13 @@ + skb_queue_walk_safe(&sd->process_queue, skb, tmp) { + if (skb->dev == dev) { + __skb_unlink(skb, &sd->process_queue); +- kfree_skb(skb); ++ __skb_queue_tail(&sd->tofree_queue, skb); + input_queue_head_incr(sd); + } + } ++ ++ if (!skb_queue_empty(&sd->tofree_queue)) ++ raise_softirq_irqoff(NET_RX_SOFTIRQ); + } + + static int napi_gro_complete(struct sk_buff *skb) +@@ -4323,6 +4363,7 @@ + } else + #endif + local_irq_enable(); ++ preempt_check_resched_rt(); + } + + static int process_backlog(struct napi_struct *napi, int quota) +@@ -4394,6 +4435,7 @@ + local_irq_save(flags); + ____napi_schedule(this_cpu_ptr(&softnet_data), n); + local_irq_restore(flags); ++ preempt_check_resched_rt(); + } + EXPORT_SYMBOL(__napi_schedule); + +@@ -4516,10 +4558,17 @@ + struct softnet_data *sd = this_cpu_ptr(&softnet_data); + unsigned long time_limit = jiffies + 2; + int budget = netdev_budget; ++ struct sk_buff *skb; + void *have; + + local_irq_disable(); + ++ while ((skb = __skb_dequeue(&sd->tofree_queue))) { ++ local_irq_enable(); ++ kfree_skb(skb); ++ local_irq_disable(); ++ } ++ + while (!list_empty(&sd->poll_list)) { + struct napi_struct *n; + int work, weight; +@@ -7008,6 +7057,7 @@ + + raise_softirq_irqoff(NET_TX_SOFTIRQ); + local_irq_enable(); ++ preempt_check_resched_rt(); + + /* Process offline CPU's input_pkt_queue */ + while ((skb = __skb_dequeue(&oldsd->process_queue))) { +@@ -7018,6 +7068,9 @@ + netif_rx_internal(skb); + input_queue_head_incr(oldsd); + } ++ while ((skb = __skb_dequeue(&oldsd->tofree_queue))) { ++ kfree_skb(skb); ++ } + + return NOTIFY_OK; + } +@@ -7319,8 +7372,9 @@ + for_each_possible_cpu(i) { + struct softnet_data *sd = &per_cpu(softnet_data, i); + +- skb_queue_head_init(&sd->input_pkt_queue); +- skb_queue_head_init(&sd->process_queue); ++ skb_queue_head_init_raw(&sd->input_pkt_queue); ++ skb_queue_head_init_raw(&sd->process_queue); ++ skb_queue_head_init_raw(&sd->tofree_queue); + INIT_LIST_HEAD(&sd->poll_list); + sd->output_queue_tailp = &sd->output_queue; + #ifdef CONFIG_RPS +diff -Nur linux-3.18.12.orig/net/core/skbuff.c linux-3.18.12/net/core/skbuff.c +--- linux-3.18.12.orig/net/core/skbuff.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/core/skbuff.c 2015-04-26 13:32:22.471684003 -0500 +@@ -63,6 +63,7 @@ + #include + #include + #include ++#include + + #include + #include +@@ -336,6 +337,7 @@ + unsigned int pagecnt_bias; + }; + static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); ++static DEFINE_LOCAL_IRQ_LOCK(netdev_alloc_lock); + + static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) + { +@@ -344,7 +346,7 @@ + int order; + unsigned long flags; + +- local_irq_save(flags); ++ local_lock_irqsave(netdev_alloc_lock, flags); + nc = this_cpu_ptr(&netdev_alloc_cache); + if (unlikely(!nc->frag.page)) { + refill: +@@ -389,7 +391,7 @@ + nc->frag.offset += fragsz; + nc->pagecnt_bias--; + end: +- local_irq_restore(flags); ++ local_unlock_irqrestore(netdev_alloc_lock, flags); + return data; + } + +diff -Nur linux-3.18.12.orig/net/core/sock.c linux-3.18.12/net/core/sock.c +--- linux-3.18.12.orig/net/core/sock.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/core/sock.c 2015-04-26 13:32:22.471684003 -0500 +@@ -2326,12 +2326,11 @@ + if (sk->sk_lock.owned) + __lock_sock(sk); + sk->sk_lock.owned = 1; +- spin_unlock(&sk->sk_lock.slock); ++ spin_unlock_bh(&sk->sk_lock.slock); + /* + * The sk_lock has mutex_lock() semantics here: + */ + mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); +- local_bh_enable(); + } + EXPORT_SYMBOL(lock_sock_nested); + +diff -Nur linux-3.18.12.orig/net/ipv4/icmp.c linux-3.18.12/net/ipv4/icmp.c +--- linux-3.18.12.orig/net/ipv4/icmp.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/ipv4/icmp.c 2015-04-26 13:32:22.471684003 -0500 +@@ -69,6 +69,7 @@ + #include + #include + #include ++#include + #include + #include + #include +@@ -864,6 +865,30 @@ + } + + /* ++ * 32bit and 64bit have different timestamp length, so we check for ++ * the cookie at offset 20 and verify it is repeated at offset 50 ++ */ ++#define CO_POS0 20 ++#define CO_POS1 50 ++#define CO_SIZE sizeof(int) ++#define ICMP_SYSRQ_SIZE 57 ++ ++/* ++ * We got a ICMP_SYSRQ_SIZE sized ping request. Check for the cookie ++ * pattern and if it matches send the next byte as a trigger to sysrq. ++ */ ++static void icmp_check_sysrq(struct net *net, struct sk_buff *skb) ++{ ++ int cookie = htonl(net->ipv4.sysctl_icmp_echo_sysrq); ++ char *p = skb->data; ++ ++ if (!memcmp(&cookie, p + CO_POS0, CO_SIZE) && ++ !memcmp(&cookie, p + CO_POS1, CO_SIZE) && ++ p[CO_POS0 + CO_SIZE] == p[CO_POS1 + CO_SIZE]) ++ handle_sysrq(p[CO_POS0 + CO_SIZE]); ++} ++ ++/* + * Handle ICMP_ECHO ("ping") requests. + * + * RFC 1122: 3.2.2.6 MUST have an echo server that answers ICMP echo +@@ -890,6 +915,11 @@ + icmp_param.data_len = skb->len; + icmp_param.head_len = sizeof(struct icmphdr); + icmp_reply(&icmp_param, skb); ++ ++ if (skb->len == ICMP_SYSRQ_SIZE && ++ net->ipv4.sysctl_icmp_echo_sysrq) { ++ icmp_check_sysrq(net, skb); ++ } + } + } + +diff -Nur linux-3.18.12.orig/net/ipv4/sysctl_net_ipv4.c linux-3.18.12/net/ipv4/sysctl_net_ipv4.c +--- linux-3.18.12.orig/net/ipv4/sysctl_net_ipv4.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/ipv4/sysctl_net_ipv4.c 2015-04-26 13:32:22.471684003 -0500 +@@ -779,6 +779,13 @@ + .proc_handler = proc_dointvec + }, + { ++ .procname = "icmp_echo_sysrq", ++ .data = &init_net.ipv4.sysctl_icmp_echo_sysrq, ++ .maxlen = sizeof(int), ++ .mode = 0644, ++ .proc_handler = proc_dointvec ++ }, ++ { + .procname = "icmp_ignore_bogus_error_responses", + .data = &init_net.ipv4.sysctl_icmp_ignore_bogus_error_responses, + .maxlen = sizeof(int), +diff -Nur linux-3.18.12.orig/net/mac80211/rx.c linux-3.18.12/net/mac80211/rx.c +--- linux-3.18.12.orig/net/mac80211/rx.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/mac80211/rx.c 2015-04-26 13:32:22.471684003 -0500 +@@ -3359,7 +3359,7 @@ + struct ieee80211_supported_band *sband; + struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); + +- WARN_ON_ONCE(softirq_count() == 0); ++ WARN_ON_ONCE_NONRT(softirq_count() == 0); + + if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) + goto drop; +diff -Nur linux-3.18.12.orig/net/mac80211/rx.c.orig linux-3.18.12/net/mac80211/rx.c.orig +--- linux-3.18.12.orig/net/mac80211/rx.c.orig 1969-12-31 18:00:00.000000000 -0600 ++++ linux-3.18.12/net/mac80211/rx.c.orig 2015-04-20 14:48:02.000000000 -0500 +@@ -0,0 +1,3476 @@ ++/* ++ * Copyright 2002-2005, Instant802 Networks, Inc. ++ * Copyright 2005-2006, Devicescape Software, Inc. ++ * Copyright 2006-2007 Jiri Benc ++ * Copyright 2007-2010 Johannes Berg ++ * Copyright 2013-2014 Intel Mobile Communications GmbH ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "ieee80211_i.h" ++#include "driver-ops.h" ++#include "led.h" ++#include "mesh.h" ++#include "wep.h" ++#include "wpa.h" ++#include "tkip.h" ++#include "wme.h" ++#include "rate.h" ++ ++/* ++ * monitor mode reception ++ * ++ * This function cleans up the SKB, i.e. it removes all the stuff ++ * only useful for monitoring. ++ */ ++static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, ++ struct sk_buff *skb) ++{ ++ if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { ++ if (likely(skb->len > FCS_LEN)) ++ __pskb_trim(skb, skb->len - FCS_LEN); ++ else { ++ /* driver bug */ ++ WARN_ON(1); ++ dev_kfree_skb(skb); ++ return NULL; ++ } ++ } ++ ++ return skb; ++} ++ ++static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len) ++{ ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ struct ieee80211_hdr *hdr = (void *)skb->data; ++ ++ if (status->flag & (RX_FLAG_FAILED_FCS_CRC | ++ RX_FLAG_FAILED_PLCP_CRC | ++ RX_FLAG_AMPDU_IS_ZEROLEN)) ++ return true; ++ ++ if (unlikely(skb->len < 16 + present_fcs_len)) ++ return true; ++ ++ if (ieee80211_is_ctl(hdr->frame_control) && ++ !ieee80211_is_pspoll(hdr->frame_control) && ++ !ieee80211_is_back_req(hdr->frame_control)) ++ return true; ++ ++ return false; ++} ++ ++static int ++ieee80211_rx_radiotap_space(struct ieee80211_local *local, ++ struct ieee80211_rx_status *status) ++{ ++ int len; ++ ++ /* always present fields */ ++ len = sizeof(struct ieee80211_radiotap_header) + 8; ++ ++ /* allocate extra bitmaps */ ++ if (status->chains) ++ len += 4 * hweight8(status->chains); ++ ++ if (ieee80211_have_rx_timestamp(status)) { ++ len = ALIGN(len, 8); ++ len += 8; ++ } ++ if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ++ len += 1; ++ ++ /* antenna field, if we don't have per-chain info */ ++ if (!status->chains) ++ len += 1; ++ ++ /* padding for RX_FLAGS if necessary */ ++ len = ALIGN(len, 2); ++ ++ if (status->flag & RX_FLAG_HT) /* HT info */ ++ len += 3; ++ ++ if (status->flag & RX_FLAG_AMPDU_DETAILS) { ++ len = ALIGN(len, 4); ++ len += 8; ++ } ++ ++ if (status->flag & RX_FLAG_VHT) { ++ len = ALIGN(len, 2); ++ len += 12; ++ } ++ ++ if (status->chains) { ++ /* antenna and antenna signal fields */ ++ len += 2 * hweight8(status->chains); ++ } ++ ++ return len; ++} ++ ++/* ++ * ieee80211_add_rx_radiotap_header - add radiotap header ++ * ++ * add a radiotap header containing all the fields which the hardware provided. ++ */ ++static void ++ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, ++ struct sk_buff *skb, ++ struct ieee80211_rate *rate, ++ int rtap_len, bool has_fcs) ++{ ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ struct ieee80211_radiotap_header *rthdr; ++ unsigned char *pos; ++ __le32 *it_present; ++ u32 it_present_val; ++ u16 rx_flags = 0; ++ u16 channel_flags = 0; ++ int mpdulen, chain; ++ unsigned long chains = status->chains; ++ ++ mpdulen = skb->len; ++ if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) ++ mpdulen += FCS_LEN; ++ ++ rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); ++ memset(rthdr, 0, rtap_len); ++ it_present = &rthdr->it_present; ++ ++ /* radiotap header, set always present flags */ ++ rthdr->it_len = cpu_to_le16(rtap_len); ++ it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | ++ BIT(IEEE80211_RADIOTAP_CHANNEL) | ++ BIT(IEEE80211_RADIOTAP_RX_FLAGS); ++ ++ if (!status->chains) ++ it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); ++ ++ for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { ++ it_present_val |= ++ BIT(IEEE80211_RADIOTAP_EXT) | ++ BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); ++ put_unaligned_le32(it_present_val, it_present); ++ it_present++; ++ it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | ++ BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); ++ } ++ ++ put_unaligned_le32(it_present_val, it_present); ++ ++ pos = (void *)(it_present + 1); ++ ++ /* the order of the following fields is important */ ++ ++ /* IEEE80211_RADIOTAP_TSFT */ ++ if (ieee80211_have_rx_timestamp(status)) { ++ /* padding */ ++ while ((pos - (u8 *)rthdr) & 7) ++ *pos++ = 0; ++ put_unaligned_le64( ++ ieee80211_calculate_rx_timestamp(local, status, ++ mpdulen, 0), ++ pos); ++ rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); ++ pos += 8; ++ } ++ ++ /* IEEE80211_RADIOTAP_FLAGS */ ++ if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) ++ *pos |= IEEE80211_RADIOTAP_F_FCS; ++ if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) ++ *pos |= IEEE80211_RADIOTAP_F_BADFCS; ++ if (status->flag & RX_FLAG_SHORTPRE) ++ *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; ++ pos++; ++ ++ /* IEEE80211_RADIOTAP_RATE */ ++ if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { ++ /* ++ * Without rate information don't add it. If we have, ++ * MCS information is a separate field in radiotap, ++ * added below. The byte here is needed as padding ++ * for the channel though, so initialise it to 0. ++ */ ++ *pos = 0; ++ } else { ++ int shift = 0; ++ rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); ++ if (status->flag & RX_FLAG_10MHZ) ++ shift = 1; ++ else if (status->flag & RX_FLAG_5MHZ) ++ shift = 2; ++ *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); ++ } ++ pos++; ++ ++ /* IEEE80211_RADIOTAP_CHANNEL */ ++ put_unaligned_le16(status->freq, pos); ++ pos += 2; ++ if (status->flag & RX_FLAG_10MHZ) ++ channel_flags |= IEEE80211_CHAN_HALF; ++ else if (status->flag & RX_FLAG_5MHZ) ++ channel_flags |= IEEE80211_CHAN_QUARTER; ++ ++ if (status->band == IEEE80211_BAND_5GHZ) ++ channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; ++ else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) ++ channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; ++ else if (rate && rate->flags & IEEE80211_RATE_ERP_G) ++ channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; ++ else if (rate) ++ channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; ++ else ++ channel_flags |= IEEE80211_CHAN_2GHZ; ++ put_unaligned_le16(channel_flags, pos); ++ pos += 2; ++ ++ /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ ++ if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && ++ !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { ++ *pos = status->signal; ++ rthdr->it_present |= ++ cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); ++ pos++; ++ } ++ ++ /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ ++ ++ if (!status->chains) { ++ /* IEEE80211_RADIOTAP_ANTENNA */ ++ *pos = status->antenna; ++ pos++; ++ } ++ ++ /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ ++ ++ /* IEEE80211_RADIOTAP_RX_FLAGS */ ++ /* ensure 2 byte alignment for the 2 byte field as required */ ++ if ((pos - (u8 *)rthdr) & 1) ++ *pos++ = 0; ++ if (status->flag & RX_FLAG_FAILED_PLCP_CRC) ++ rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; ++ put_unaligned_le16(rx_flags, pos); ++ pos += 2; ++ ++ if (status->flag & RX_FLAG_HT) { ++ unsigned int stbc; ++ ++ rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); ++ *pos++ = local->hw.radiotap_mcs_details; ++ *pos = 0; ++ if (status->flag & RX_FLAG_SHORT_GI) ++ *pos |= IEEE80211_RADIOTAP_MCS_SGI; ++ if (status->flag & RX_FLAG_40MHZ) ++ *pos |= IEEE80211_RADIOTAP_MCS_BW_40; ++ if (status->flag & RX_FLAG_HT_GF) ++ *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; ++ if (status->flag & RX_FLAG_LDPC) ++ *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; ++ stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; ++ *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; ++ pos++; ++ *pos++ = status->rate_idx; ++ } ++ ++ if (status->flag & RX_FLAG_AMPDU_DETAILS) { ++ u16 flags = 0; ++ ++ /* ensure 4 byte alignment */ ++ while ((pos - (u8 *)rthdr) & 3) ++ pos++; ++ rthdr->it_present |= ++ cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); ++ put_unaligned_le32(status->ampdu_reference, pos); ++ pos += 4; ++ if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) ++ flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; ++ if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) ++ flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; ++ if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) ++ flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; ++ if (status->flag & RX_FLAG_AMPDU_IS_LAST) ++ flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; ++ if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) ++ flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; ++ if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) ++ flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; ++ put_unaligned_le16(flags, pos); ++ pos += 2; ++ if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) ++ *pos++ = status->ampdu_delimiter_crc; ++ else ++ *pos++ = 0; ++ *pos++ = 0; ++ } ++ ++ if (status->flag & RX_FLAG_VHT) { ++ u16 known = local->hw.radiotap_vht_details; ++ ++ rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); ++ /* known field - how to handle 80+80? */ ++ if (status->vht_flag & RX_VHT_FLAG_80P80MHZ) ++ known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; ++ put_unaligned_le16(known, pos); ++ pos += 2; ++ /* flags */ ++ if (status->flag & RX_FLAG_SHORT_GI) ++ *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; ++ /* in VHT, STBC is binary */ ++ if (status->flag & RX_FLAG_STBC_MASK) ++ *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; ++ if (status->vht_flag & RX_VHT_FLAG_BF) ++ *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; ++ pos++; ++ /* bandwidth */ ++ if (status->vht_flag & RX_VHT_FLAG_80MHZ) ++ *pos++ = 4; ++ else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ) ++ *pos++ = 0; /* marked not known above */ ++ else if (status->vht_flag & RX_VHT_FLAG_160MHZ) ++ *pos++ = 11; ++ else if (status->flag & RX_FLAG_40MHZ) ++ *pos++ = 1; ++ else /* 20 MHz */ ++ *pos++ = 0; ++ /* MCS/NSS */ ++ *pos = (status->rate_idx << 4) | status->vht_nss; ++ pos += 4; ++ /* coding field */ ++ if (status->flag & RX_FLAG_LDPC) ++ *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; ++ pos++; ++ /* group ID */ ++ pos++; ++ /* partial_aid */ ++ pos += 2; ++ } ++ ++ for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { ++ *pos++ = status->chain_signal[chain]; ++ *pos++ = chain; ++ } ++} ++ ++/* ++ * This function copies a received frame to all monitor interfaces and ++ * returns a cleaned-up SKB that no longer includes the FCS nor the ++ * radiotap header the driver might have added. ++ */ ++static struct sk_buff * ++ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, ++ struct ieee80211_rate *rate) ++{ ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); ++ struct ieee80211_sub_if_data *sdata; ++ int needed_headroom; ++ struct sk_buff *skb, *skb2; ++ struct net_device *prev_dev = NULL; ++ int present_fcs_len = 0; ++ ++ /* ++ * First, we may need to make a copy of the skb because ++ * (1) we need to modify it for radiotap (if not present), and ++ * (2) the other RX handlers will modify the skb we got. ++ * ++ * We don't need to, of course, if we aren't going to return ++ * the SKB because it has a bad FCS/PLCP checksum. ++ */ ++ ++ if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) ++ present_fcs_len = FCS_LEN; ++ ++ /* ensure hdr->frame_control is in skb head */ ++ if (!pskb_may_pull(origskb, 2)) { ++ dev_kfree_skb(origskb); ++ return NULL; ++ } ++ ++ if (!local->monitors) { ++ if (should_drop_frame(origskb, present_fcs_len)) { ++ dev_kfree_skb(origskb); ++ return NULL; ++ } ++ ++ return remove_monitor_info(local, origskb); ++ } ++ ++ /* room for the radiotap header based on driver features */ ++ needed_headroom = ieee80211_rx_radiotap_space(local, status); ++ ++ if (should_drop_frame(origskb, present_fcs_len)) { ++ /* only need to expand headroom if necessary */ ++ skb = origskb; ++ origskb = NULL; ++ ++ /* ++ * This shouldn't trigger often because most devices have an ++ * RX header they pull before we get here, and that should ++ * be big enough for our radiotap information. We should ++ * probably export the length to drivers so that we can have ++ * them allocate enough headroom to start with. ++ */ ++ if (skb_headroom(skb) < needed_headroom && ++ pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { ++ dev_kfree_skb(skb); ++ return NULL; ++ } ++ } else { ++ /* ++ * Need to make a copy and possibly remove radiotap header ++ * and FCS from the original. ++ */ ++ skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); ++ ++ origskb = remove_monitor_info(local, origskb); ++ ++ if (!skb) ++ return origskb; ++ } ++ ++ /* prepend radiotap information */ ++ ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, ++ true); ++ ++ skb_reset_mac_header(skb); ++ skb->ip_summed = CHECKSUM_UNNECESSARY; ++ skb->pkt_type = PACKET_OTHERHOST; ++ skb->protocol = htons(ETH_P_802_2); ++ ++ list_for_each_entry_rcu(sdata, &local->interfaces, list) { ++ if (sdata->vif.type != NL80211_IFTYPE_MONITOR) ++ continue; ++ ++ if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) ++ continue; ++ ++ if (!ieee80211_sdata_running(sdata)) ++ continue; ++ ++ if (prev_dev) { ++ skb2 = skb_clone(skb, GFP_ATOMIC); ++ if (skb2) { ++ skb2->dev = prev_dev; ++ netif_receive_skb(skb2); ++ } ++ } ++ ++ prev_dev = sdata->dev; ++ sdata->dev->stats.rx_packets++; ++ sdata->dev->stats.rx_bytes += skb->len; ++ } ++ ++ if (prev_dev) { ++ skb->dev = prev_dev; ++ netif_receive_skb(skb); ++ } else ++ dev_kfree_skb(skb); ++ ++ return origskb; ++} ++ ++static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); ++ int tid, seqno_idx, security_idx; ++ ++ /* does the frame have a qos control field? */ ++ if (ieee80211_is_data_qos(hdr->frame_control)) { ++ u8 *qc = ieee80211_get_qos_ctl(hdr); ++ /* frame has qos control */ ++ tid = *qc & IEEE80211_QOS_CTL_TID_MASK; ++ if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) ++ status->rx_flags |= IEEE80211_RX_AMSDU; ++ ++ seqno_idx = tid; ++ security_idx = tid; ++ } else { ++ /* ++ * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): ++ * ++ * Sequence numbers for management frames, QoS data ++ * frames with a broadcast/multicast address in the ++ * Address 1 field, and all non-QoS data frames sent ++ * by QoS STAs are assigned using an additional single ++ * modulo-4096 counter, [...] ++ * ++ * We also use that counter for non-QoS STAs. ++ */ ++ seqno_idx = IEEE80211_NUM_TIDS; ++ security_idx = 0; ++ if (ieee80211_is_mgmt(hdr->frame_control)) ++ security_idx = IEEE80211_NUM_TIDS; ++ tid = 0; ++ } ++ ++ rx->seqno_idx = seqno_idx; ++ rx->security_idx = security_idx; ++ /* Set skb->priority to 1d tag if highest order bit of TID is not set. ++ * For now, set skb->priority to 0 for other cases. */ ++ rx->skb->priority = (tid > 7) ? 0 : tid; ++} ++ ++/** ++ * DOC: Packet alignment ++ * ++ * Drivers always need to pass packets that are aligned to two-byte boundaries ++ * to the stack. ++ * ++ * Additionally, should, if possible, align the payload data in a way that ++ * guarantees that the contained IP header is aligned to a four-byte ++ * boundary. In the case of regular frames, this simply means aligning the ++ * payload to a four-byte boundary (because either the IP header is directly ++ * contained, or IV/RFC1042 headers that have a length divisible by four are ++ * in front of it). If the payload data is not properly aligned and the ++ * architecture doesn't support efficient unaligned operations, mac80211 ++ * will align the data. ++ * ++ * With A-MSDU frames, however, the payload data address must yield two modulo ++ * four because there are 14-byte 802.3 headers within the A-MSDU frames that ++ * push the IP header further back to a multiple of four again. Thankfully, the ++ * specs were sane enough this time around to require padding each A-MSDU ++ * subframe to a length that is a multiple of four. ++ * ++ * Padding like Atheros hardware adds which is between the 802.11 header and ++ * the payload is not supported, the driver is required to move the 802.11 ++ * header to be directly in front of the payload in that case. ++ */ ++static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) ++{ ++#ifdef CONFIG_MAC80211_VERBOSE_DEBUG ++ WARN_ONCE((unsigned long)rx->skb->data & 1, ++ "unaligned packet at 0x%p\n", rx->skb->data); ++#endif ++} ++ ++ ++/* rx handlers */ ++ ++static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) ++{ ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; ++ ++ if (is_multicast_ether_addr(hdr->addr1)) ++ return 0; ++ ++ return ieee80211_is_robust_mgmt_frame(skb); ++} ++ ++ ++static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) ++{ ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; ++ ++ if (!is_multicast_ether_addr(hdr->addr1)) ++ return 0; ++ ++ return ieee80211_is_robust_mgmt_frame(skb); ++} ++ ++ ++/* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ ++static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) ++{ ++ struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; ++ struct ieee80211_mmie *mmie; ++ ++ if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) ++ return -1; ++ ++ if (!ieee80211_is_robust_mgmt_frame(skb)) ++ return -1; /* not a robust management frame */ ++ ++ mmie = (struct ieee80211_mmie *) ++ (skb->data + skb->len - sizeof(*mmie)); ++ if (mmie->element_id != WLAN_EID_MMIE || ++ mmie->length != sizeof(*mmie) - 2) ++ return -1; ++ ++ return le16_to_cpu(mmie->key_id); ++} ++ ++static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, ++ struct sk_buff *skb) ++{ ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; ++ __le16 fc; ++ int hdrlen; ++ u8 keyid; ++ ++ fc = hdr->frame_control; ++ hdrlen = ieee80211_hdrlen(fc); ++ ++ if (skb->len < hdrlen + cs->hdr_len) ++ return -EINVAL; ++ ++ skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); ++ keyid &= cs->key_idx_mask; ++ keyid >>= cs->key_idx_shift; ++ ++ return keyid; ++} ++ ++static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; ++ char *dev_addr = rx->sdata->vif.addr; ++ ++ if (ieee80211_is_data(hdr->frame_control)) { ++ if (is_multicast_ether_addr(hdr->addr1)) { ++ if (ieee80211_has_tods(hdr->frame_control) || ++ !ieee80211_has_fromds(hdr->frame_control)) ++ return RX_DROP_MONITOR; ++ if (ether_addr_equal(hdr->addr3, dev_addr)) ++ return RX_DROP_MONITOR; ++ } else { ++ if (!ieee80211_has_a4(hdr->frame_control)) ++ return RX_DROP_MONITOR; ++ if (ether_addr_equal(hdr->addr4, dev_addr)) ++ return RX_DROP_MONITOR; ++ } ++ } ++ ++ /* If there is not an established peer link and this is not a peer link ++ * establisment frame, beacon or probe, drop the frame. ++ */ ++ ++ if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { ++ struct ieee80211_mgmt *mgmt; ++ ++ if (!ieee80211_is_mgmt(hdr->frame_control)) ++ return RX_DROP_MONITOR; ++ ++ if (ieee80211_is_action(hdr->frame_control)) { ++ u8 category; ++ ++ /* make sure category field is present */ ++ if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) ++ return RX_DROP_MONITOR; ++ ++ mgmt = (struct ieee80211_mgmt *)hdr; ++ category = mgmt->u.action.category; ++ if (category != WLAN_CATEGORY_MESH_ACTION && ++ category != WLAN_CATEGORY_SELF_PROTECTED) ++ return RX_DROP_MONITOR; ++ return RX_CONTINUE; ++ } ++ ++ if (ieee80211_is_probe_req(hdr->frame_control) || ++ ieee80211_is_probe_resp(hdr->frame_control) || ++ ieee80211_is_beacon(hdr->frame_control) || ++ ieee80211_is_auth(hdr->frame_control)) ++ return RX_CONTINUE; ++ ++ return RX_DROP_MONITOR; ++ } ++ ++ return RX_CONTINUE; ++} ++ ++static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, ++ struct tid_ampdu_rx *tid_agg_rx, ++ int index, ++ struct sk_buff_head *frames) ++{ ++ struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; ++ struct sk_buff *skb; ++ struct ieee80211_rx_status *status; ++ ++ lockdep_assert_held(&tid_agg_rx->reorder_lock); ++ ++ if (skb_queue_empty(skb_list)) ++ goto no_frame; ++ ++ if (!ieee80211_rx_reorder_ready(skb_list)) { ++ __skb_queue_purge(skb_list); ++ goto no_frame; ++ } ++ ++ /* release frames from the reorder ring buffer */ ++ tid_agg_rx->stored_mpdu_num--; ++ while ((skb = __skb_dequeue(skb_list))) { ++ status = IEEE80211_SKB_RXCB(skb); ++ status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; ++ __skb_queue_tail(frames, skb); ++ } ++ ++no_frame: ++ tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); ++} ++ ++static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, ++ struct tid_ampdu_rx *tid_agg_rx, ++ u16 head_seq_num, ++ struct sk_buff_head *frames) ++{ ++ int index; ++ ++ lockdep_assert_held(&tid_agg_rx->reorder_lock); ++ ++ while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { ++ index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; ++ ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, ++ frames); ++ } ++} ++ ++/* ++ * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If ++ * the skb was added to the buffer longer than this time ago, the earlier ++ * frames that have not yet been received are assumed to be lost and the skb ++ * can be released for processing. This may also release other skb's from the ++ * reorder buffer if there are no additional gaps between the frames. ++ * ++ * Callers must hold tid_agg_rx->reorder_lock. ++ */ ++#define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) ++ ++static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, ++ struct tid_ampdu_rx *tid_agg_rx, ++ struct sk_buff_head *frames) ++{ ++ int index, i, j; ++ ++ lockdep_assert_held(&tid_agg_rx->reorder_lock); ++ ++ /* release the buffer until next missing frame */ ++ index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; ++ if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) && ++ tid_agg_rx->stored_mpdu_num) { ++ /* ++ * No buffers ready to be released, but check whether any ++ * frames in the reorder buffer have timed out. ++ */ ++ int skipped = 1; ++ for (j = (index + 1) % tid_agg_rx->buf_size; j != index; ++ j = (j + 1) % tid_agg_rx->buf_size) { ++ if (!ieee80211_rx_reorder_ready( ++ &tid_agg_rx->reorder_buf[j])) { ++ skipped++; ++ continue; ++ } ++ if (skipped && ++ !time_after(jiffies, tid_agg_rx->reorder_time[j] + ++ HT_RX_REORDER_BUF_TIMEOUT)) ++ goto set_release_timer; ++ ++ /* don't leave incomplete A-MSDUs around */ ++ for (i = (index + 1) % tid_agg_rx->buf_size; i != j; ++ i = (i + 1) % tid_agg_rx->buf_size) ++ __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); ++ ++ ht_dbg_ratelimited(sdata, ++ "release an RX reorder frame due to timeout on earlier frames\n"); ++ ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, ++ frames); ++ ++ /* ++ * Increment the head seq# also for the skipped slots. ++ */ ++ tid_agg_rx->head_seq_num = ++ (tid_agg_rx->head_seq_num + ++ skipped) & IEEE80211_SN_MASK; ++ skipped = 0; ++ } ++ } else while (ieee80211_rx_reorder_ready( ++ &tid_agg_rx->reorder_buf[index])) { ++ ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, ++ frames); ++ index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; ++ } ++ ++ if (tid_agg_rx->stored_mpdu_num) { ++ j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; ++ ++ for (; j != (index - 1) % tid_agg_rx->buf_size; ++ j = (j + 1) % tid_agg_rx->buf_size) { ++ if (ieee80211_rx_reorder_ready( ++ &tid_agg_rx->reorder_buf[j])) ++ break; ++ } ++ ++ set_release_timer: ++ ++ mod_timer(&tid_agg_rx->reorder_timer, ++ tid_agg_rx->reorder_time[j] + 1 + ++ HT_RX_REORDER_BUF_TIMEOUT); ++ } else { ++ del_timer(&tid_agg_rx->reorder_timer); ++ } ++} ++ ++/* ++ * As this function belongs to the RX path it must be under ++ * rcu_read_lock protection. It returns false if the frame ++ * can be processed immediately, true if it was consumed. ++ */ ++static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, ++ struct tid_ampdu_rx *tid_agg_rx, ++ struct sk_buff *skb, ++ struct sk_buff_head *frames) ++{ ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ u16 sc = le16_to_cpu(hdr->seq_ctrl); ++ u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; ++ u16 head_seq_num, buf_size; ++ int index; ++ bool ret = true; ++ ++ spin_lock(&tid_agg_rx->reorder_lock); ++ ++ /* ++ * Offloaded BA sessions have no known starting sequence number so pick ++ * one from first Rxed frame for this tid after BA was started. ++ */ ++ if (unlikely(tid_agg_rx->auto_seq)) { ++ tid_agg_rx->auto_seq = false; ++ tid_agg_rx->ssn = mpdu_seq_num; ++ tid_agg_rx->head_seq_num = mpdu_seq_num; ++ } ++ ++ buf_size = tid_agg_rx->buf_size; ++ head_seq_num = tid_agg_rx->head_seq_num; ++ ++ /* frame with out of date sequence number */ ++ if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { ++ dev_kfree_skb(skb); ++ goto out; ++ } ++ ++ /* ++ * If frame the sequence number exceeds our buffering window ++ * size release some previous frames to make room for this one. ++ */ ++ if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { ++ head_seq_num = ieee80211_sn_inc( ++ ieee80211_sn_sub(mpdu_seq_num, buf_size)); ++ /* release stored frames up to new head to stack */ ++ ieee80211_release_reorder_frames(sdata, tid_agg_rx, ++ head_seq_num, frames); ++ } ++ ++ /* Now the new frame is always in the range of the reordering buffer */ ++ ++ index = mpdu_seq_num % tid_agg_rx->buf_size; ++ ++ /* check if we already stored this frame */ ++ if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) { ++ dev_kfree_skb(skb); ++ goto out; ++ } ++ ++ /* ++ * If the current MPDU is in the right order and nothing else ++ * is stored we can process it directly, no need to buffer it. ++ * If it is first but there's something stored, we may be able ++ * to release frames after this one. ++ */ ++ if (mpdu_seq_num == tid_agg_rx->head_seq_num && ++ tid_agg_rx->stored_mpdu_num == 0) { ++ if (!(status->flag & RX_FLAG_AMSDU_MORE)) ++ tid_agg_rx->head_seq_num = ++ ieee80211_sn_inc(tid_agg_rx->head_seq_num); ++ ret = false; ++ goto out; ++ } ++ ++ /* put the frame in the reordering buffer */ ++ __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); ++ if (!(status->flag & RX_FLAG_AMSDU_MORE)) { ++ tid_agg_rx->reorder_time[index] = jiffies; ++ tid_agg_rx->stored_mpdu_num++; ++ ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); ++ } ++ ++ out: ++ spin_unlock(&tid_agg_rx->reorder_lock); ++ return ret; ++} ++ ++/* ++ * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns ++ * true if the MPDU was buffered, false if it should be processed. ++ */ ++static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, ++ struct sk_buff_head *frames) ++{ ++ struct sk_buff *skb = rx->skb; ++ struct ieee80211_local *local = rx->local; ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ struct sta_info *sta = rx->sta; ++ struct tid_ampdu_rx *tid_agg_rx; ++ u16 sc; ++ u8 tid, ack_policy; ++ ++ if (!ieee80211_is_data_qos(hdr->frame_control) || ++ is_multicast_ether_addr(hdr->addr1)) ++ goto dont_reorder; ++ ++ /* ++ * filter the QoS data rx stream according to ++ * STA/TID and check if this STA/TID is on aggregation ++ */ ++ ++ if (!sta) ++ goto dont_reorder; ++ ++ ack_policy = *ieee80211_get_qos_ctl(hdr) & ++ IEEE80211_QOS_CTL_ACK_POLICY_MASK; ++ tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; ++ ++ tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); ++ if (!tid_agg_rx) ++ goto dont_reorder; ++ ++ /* qos null data frames are excluded */ ++ if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) ++ goto dont_reorder; ++ ++ /* not part of a BA session */ ++ if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && ++ ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) ++ goto dont_reorder; ++ ++ /* not actually part of this BA session */ ++ if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) ++ goto dont_reorder; ++ ++ /* new, potentially un-ordered, ampdu frame - process it */ ++ ++ /* reset session timer */ ++ if (tid_agg_rx->timeout) ++ tid_agg_rx->last_rx = jiffies; ++ ++ /* if this mpdu is fragmented - terminate rx aggregation session */ ++ sc = le16_to_cpu(hdr->seq_ctrl); ++ if (sc & IEEE80211_SCTL_FRAG) { ++ skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; ++ skb_queue_tail(&rx->sdata->skb_queue, skb); ++ ieee80211_queue_work(&local->hw, &rx->sdata->work); ++ return; ++ } ++ ++ /* ++ * No locking needed -- we will only ever process one ++ * RX packet at a time, and thus own tid_agg_rx. All ++ * other code manipulating it needs to (and does) make ++ * sure that we cannot get to it any more before doing ++ * anything with it. ++ */ ++ if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, ++ frames)) ++ return; ++ ++ dont_reorder: ++ __skb_queue_tail(frames, skb); ++} ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_check(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); ++ ++ /* ++ * Drop duplicate 802.11 retransmissions ++ * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") ++ */ ++ if (rx->skb->len >= 24 && rx->sta && ++ !ieee80211_is_ctl(hdr->frame_control) && ++ !ieee80211_is_qos_nullfunc(hdr->frame_control) && ++ !is_multicast_ether_addr(hdr->addr1)) { ++ if (unlikely(ieee80211_has_retry(hdr->frame_control) && ++ rx->sta->last_seq_ctrl[rx->seqno_idx] == ++ hdr->seq_ctrl)) { ++ if (status->rx_flags & IEEE80211_RX_RA_MATCH) { ++ rx->local->dot11FrameDuplicateCount++; ++ rx->sta->num_duplicates++; ++ } ++ return RX_DROP_UNUSABLE; ++ } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { ++ rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; ++ } ++ } ++ ++ if (unlikely(rx->skb->len < 16)) { ++ I802_DEBUG_INC(rx->local->rx_handlers_drop_short); ++ return RX_DROP_MONITOR; ++ } ++ ++ /* Drop disallowed frame classes based on STA auth/assoc state; ++ * IEEE 802.11, Chap 5.5. ++ * ++ * mac80211 filters only based on association state, i.e. it drops ++ * Class 3 frames from not associated stations. hostapd sends ++ * deauth/disassoc frames when needed. In addition, hostapd is ++ * responsible for filtering on both auth and assoc states. ++ */ ++ ++ if (ieee80211_vif_is_mesh(&rx->sdata->vif)) ++ return ieee80211_rx_mesh_check(rx); ++ ++ if (unlikely((ieee80211_is_data(hdr->frame_control) || ++ ieee80211_is_pspoll(hdr->frame_control)) && ++ rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && ++ rx->sdata->vif.type != NL80211_IFTYPE_WDS && ++ (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { ++ /* ++ * accept port control frames from the AP even when it's not ++ * yet marked ASSOC to prevent a race where we don't set the ++ * assoc bit quickly enough before it sends the first frame ++ */ ++ if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && ++ ieee80211_is_data_present(hdr->frame_control)) { ++ unsigned int hdrlen; ++ __be16 ethertype; ++ ++ hdrlen = ieee80211_hdrlen(hdr->frame_control); ++ ++ if (rx->skb->len < hdrlen + 8) ++ return RX_DROP_MONITOR; ++ ++ skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); ++ if (ethertype == rx->sdata->control_port_protocol) ++ return RX_CONTINUE; ++ } ++ ++ if (rx->sdata->vif.type == NL80211_IFTYPE_AP && ++ cfg80211_rx_spurious_frame(rx->sdata->dev, ++ hdr->addr2, ++ GFP_ATOMIC)) ++ return RX_DROP_UNUSABLE; ++ ++ return RX_DROP_MONITOR; ++ } ++ ++ return RX_CONTINUE; ++} ++ ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_local *local; ++ struct ieee80211_hdr *hdr; ++ struct sk_buff *skb; ++ ++ local = rx->local; ++ skb = rx->skb; ++ hdr = (struct ieee80211_hdr *) skb->data; ++ ++ if (!local->pspolling) ++ return RX_CONTINUE; ++ ++ if (!ieee80211_has_fromds(hdr->frame_control)) ++ /* this is not from AP */ ++ return RX_CONTINUE; ++ ++ if (!ieee80211_is_data(hdr->frame_control)) ++ return RX_CONTINUE; ++ ++ if (!ieee80211_has_moredata(hdr->frame_control)) { ++ /* AP has no more frames buffered for us */ ++ local->pspolling = false; ++ return RX_CONTINUE; ++ } ++ ++ /* more data bit is set, let's request a new frame from the AP */ ++ ieee80211_send_pspoll(local, rx->sdata); ++ ++ return RX_CONTINUE; ++} ++ ++static void sta_ps_start(struct sta_info *sta) ++{ ++ struct ieee80211_sub_if_data *sdata = sta->sdata; ++ struct ieee80211_local *local = sdata->local; ++ struct ps_data *ps; ++ ++ if (sta->sdata->vif.type == NL80211_IFTYPE_AP || ++ sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) ++ ps = &sdata->bss->ps; ++ else ++ return; ++ ++ atomic_inc(&ps->num_sta_ps); ++ set_sta_flag(sta, WLAN_STA_PS_STA); ++ if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) ++ drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); ++ ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", ++ sta->sta.addr, sta->sta.aid); ++} ++ ++static void sta_ps_end(struct sta_info *sta) ++{ ++ ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", ++ sta->sta.addr, sta->sta.aid); ++ ++ if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { ++ /* ++ * Clear the flag only if the other one is still set ++ * so that the TX path won't start TX'ing new frames ++ * directly ... In the case that the driver flag isn't ++ * set ieee80211_sta_ps_deliver_wakeup() will clear it. ++ */ ++ clear_sta_flag(sta, WLAN_STA_PS_STA); ++ ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", ++ sta->sta.addr, sta->sta.aid); ++ return; ++ } ++ ++ set_sta_flag(sta, WLAN_STA_PS_DELIVER); ++ clear_sta_flag(sta, WLAN_STA_PS_STA); ++ ieee80211_sta_ps_deliver_wakeup(sta); ++} ++ ++int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) ++{ ++ struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); ++ bool in_ps; ++ ++ WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); ++ ++ /* Don't let the same PS state be set twice */ ++ in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); ++ if ((start && in_ps) || (!start && !in_ps)) ++ return -EINVAL; ++ ++ if (start) ++ sta_ps_start(sta_inf); ++ else ++ sta_ps_end(sta_inf); ++ ++ return 0; ++} ++EXPORT_SYMBOL(ieee80211_sta_ps_transition); ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ struct ieee80211_hdr *hdr = (void *)rx->skb->data; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); ++ int tid, ac; ++ ++ if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) ++ return RX_CONTINUE; ++ ++ if (sdata->vif.type != NL80211_IFTYPE_AP && ++ sdata->vif.type != NL80211_IFTYPE_AP_VLAN) ++ return RX_CONTINUE; ++ ++ /* ++ * The device handles station powersave, so don't do anything about ++ * uAPSD and PS-Poll frames (the latter shouldn't even come up from ++ * it to mac80211 since they're handled.) ++ */ ++ if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) ++ return RX_CONTINUE; ++ ++ /* ++ * Don't do anything if the station isn't already asleep. In ++ * the uAPSD case, the station will probably be marked asleep, ++ * in the PS-Poll case the station must be confused ... ++ */ ++ if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) ++ return RX_CONTINUE; ++ ++ if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { ++ if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { ++ if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) ++ ieee80211_sta_ps_deliver_poll_response(rx->sta); ++ else ++ set_sta_flag(rx->sta, WLAN_STA_PSPOLL); ++ } ++ ++ /* Free PS Poll skb here instead of returning RX_DROP that would ++ * count as an dropped frame. */ ++ dev_kfree_skb(rx->skb); ++ ++ return RX_QUEUED; ++ } else if (!ieee80211_has_morefrags(hdr->frame_control) && ++ !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && ++ ieee80211_has_pm(hdr->frame_control) && ++ (ieee80211_is_data_qos(hdr->frame_control) || ++ ieee80211_is_qos_nullfunc(hdr->frame_control))) { ++ tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; ++ ac = ieee802_1d_to_ac[tid & 7]; ++ ++ /* ++ * If this AC is not trigger-enabled do nothing. ++ * ++ * NB: This could/should check a separate bitmap of trigger- ++ * enabled queues, but for now we only implement uAPSD w/o ++ * TSPEC changes to the ACs, so they're always the same. ++ */ ++ if (!(rx->sta->sta.uapsd_queues & BIT(ac))) ++ return RX_CONTINUE; ++ ++ /* if we are in a service period, do nothing */ ++ if (test_sta_flag(rx->sta, WLAN_STA_SP)) ++ return RX_CONTINUE; ++ ++ if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) ++ ieee80211_sta_ps_deliver_uapsd(rx->sta); ++ else ++ set_sta_flag(rx->sta, WLAN_STA_UAPSD); ++ } ++ ++ return RX_CONTINUE; ++} ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) ++{ ++ struct sta_info *sta = rx->sta; ++ struct sk_buff *skb = rx->skb; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; ++ int i; ++ ++ if (!sta) ++ return RX_CONTINUE; ++ ++ /* ++ * Update last_rx only for IBSS packets which are for the current ++ * BSSID and for station already AUTHORIZED to avoid keeping the ++ * current IBSS network alive in cases where other STAs start ++ * using different BSSID. This will also give the station another ++ * chance to restart the authentication/authorization in case ++ * something went wrong the first time. ++ */ ++ if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { ++ u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, ++ NL80211_IFTYPE_ADHOC); ++ if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && ++ test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { ++ sta->last_rx = jiffies; ++ if (ieee80211_is_data(hdr->frame_control) && ++ !is_multicast_ether_addr(hdr->addr1)) { ++ sta->last_rx_rate_idx = status->rate_idx; ++ sta->last_rx_rate_flag = status->flag; ++ sta->last_rx_rate_vht_flag = status->vht_flag; ++ sta->last_rx_rate_vht_nss = status->vht_nss; ++ } ++ } ++ } else if (!is_multicast_ether_addr(hdr->addr1)) { ++ /* ++ * Mesh beacons will update last_rx when if they are found to ++ * match the current local configuration when processed. ++ */ ++ sta->last_rx = jiffies; ++ if (ieee80211_is_data(hdr->frame_control)) { ++ sta->last_rx_rate_idx = status->rate_idx; ++ sta->last_rx_rate_flag = status->flag; ++ sta->last_rx_rate_vht_flag = status->vht_flag; ++ sta->last_rx_rate_vht_nss = status->vht_nss; ++ } ++ } ++ ++ if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) ++ return RX_CONTINUE; ++ ++ if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) ++ ieee80211_sta_rx_notify(rx->sdata, hdr); ++ ++ sta->rx_fragments++; ++ sta->rx_bytes += rx->skb->len; ++ if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { ++ sta->last_signal = status->signal; ++ ewma_add(&sta->avg_signal, -status->signal); ++ } ++ ++ if (status->chains) { ++ sta->chains = status->chains; ++ for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { ++ int signal = status->chain_signal[i]; ++ ++ if (!(status->chains & BIT(i))) ++ continue; ++ ++ sta->chain_signal_last[i] = signal; ++ ewma_add(&sta->chain_signal_avg[i], -signal); ++ } ++ } ++ ++ /* ++ * Change STA power saving mode only at the end of a frame ++ * exchange sequence. ++ */ ++ if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && ++ !ieee80211_has_morefrags(hdr->frame_control) && ++ !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && ++ (rx->sdata->vif.type == NL80211_IFTYPE_AP || ++ rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && ++ /* PM bit is only checked in frames where it isn't reserved, ++ * in AP mode it's reserved in non-bufferable management frames ++ * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) ++ */ ++ (!ieee80211_is_mgmt(hdr->frame_control) || ++ ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { ++ if (test_sta_flag(sta, WLAN_STA_PS_STA)) { ++ if (!ieee80211_has_pm(hdr->frame_control)) ++ sta_ps_end(sta); ++ } else { ++ if (ieee80211_has_pm(hdr->frame_control)) ++ sta_ps_start(sta); ++ } ++ } ++ ++ /* mesh power save support */ ++ if (ieee80211_vif_is_mesh(&rx->sdata->vif)) ++ ieee80211_mps_rx_h_sta_process(sta, hdr); ++ ++ /* ++ * Drop (qos-)data::nullfunc frames silently, since they ++ * are used only to control station power saving mode. ++ */ ++ if (ieee80211_is_nullfunc(hdr->frame_control) || ++ ieee80211_is_qos_nullfunc(hdr->frame_control)) { ++ I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); ++ ++ /* ++ * If we receive a 4-addr nullfunc frame from a STA ++ * that was not moved to a 4-addr STA vlan yet send ++ * the event to userspace and for older hostapd drop ++ * the frame to the monitor interface. ++ */ ++ if (ieee80211_has_a4(hdr->frame_control) && ++ (rx->sdata->vif.type == NL80211_IFTYPE_AP || ++ (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && ++ !rx->sdata->u.vlan.sta))) { ++ if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) ++ cfg80211_rx_unexpected_4addr_frame( ++ rx->sdata->dev, sta->sta.addr, ++ GFP_ATOMIC); ++ return RX_DROP_MONITOR; ++ } ++ /* ++ * Update counter and free packet here to avoid ++ * counting this as a dropped packed. ++ */ ++ sta->rx_packets++; ++ dev_kfree_skb(rx->skb); ++ return RX_QUEUED; ++ } ++ ++ return RX_CONTINUE; ++} /* ieee80211_rx_h_sta_process */ ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) ++{ ++ struct sk_buff *skb = rx->skb; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; ++ int keyidx; ++ int hdrlen; ++ ieee80211_rx_result result = RX_DROP_UNUSABLE; ++ struct ieee80211_key *sta_ptk = NULL; ++ int mmie_keyidx = -1; ++ __le16 fc; ++ const struct ieee80211_cipher_scheme *cs = NULL; ++ ++ /* ++ * Key selection 101 ++ * ++ * There are four types of keys: ++ * - GTK (group keys) ++ * - IGTK (group keys for management frames) ++ * - PTK (pairwise keys) ++ * - STK (station-to-station pairwise keys) ++ * ++ * When selecting a key, we have to distinguish between multicast ++ * (including broadcast) and unicast frames, the latter can only ++ * use PTKs and STKs while the former always use GTKs and IGTKs. ++ * Unless, of course, actual WEP keys ("pre-RSNA") are used, then ++ * unicast frames can also use key indices like GTKs. Hence, if we ++ * don't have a PTK/STK we check the key index for a WEP key. ++ * ++ * Note that in a regular BSS, multicast frames are sent by the ++ * AP only, associated stations unicast the frame to the AP first ++ * which then multicasts it on their behalf. ++ * ++ * There is also a slight problem in IBSS mode: GTKs are negotiated ++ * with each station, that is something we don't currently handle. ++ * The spec seems to expect that one negotiates the same key with ++ * every station but there's no such requirement; VLANs could be ++ * possible. ++ */ ++ ++ /* ++ * No point in finding a key and decrypting if the frame is neither ++ * addressed to us nor a multicast frame. ++ */ ++ if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) ++ return RX_CONTINUE; ++ ++ /* start without a key */ ++ rx->key = NULL; ++ fc = hdr->frame_control; ++ ++ if (rx->sta) { ++ int keyid = rx->sta->ptk_idx; ++ ++ if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { ++ cs = rx->sta->cipher_scheme; ++ keyid = iwl80211_get_cs_keyid(cs, rx->skb); ++ if (unlikely(keyid < 0)) ++ return RX_DROP_UNUSABLE; ++ } ++ sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); ++ } ++ ++ if (!ieee80211_has_protected(fc)) ++ mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); ++ ++ if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { ++ rx->key = sta_ptk; ++ if ((status->flag & RX_FLAG_DECRYPTED) && ++ (status->flag & RX_FLAG_IV_STRIPPED)) ++ return RX_CONTINUE; ++ /* Skip decryption if the frame is not protected. */ ++ if (!ieee80211_has_protected(fc)) ++ return RX_CONTINUE; ++ } else if (mmie_keyidx >= 0) { ++ /* Broadcast/multicast robust management frame / BIP */ ++ if ((status->flag & RX_FLAG_DECRYPTED) && ++ (status->flag & RX_FLAG_IV_STRIPPED)) ++ return RX_CONTINUE; ++ ++ if (mmie_keyidx < NUM_DEFAULT_KEYS || ++ mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) ++ return RX_DROP_MONITOR; /* unexpected BIP keyidx */ ++ if (rx->sta) ++ rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); ++ if (!rx->key) ++ rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); ++ } else if (!ieee80211_has_protected(fc)) { ++ /* ++ * The frame was not protected, so skip decryption. However, we ++ * need to set rx->key if there is a key that could have been ++ * used so that the frame may be dropped if encryption would ++ * have been expected. ++ */ ++ struct ieee80211_key *key = NULL; ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ int i; ++ ++ if (ieee80211_is_mgmt(fc) && ++ is_multicast_ether_addr(hdr->addr1) && ++ (key = rcu_dereference(rx->sdata->default_mgmt_key))) ++ rx->key = key; ++ else { ++ if (rx->sta) { ++ for (i = 0; i < NUM_DEFAULT_KEYS; i++) { ++ key = rcu_dereference(rx->sta->gtk[i]); ++ if (key) ++ break; ++ } ++ } ++ if (!key) { ++ for (i = 0; i < NUM_DEFAULT_KEYS; i++) { ++ key = rcu_dereference(sdata->keys[i]); ++ if (key) ++ break; ++ } ++ } ++ if (key) ++ rx->key = key; ++ } ++ return RX_CONTINUE; ++ } else { ++ u8 keyid; ++ ++ /* ++ * The device doesn't give us the IV so we won't be ++ * able to look up the key. That's ok though, we ++ * don't need to decrypt the frame, we just won't ++ * be able to keep statistics accurate. ++ * Except for key threshold notifications, should ++ * we somehow allow the driver to tell us which key ++ * the hardware used if this flag is set? ++ */ ++ if ((status->flag & RX_FLAG_DECRYPTED) && ++ (status->flag & RX_FLAG_IV_STRIPPED)) ++ return RX_CONTINUE; ++ ++ hdrlen = ieee80211_hdrlen(fc); ++ ++ if (cs) { ++ keyidx = iwl80211_get_cs_keyid(cs, rx->skb); ++ ++ if (unlikely(keyidx < 0)) ++ return RX_DROP_UNUSABLE; ++ } else { ++ if (rx->skb->len < 8 + hdrlen) ++ return RX_DROP_UNUSABLE; /* TODO: count this? */ ++ /* ++ * no need to call ieee80211_wep_get_keyidx, ++ * it verifies a bunch of things we've done already ++ */ ++ skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); ++ keyidx = keyid >> 6; ++ } ++ ++ /* check per-station GTK first, if multicast packet */ ++ if (is_multicast_ether_addr(hdr->addr1) && rx->sta) ++ rx->key = rcu_dereference(rx->sta->gtk[keyidx]); ++ ++ /* if not found, try default key */ ++ if (!rx->key) { ++ rx->key = rcu_dereference(rx->sdata->keys[keyidx]); ++ ++ /* ++ * RSNA-protected unicast frames should always be ++ * sent with pairwise or station-to-station keys, ++ * but for WEP we allow using a key index as well. ++ */ ++ if (rx->key && ++ rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && ++ rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && ++ !is_multicast_ether_addr(hdr->addr1)) ++ rx->key = NULL; ++ } ++ } ++ ++ if (rx->key) { ++ if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) ++ return RX_DROP_MONITOR; ++ ++ rx->key->tx_rx_count++; ++ /* TODO: add threshold stuff again */ ++ } else { ++ return RX_DROP_MONITOR; ++ } ++ ++ switch (rx->key->conf.cipher) { ++ case WLAN_CIPHER_SUITE_WEP40: ++ case WLAN_CIPHER_SUITE_WEP104: ++ result = ieee80211_crypto_wep_decrypt(rx); ++ break; ++ case WLAN_CIPHER_SUITE_TKIP: ++ result = ieee80211_crypto_tkip_decrypt(rx); ++ break; ++ case WLAN_CIPHER_SUITE_CCMP: ++ result = ieee80211_crypto_ccmp_decrypt(rx); ++ break; ++ case WLAN_CIPHER_SUITE_AES_CMAC: ++ result = ieee80211_crypto_aes_cmac_decrypt(rx); ++ break; ++ default: ++ result = ieee80211_crypto_hw_decrypt(rx); ++ } ++ ++ /* the hdr variable is invalid after the decrypt handlers */ ++ ++ /* either the frame has been decrypted or will be dropped */ ++ status->flag |= RX_FLAG_DECRYPTED; ++ ++ return result; ++} ++ ++static inline struct ieee80211_fragment_entry * ++ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, ++ unsigned int frag, unsigned int seq, int rx_queue, ++ struct sk_buff **skb) ++{ ++ struct ieee80211_fragment_entry *entry; ++ ++ entry = &sdata->fragments[sdata->fragment_next++]; ++ if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) ++ sdata->fragment_next = 0; ++ ++ if (!skb_queue_empty(&entry->skb_list)) ++ __skb_queue_purge(&entry->skb_list); ++ ++ __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ ++ *skb = NULL; ++ entry->first_frag_time = jiffies; ++ entry->seq = seq; ++ entry->rx_queue = rx_queue; ++ entry->last_frag = frag; ++ entry->ccmp = 0; ++ entry->extra_len = 0; ++ ++ return entry; ++} ++ ++static inline struct ieee80211_fragment_entry * ++ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, ++ unsigned int frag, unsigned int seq, ++ int rx_queue, struct ieee80211_hdr *hdr) ++{ ++ struct ieee80211_fragment_entry *entry; ++ int i, idx; ++ ++ idx = sdata->fragment_next; ++ for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { ++ struct ieee80211_hdr *f_hdr; ++ ++ idx--; ++ if (idx < 0) ++ idx = IEEE80211_FRAGMENT_MAX - 1; ++ ++ entry = &sdata->fragments[idx]; ++ if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || ++ entry->rx_queue != rx_queue || ++ entry->last_frag + 1 != frag) ++ continue; ++ ++ f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; ++ ++ /* ++ * Check ftype and addresses are equal, else check next fragment ++ */ ++ if (((hdr->frame_control ^ f_hdr->frame_control) & ++ cpu_to_le16(IEEE80211_FCTL_FTYPE)) || ++ !ether_addr_equal(hdr->addr1, f_hdr->addr1) || ++ !ether_addr_equal(hdr->addr2, f_hdr->addr2)) ++ continue; ++ ++ if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { ++ __skb_queue_purge(&entry->skb_list); ++ continue; ++ } ++ return entry; ++ } ++ ++ return NULL; ++} ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_hdr *hdr; ++ u16 sc; ++ __le16 fc; ++ unsigned int frag, seq; ++ struct ieee80211_fragment_entry *entry; ++ struct sk_buff *skb; ++ struct ieee80211_rx_status *status; ++ ++ hdr = (struct ieee80211_hdr *)rx->skb->data; ++ fc = hdr->frame_control; ++ ++ if (ieee80211_is_ctl(fc)) ++ return RX_CONTINUE; ++ ++ sc = le16_to_cpu(hdr->seq_ctrl); ++ frag = sc & IEEE80211_SCTL_FRAG; ++ ++ if (is_multicast_ether_addr(hdr->addr1)) { ++ rx->local->dot11MulticastReceivedFrameCount++; ++ goto out_no_led; ++ } ++ ++ if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) ++ goto out; ++ ++ I802_DEBUG_INC(rx->local->rx_handlers_fragments); ++ ++ if (skb_linearize(rx->skb)) ++ return RX_DROP_UNUSABLE; ++ ++ /* ++ * skb_linearize() might change the skb->data and ++ * previously cached variables (in this case, hdr) need to ++ * be refreshed with the new data. ++ */ ++ hdr = (struct ieee80211_hdr *)rx->skb->data; ++ seq = (sc & IEEE80211_SCTL_SEQ) >> 4; ++ ++ if (frag == 0) { ++ /* This is the first fragment of a new frame. */ ++ entry = ieee80211_reassemble_add(rx->sdata, frag, seq, ++ rx->seqno_idx, &(rx->skb)); ++ if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && ++ ieee80211_has_protected(fc)) { ++ int queue = rx->security_idx; ++ /* Store CCMP PN so that we can verify that the next ++ * fragment has a sequential PN value. */ ++ entry->ccmp = 1; ++ memcpy(entry->last_pn, ++ rx->key->u.ccmp.rx_pn[queue], ++ IEEE80211_CCMP_PN_LEN); ++ } ++ return RX_QUEUED; ++ } ++ ++ /* This is a fragment for a frame that should already be pending in ++ * fragment cache. Add this fragment to the end of the pending entry. ++ */ ++ entry = ieee80211_reassemble_find(rx->sdata, frag, seq, ++ rx->seqno_idx, hdr); ++ if (!entry) { ++ I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); ++ return RX_DROP_MONITOR; ++ } ++ ++ /* Verify that MPDUs within one MSDU have sequential PN values. ++ * (IEEE 802.11i, 8.3.3.4.5) */ ++ if (entry->ccmp) { ++ int i; ++ u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; ++ int queue; ++ if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) ++ return RX_DROP_UNUSABLE; ++ memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); ++ for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { ++ pn[i]++; ++ if (pn[i]) ++ break; ++ } ++ queue = rx->security_idx; ++ rpn = rx->key->u.ccmp.rx_pn[queue]; ++ if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) ++ return RX_DROP_UNUSABLE; ++ memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); ++ } ++ ++ skb_pull(rx->skb, ieee80211_hdrlen(fc)); ++ __skb_queue_tail(&entry->skb_list, rx->skb); ++ entry->last_frag = frag; ++ entry->extra_len += rx->skb->len; ++ if (ieee80211_has_morefrags(fc)) { ++ rx->skb = NULL; ++ return RX_QUEUED; ++ } ++ ++ rx->skb = __skb_dequeue(&entry->skb_list); ++ if (skb_tailroom(rx->skb) < entry->extra_len) { ++ I802_DEBUG_INC(rx->local->rx_expand_skb_head2); ++ if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, ++ GFP_ATOMIC))) { ++ I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); ++ __skb_queue_purge(&entry->skb_list); ++ return RX_DROP_UNUSABLE; ++ } ++ } ++ while ((skb = __skb_dequeue(&entry->skb_list))) { ++ memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); ++ dev_kfree_skb(skb); ++ } ++ ++ /* Complete frame has been reassembled - process it now */ ++ status = IEEE80211_SKB_RXCB(rx->skb); ++ status->rx_flags |= IEEE80211_RX_FRAGMENTED; ++ ++ out: ++ ieee80211_led_rx(rx->local); ++ out_no_led: ++ if (rx->sta) ++ rx->sta->rx_packets++; ++ return RX_CONTINUE; ++} ++ ++static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) ++{ ++ if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) ++ return -EACCES; ++ ++ return 0; ++} ++ ++static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) ++{ ++ struct sk_buff *skb = rx->skb; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ ++ /* ++ * Pass through unencrypted frames if the hardware has ++ * decrypted them already. ++ */ ++ if (status->flag & RX_FLAG_DECRYPTED) ++ return 0; ++ ++ /* Drop unencrypted frames if key is set. */ ++ if (unlikely(!ieee80211_has_protected(fc) && ++ !ieee80211_is_nullfunc(fc) && ++ ieee80211_is_data(fc) && ++ (rx->key || rx->sdata->drop_unencrypted))) ++ return -EACCES; ++ ++ return 0; ++} ++ ++static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); ++ __le16 fc = hdr->frame_control; ++ ++ /* ++ * Pass through unencrypted frames if the hardware has ++ * decrypted them already. ++ */ ++ if (status->flag & RX_FLAG_DECRYPTED) ++ return 0; ++ ++ if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { ++ if (unlikely(!ieee80211_has_protected(fc) && ++ ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && ++ rx->key)) { ++ if (ieee80211_is_deauth(fc) || ++ ieee80211_is_disassoc(fc)) ++ cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, ++ rx->skb->data, ++ rx->skb->len); ++ return -EACCES; ++ } ++ /* BIP does not use Protected field, so need to check MMIE */ ++ if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && ++ ieee80211_get_mmie_keyidx(rx->skb) < 0)) { ++ if (ieee80211_is_deauth(fc) || ++ ieee80211_is_disassoc(fc)) ++ cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, ++ rx->skb->data, ++ rx->skb->len); ++ return -EACCES; ++ } ++ /* ++ * When using MFP, Action frames are not allowed prior to ++ * having configured keys. ++ */ ++ if (unlikely(ieee80211_is_action(fc) && !rx->key && ++ ieee80211_is_robust_mgmt_frame(rx->skb))) ++ return -EACCES; ++ } ++ ++ return 0; ++} ++ ++static int ++__ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) ++{ ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; ++ bool check_port_control = false; ++ struct ethhdr *ehdr; ++ int ret; ++ ++ *port_control = false; ++ if (ieee80211_has_a4(hdr->frame_control) && ++ sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) ++ return -1; ++ ++ if (sdata->vif.type == NL80211_IFTYPE_STATION && ++ !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { ++ ++ if (!sdata->u.mgd.use_4addr) ++ return -1; ++ else ++ check_port_control = true; ++ } ++ ++ if (is_multicast_ether_addr(hdr->addr1) && ++ sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ++ return -1; ++ ++ ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); ++ if (ret < 0) ++ return ret; ++ ++ ehdr = (struct ethhdr *) rx->skb->data; ++ if (ehdr->h_proto == rx->sdata->control_port_protocol) ++ *port_control = true; ++ else if (check_port_control) ++ return -1; ++ ++ return 0; ++} ++ ++/* ++ * requires that rx->skb is a frame with ethernet header ++ */ ++static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) ++{ ++ static const u8 pae_group_addr[ETH_ALEN] __aligned(2) ++ = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; ++ struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; ++ ++ /* ++ * Allow EAPOL frames to us/the PAE group address regardless ++ * of whether the frame was encrypted or not. ++ */ ++ if (ehdr->h_proto == rx->sdata->control_port_protocol && ++ (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || ++ ether_addr_equal(ehdr->h_dest, pae_group_addr))) ++ return true; ++ ++ if (ieee80211_802_1x_port_control(rx) || ++ ieee80211_drop_unencrypted(rx, fc)) ++ return false; ++ ++ return true; ++} ++ ++/* ++ * requires that rx->skb is a frame with ethernet header ++ */ ++static void ++ieee80211_deliver_skb(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ struct net_device *dev = sdata->dev; ++ struct sk_buff *skb, *xmit_skb; ++ struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; ++ struct sta_info *dsta; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); ++ ++ skb = rx->skb; ++ xmit_skb = NULL; ++ ++ if ((sdata->vif.type == NL80211_IFTYPE_AP || ++ sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && ++ !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && ++ (status->rx_flags & IEEE80211_RX_RA_MATCH) && ++ (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { ++ if (is_multicast_ether_addr(ehdr->h_dest)) { ++ /* ++ * send multicast frames both to higher layers in ++ * local net stack and back to the wireless medium ++ */ ++ xmit_skb = skb_copy(skb, GFP_ATOMIC); ++ if (!xmit_skb) ++ net_info_ratelimited("%s: failed to clone multicast frame\n", ++ dev->name); ++ } else { ++ dsta = sta_info_get(sdata, skb->data); ++ if (dsta) { ++ /* ++ * The destination station is associated to ++ * this AP (in this VLAN), so send the frame ++ * directly to it and do not pass it to local ++ * net stack. ++ */ ++ xmit_skb = skb; ++ skb = NULL; ++ } ++ } ++ } ++ ++#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS ++ if (skb) { ++ /* 'align' will only take the values 0 or 2 here since all ++ * frames are required to be aligned to 2-byte boundaries ++ * when being passed to mac80211; the code here works just ++ * as well if that isn't true, but mac80211 assumes it can ++ * access fields as 2-byte aligned (e.g. for ether_addr_equal) ++ */ ++ int align; ++ ++ align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; ++ if (align) { ++ if (WARN_ON(skb_headroom(skb) < 3)) { ++ dev_kfree_skb(skb); ++ skb = NULL; ++ } else { ++ u8 *data = skb->data; ++ size_t len = skb_headlen(skb); ++ skb->data -= align; ++ memmove(skb->data, data, len); ++ skb_set_tail_pointer(skb, len); ++ } ++ } ++ } ++#endif ++ ++ if (skb) { ++ /* deliver to local stack */ ++ skb->protocol = eth_type_trans(skb, dev); ++ memset(skb->cb, 0, sizeof(skb->cb)); ++ if (rx->local->napi) ++ napi_gro_receive(rx->local->napi, skb); ++ else ++ netif_receive_skb(skb); ++ } ++ ++ if (xmit_skb) { ++ /* ++ * Send to wireless media and increase priority by 256 to ++ * keep the received priority instead of reclassifying ++ * the frame (see cfg80211_classify8021d). ++ */ ++ xmit_skb->priority += 256; ++ xmit_skb->protocol = htons(ETH_P_802_3); ++ skb_reset_network_header(xmit_skb); ++ skb_reset_mac_header(xmit_skb); ++ dev_queue_xmit(xmit_skb); ++ } ++} ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) ++{ ++ struct net_device *dev = rx->sdata->dev; ++ struct sk_buff *skb = rx->skb; ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; ++ __le16 fc = hdr->frame_control; ++ struct sk_buff_head frame_list; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); ++ ++ if (unlikely(!ieee80211_is_data(fc))) ++ return RX_CONTINUE; ++ ++ if (unlikely(!ieee80211_is_data_present(fc))) ++ return RX_DROP_MONITOR; ++ ++ if (!(status->rx_flags & IEEE80211_RX_AMSDU)) ++ return RX_CONTINUE; ++ ++ if (ieee80211_has_a4(hdr->frame_control) && ++ rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && ++ !rx->sdata->u.vlan.sta) ++ return RX_DROP_UNUSABLE; ++ ++ if (is_multicast_ether_addr(hdr->addr1) && ++ ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && ++ rx->sdata->u.vlan.sta) || ++ (rx->sdata->vif.type == NL80211_IFTYPE_STATION && ++ rx->sdata->u.mgd.use_4addr))) ++ return RX_DROP_UNUSABLE; ++ ++ skb->dev = dev; ++ __skb_queue_head_init(&frame_list); ++ ++ if (skb_linearize(skb)) ++ return RX_DROP_UNUSABLE; ++ ++ ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, ++ rx->sdata->vif.type, ++ rx->local->hw.extra_tx_headroom, true); ++ ++ while (!skb_queue_empty(&frame_list)) { ++ rx->skb = __skb_dequeue(&frame_list); ++ ++ if (!ieee80211_frame_allowed(rx, fc)) { ++ dev_kfree_skb(rx->skb); ++ continue; ++ } ++ dev->stats.rx_packets++; ++ dev->stats.rx_bytes += rx->skb->len; ++ ++ ieee80211_deliver_skb(rx); ++ } ++ ++ return RX_QUEUED; ++} ++ ++#ifdef CONFIG_MAC80211_MESH ++static ieee80211_rx_result ++ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_hdr *fwd_hdr, *hdr; ++ struct ieee80211_tx_info *info; ++ struct ieee80211s_hdr *mesh_hdr; ++ struct sk_buff *skb = rx->skb, *fwd_skb; ++ struct ieee80211_local *local = rx->local; ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; ++ u16 q, hdrlen; ++ ++ hdr = (struct ieee80211_hdr *) skb->data; ++ hdrlen = ieee80211_hdrlen(hdr->frame_control); ++ ++ /* make sure fixed part of mesh header is there, also checks skb len */ ++ if (!pskb_may_pull(rx->skb, hdrlen + 6)) ++ return RX_DROP_MONITOR; ++ ++ mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); ++ ++ /* make sure full mesh header is there, also checks skb len */ ++ if (!pskb_may_pull(rx->skb, ++ hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) ++ return RX_DROP_MONITOR; ++ ++ /* reload pointers */ ++ hdr = (struct ieee80211_hdr *) skb->data; ++ mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); ++ ++ if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) ++ return RX_DROP_MONITOR; ++ ++ /* frame is in RMC, don't forward */ ++ if (ieee80211_is_data(hdr->frame_control) && ++ is_multicast_ether_addr(hdr->addr1) && ++ mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) ++ return RX_DROP_MONITOR; ++ ++ if (!ieee80211_is_data(hdr->frame_control) || ++ !(status->rx_flags & IEEE80211_RX_RA_MATCH)) ++ return RX_CONTINUE; ++ ++ if (!mesh_hdr->ttl) ++ return RX_DROP_MONITOR; ++ ++ if (mesh_hdr->flags & MESH_FLAGS_AE) { ++ struct mesh_path *mppath; ++ char *proxied_addr; ++ char *mpp_addr; ++ ++ if (is_multicast_ether_addr(hdr->addr1)) { ++ mpp_addr = hdr->addr3; ++ proxied_addr = mesh_hdr->eaddr1; ++ } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { ++ /* has_a4 already checked in ieee80211_rx_mesh_check */ ++ mpp_addr = hdr->addr4; ++ proxied_addr = mesh_hdr->eaddr2; ++ } else { ++ return RX_DROP_MONITOR; ++ } ++ ++ rcu_read_lock(); ++ mppath = mpp_path_lookup(sdata, proxied_addr); ++ if (!mppath) { ++ mpp_path_add(sdata, proxied_addr, mpp_addr); ++ } else { ++ spin_lock_bh(&mppath->state_lock); ++ if (!ether_addr_equal(mppath->mpp, mpp_addr)) ++ memcpy(mppath->mpp, mpp_addr, ETH_ALEN); ++ spin_unlock_bh(&mppath->state_lock); ++ } ++ rcu_read_unlock(); ++ } ++ ++ /* Frame has reached destination. Don't forward */ ++ if (!is_multicast_ether_addr(hdr->addr1) && ++ ether_addr_equal(sdata->vif.addr, hdr->addr3)) ++ return RX_CONTINUE; ++ ++ q = ieee80211_select_queue_80211(sdata, skb, hdr); ++ if (ieee80211_queue_stopped(&local->hw, q)) { ++ IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); ++ return RX_DROP_MONITOR; ++ } ++ skb_set_queue_mapping(skb, q); ++ ++ if (!--mesh_hdr->ttl) { ++ IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); ++ goto out; ++ } ++ ++ if (!ifmsh->mshcfg.dot11MeshForwarding) ++ goto out; ++ ++ fwd_skb = skb_copy(skb, GFP_ATOMIC); ++ if (!fwd_skb) { ++ net_info_ratelimited("%s: failed to clone mesh frame\n", ++ sdata->name); ++ goto out; ++ } ++ ++ fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; ++ fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); ++ info = IEEE80211_SKB_CB(fwd_skb); ++ memset(info, 0, sizeof(*info)); ++ info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; ++ info->control.vif = &rx->sdata->vif; ++ info->control.jiffies = jiffies; ++ if (is_multicast_ether_addr(fwd_hdr->addr1)) { ++ IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); ++ memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); ++ /* update power mode indication when forwarding */ ++ ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); ++ } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { ++ /* mesh power mode flags updated in mesh_nexthop_lookup */ ++ IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); ++ } else { ++ /* unable to resolve next hop */ ++ mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, ++ fwd_hdr->addr3, 0, ++ WLAN_REASON_MESH_PATH_NOFORWARD, ++ fwd_hdr->addr2); ++ IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); ++ kfree_skb(fwd_skb); ++ return RX_DROP_MONITOR; ++ } ++ ++ IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); ++ ieee80211_add_pending_skb(local, fwd_skb); ++ out: ++ if (is_multicast_ether_addr(hdr->addr1) || ++ sdata->dev->flags & IFF_PROMISC) ++ return RX_CONTINUE; ++ else ++ return RX_DROP_MONITOR; ++} ++#endif ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_data(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ struct ieee80211_local *local = rx->local; ++ struct net_device *dev = sdata->dev; ++ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; ++ __le16 fc = hdr->frame_control; ++ bool port_control; ++ int err; ++ ++ if (unlikely(!ieee80211_is_data(hdr->frame_control))) ++ return RX_CONTINUE; ++ ++ if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) ++ return RX_DROP_MONITOR; ++ ++ /* ++ * Send unexpected-4addr-frame event to hostapd. For older versions, ++ * also drop the frame to cooked monitor interfaces. ++ */ ++ if (ieee80211_has_a4(hdr->frame_control) && ++ sdata->vif.type == NL80211_IFTYPE_AP) { ++ if (rx->sta && ++ !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) ++ cfg80211_rx_unexpected_4addr_frame( ++ rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); ++ return RX_DROP_MONITOR; ++ } ++ ++ err = __ieee80211_data_to_8023(rx, &port_control); ++ if (unlikely(err)) ++ return RX_DROP_UNUSABLE; ++ ++ if (!ieee80211_frame_allowed(rx, fc)) ++ return RX_DROP_MONITOR; ++ ++ if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && ++ unlikely(port_control) && sdata->bss) { ++ sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, ++ u.ap); ++ dev = sdata->dev; ++ rx->sdata = sdata; ++ } ++ ++ rx->skb->dev = dev; ++ ++ dev->stats.rx_packets++; ++ dev->stats.rx_bytes += rx->skb->len; ++ ++ if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && ++ !is_multicast_ether_addr( ++ ((struct ethhdr *)rx->skb->data)->h_dest) && ++ (!local->scanning && ++ !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { ++ mod_timer(&local->dynamic_ps_timer, jiffies + ++ msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); ++ } ++ ++ ieee80211_deliver_skb(rx); ++ ++ return RX_QUEUED; ++} ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) ++{ ++ struct sk_buff *skb = rx->skb; ++ struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; ++ struct tid_ampdu_rx *tid_agg_rx; ++ u16 start_seq_num; ++ u16 tid; ++ ++ if (likely(!ieee80211_is_ctl(bar->frame_control))) ++ return RX_CONTINUE; ++ ++ if (ieee80211_is_back_req(bar->frame_control)) { ++ struct { ++ __le16 control, start_seq_num; ++ } __packed bar_data; ++ ++ if (!rx->sta) ++ return RX_DROP_MONITOR; ++ ++ if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), ++ &bar_data, sizeof(bar_data))) ++ return RX_DROP_MONITOR; ++ ++ tid = le16_to_cpu(bar_data.control) >> 12; ++ ++ tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); ++ if (!tid_agg_rx) ++ return RX_DROP_MONITOR; ++ ++ start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; ++ ++ /* reset session timer */ ++ if (tid_agg_rx->timeout) ++ mod_timer(&tid_agg_rx->session_timer, ++ TU_TO_EXP_TIME(tid_agg_rx->timeout)); ++ ++ spin_lock(&tid_agg_rx->reorder_lock); ++ /* release stored frames up to start of BAR */ ++ ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, ++ start_seq_num, frames); ++ spin_unlock(&tid_agg_rx->reorder_lock); ++ ++ kfree_skb(skb); ++ return RX_QUEUED; ++ } ++ ++ /* ++ * After this point, we only want management frames, ++ * so we can drop all remaining control frames to ++ * cooked monitor interfaces. ++ */ ++ return RX_DROP_MONITOR; ++} ++ ++static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, ++ struct ieee80211_mgmt *mgmt, ++ size_t len) ++{ ++ struct ieee80211_local *local = sdata->local; ++ struct sk_buff *skb; ++ struct ieee80211_mgmt *resp; ++ ++ if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { ++ /* Not to own unicast address */ ++ return; ++ } ++ ++ if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || ++ !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { ++ /* Not from the current AP or not associated yet. */ ++ return; ++ } ++ ++ if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { ++ /* Too short SA Query request frame */ ++ return; ++ } ++ ++ skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); ++ if (skb == NULL) ++ return; ++ ++ skb_reserve(skb, local->hw.extra_tx_headroom); ++ resp = (struct ieee80211_mgmt *) skb_put(skb, 24); ++ memset(resp, 0, 24); ++ memcpy(resp->da, mgmt->sa, ETH_ALEN); ++ memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); ++ memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); ++ resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | ++ IEEE80211_STYPE_ACTION); ++ skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); ++ resp->u.action.category = WLAN_CATEGORY_SA_QUERY; ++ resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; ++ memcpy(resp->u.action.u.sa_query.trans_id, ++ mgmt->u.action.u.sa_query.trans_id, ++ WLAN_SA_QUERY_TR_ID_LEN); ++ ++ ieee80211_tx_skb(sdata, skb); ++} ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); ++ ++ /* ++ * From here on, look only at management frames. ++ * Data and control frames are already handled, ++ * and unknown (reserved) frames are useless. ++ */ ++ if (rx->skb->len < 24) ++ return RX_DROP_MONITOR; ++ ++ if (!ieee80211_is_mgmt(mgmt->frame_control)) ++ return RX_DROP_MONITOR; ++ ++ if (rx->sdata->vif.type == NL80211_IFTYPE_AP && ++ ieee80211_is_beacon(mgmt->frame_control) && ++ !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { ++ int sig = 0; ++ ++ if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ++ sig = status->signal; ++ ++ cfg80211_report_obss_beacon(rx->local->hw.wiphy, ++ rx->skb->data, rx->skb->len, ++ status->freq, sig); ++ rx->flags |= IEEE80211_RX_BEACON_REPORTED; ++ } ++ ++ if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) ++ return RX_DROP_MONITOR; ++ ++ if (ieee80211_drop_unencrypted_mgmt(rx)) ++ return RX_DROP_UNUSABLE; ++ ++ return RX_CONTINUE; ++} ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_action(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_local *local = rx->local; ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); ++ int len = rx->skb->len; ++ ++ if (!ieee80211_is_action(mgmt->frame_control)) ++ return RX_CONTINUE; ++ ++ /* drop too small frames */ ++ if (len < IEEE80211_MIN_ACTION_SIZE) ++ return RX_DROP_UNUSABLE; ++ ++ if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && ++ mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && ++ mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) ++ return RX_DROP_UNUSABLE; ++ ++ if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) ++ return RX_DROP_UNUSABLE; ++ ++ switch (mgmt->u.action.category) { ++ case WLAN_CATEGORY_HT: ++ /* reject HT action frames from stations not supporting HT */ ++ if (!rx->sta->sta.ht_cap.ht_supported) ++ goto invalid; ++ ++ if (sdata->vif.type != NL80211_IFTYPE_STATION && ++ sdata->vif.type != NL80211_IFTYPE_MESH_POINT && ++ sdata->vif.type != NL80211_IFTYPE_AP_VLAN && ++ sdata->vif.type != NL80211_IFTYPE_AP && ++ sdata->vif.type != NL80211_IFTYPE_ADHOC) ++ break; ++ ++ /* verify action & smps_control/chanwidth are present */ ++ if (len < IEEE80211_MIN_ACTION_SIZE + 2) ++ goto invalid; ++ ++ switch (mgmt->u.action.u.ht_smps.action) { ++ case WLAN_HT_ACTION_SMPS: { ++ struct ieee80211_supported_band *sband; ++ enum ieee80211_smps_mode smps_mode; ++ ++ /* convert to HT capability */ ++ switch (mgmt->u.action.u.ht_smps.smps_control) { ++ case WLAN_HT_SMPS_CONTROL_DISABLED: ++ smps_mode = IEEE80211_SMPS_OFF; ++ break; ++ case WLAN_HT_SMPS_CONTROL_STATIC: ++ smps_mode = IEEE80211_SMPS_STATIC; ++ break; ++ case WLAN_HT_SMPS_CONTROL_DYNAMIC: ++ smps_mode = IEEE80211_SMPS_DYNAMIC; ++ break; ++ default: ++ goto invalid; ++ } ++ ++ /* if no change do nothing */ ++ if (rx->sta->sta.smps_mode == smps_mode) ++ goto handled; ++ rx->sta->sta.smps_mode = smps_mode; ++ ++ sband = rx->local->hw.wiphy->bands[status->band]; ++ ++ rate_control_rate_update(local, sband, rx->sta, ++ IEEE80211_RC_SMPS_CHANGED); ++ goto handled; ++ } ++ case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { ++ struct ieee80211_supported_band *sband; ++ u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; ++ enum ieee80211_sta_rx_bandwidth new_bw; ++ ++ /* If it doesn't support 40 MHz it can't change ... */ ++ if (!(rx->sta->sta.ht_cap.cap & ++ IEEE80211_HT_CAP_SUP_WIDTH_20_40)) ++ goto handled; ++ ++ if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) ++ new_bw = IEEE80211_STA_RX_BW_20; ++ else ++ new_bw = ieee80211_sta_cur_vht_bw(rx->sta); ++ ++ if (rx->sta->sta.bandwidth == new_bw) ++ goto handled; ++ ++ sband = rx->local->hw.wiphy->bands[status->band]; ++ ++ rate_control_rate_update(local, sband, rx->sta, ++ IEEE80211_RC_BW_CHANGED); ++ goto handled; ++ } ++ default: ++ goto invalid; ++ } ++ ++ break; ++ case WLAN_CATEGORY_PUBLIC: ++ if (len < IEEE80211_MIN_ACTION_SIZE + 1) ++ goto invalid; ++ if (sdata->vif.type != NL80211_IFTYPE_STATION) ++ break; ++ if (!rx->sta) ++ break; ++ if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) ++ break; ++ if (mgmt->u.action.u.ext_chan_switch.action_code != ++ WLAN_PUB_ACTION_EXT_CHANSW_ANN) ++ break; ++ if (len < offsetof(struct ieee80211_mgmt, ++ u.action.u.ext_chan_switch.variable)) ++ goto invalid; ++ goto queue; ++ case WLAN_CATEGORY_VHT: ++ if (sdata->vif.type != NL80211_IFTYPE_STATION && ++ sdata->vif.type != NL80211_IFTYPE_MESH_POINT && ++ sdata->vif.type != NL80211_IFTYPE_AP_VLAN && ++ sdata->vif.type != NL80211_IFTYPE_AP && ++ sdata->vif.type != NL80211_IFTYPE_ADHOC) ++ break; ++ ++ /* verify action code is present */ ++ if (len < IEEE80211_MIN_ACTION_SIZE + 1) ++ goto invalid; ++ ++ switch (mgmt->u.action.u.vht_opmode_notif.action_code) { ++ case WLAN_VHT_ACTION_OPMODE_NOTIF: { ++ u8 opmode; ++ ++ /* verify opmode is present */ ++ if (len < IEEE80211_MIN_ACTION_SIZE + 2) ++ goto invalid; ++ ++ opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; ++ ++ ieee80211_vht_handle_opmode(rx->sdata, rx->sta, ++ opmode, status->band, ++ false); ++ goto handled; ++ } ++ default: ++ break; ++ } ++ break; ++ case WLAN_CATEGORY_BACK: ++ if (sdata->vif.type != NL80211_IFTYPE_STATION && ++ sdata->vif.type != NL80211_IFTYPE_MESH_POINT && ++ sdata->vif.type != NL80211_IFTYPE_AP_VLAN && ++ sdata->vif.type != NL80211_IFTYPE_AP && ++ sdata->vif.type != NL80211_IFTYPE_ADHOC) ++ break; ++ ++ /* verify action_code is present */ ++ if (len < IEEE80211_MIN_ACTION_SIZE + 1) ++ break; ++ ++ switch (mgmt->u.action.u.addba_req.action_code) { ++ case WLAN_ACTION_ADDBA_REQ: ++ if (len < (IEEE80211_MIN_ACTION_SIZE + ++ sizeof(mgmt->u.action.u.addba_req))) ++ goto invalid; ++ break; ++ case WLAN_ACTION_ADDBA_RESP: ++ if (len < (IEEE80211_MIN_ACTION_SIZE + ++ sizeof(mgmt->u.action.u.addba_resp))) ++ goto invalid; ++ break; ++ case WLAN_ACTION_DELBA: ++ if (len < (IEEE80211_MIN_ACTION_SIZE + ++ sizeof(mgmt->u.action.u.delba))) ++ goto invalid; ++ break; ++ default: ++ goto invalid; ++ } ++ ++ goto queue; ++ case WLAN_CATEGORY_SPECTRUM_MGMT: ++ /* verify action_code is present */ ++ if (len < IEEE80211_MIN_ACTION_SIZE + 1) ++ break; ++ ++ switch (mgmt->u.action.u.measurement.action_code) { ++ case WLAN_ACTION_SPCT_MSR_REQ: ++ if (status->band != IEEE80211_BAND_5GHZ) ++ break; ++ ++ if (len < (IEEE80211_MIN_ACTION_SIZE + ++ sizeof(mgmt->u.action.u.measurement))) ++ break; ++ ++ if (sdata->vif.type != NL80211_IFTYPE_STATION) ++ break; ++ ++ ieee80211_process_measurement_req(sdata, mgmt, len); ++ goto handled; ++ case WLAN_ACTION_SPCT_CHL_SWITCH: { ++ u8 *bssid; ++ if (len < (IEEE80211_MIN_ACTION_SIZE + ++ sizeof(mgmt->u.action.u.chan_switch))) ++ break; ++ ++ if (sdata->vif.type != NL80211_IFTYPE_STATION && ++ sdata->vif.type != NL80211_IFTYPE_ADHOC && ++ sdata->vif.type != NL80211_IFTYPE_MESH_POINT) ++ break; ++ ++ if (sdata->vif.type == NL80211_IFTYPE_STATION) ++ bssid = sdata->u.mgd.bssid; ++ else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) ++ bssid = sdata->u.ibss.bssid; ++ else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) ++ bssid = mgmt->sa; ++ else ++ break; ++ ++ if (!ether_addr_equal(mgmt->bssid, bssid)) ++ break; ++ ++ goto queue; ++ } ++ } ++ break; ++ case WLAN_CATEGORY_SA_QUERY: ++ if (len < (IEEE80211_MIN_ACTION_SIZE + ++ sizeof(mgmt->u.action.u.sa_query))) ++ break; ++ ++ switch (mgmt->u.action.u.sa_query.action) { ++ case WLAN_ACTION_SA_QUERY_REQUEST: ++ if (sdata->vif.type != NL80211_IFTYPE_STATION) ++ break; ++ ieee80211_process_sa_query_req(sdata, mgmt, len); ++ goto handled; ++ } ++ break; ++ case WLAN_CATEGORY_SELF_PROTECTED: ++ if (len < (IEEE80211_MIN_ACTION_SIZE + ++ sizeof(mgmt->u.action.u.self_prot.action_code))) ++ break; ++ ++ switch (mgmt->u.action.u.self_prot.action_code) { ++ case WLAN_SP_MESH_PEERING_OPEN: ++ case WLAN_SP_MESH_PEERING_CLOSE: ++ case WLAN_SP_MESH_PEERING_CONFIRM: ++ if (!ieee80211_vif_is_mesh(&sdata->vif)) ++ goto invalid; ++ if (sdata->u.mesh.user_mpm) ++ /* userspace handles this frame */ ++ break; ++ goto queue; ++ case WLAN_SP_MGK_INFORM: ++ case WLAN_SP_MGK_ACK: ++ if (!ieee80211_vif_is_mesh(&sdata->vif)) ++ goto invalid; ++ break; ++ } ++ break; ++ case WLAN_CATEGORY_MESH_ACTION: ++ if (len < (IEEE80211_MIN_ACTION_SIZE + ++ sizeof(mgmt->u.action.u.mesh_action.action_code))) ++ break; ++ ++ if (!ieee80211_vif_is_mesh(&sdata->vif)) ++ break; ++ if (mesh_action_is_path_sel(mgmt) && ++ !mesh_path_sel_is_hwmp(sdata)) ++ break; ++ goto queue; ++ } ++ ++ return RX_CONTINUE; ++ ++ invalid: ++ status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; ++ /* will return in the next handlers */ ++ return RX_CONTINUE; ++ ++ handled: ++ if (rx->sta) ++ rx->sta->rx_packets++; ++ dev_kfree_skb(rx->skb); ++ return RX_QUEUED; ++ ++ queue: ++ rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; ++ skb_queue_tail(&sdata->skb_queue, rx->skb); ++ ieee80211_queue_work(&local->hw, &sdata->work); ++ if (rx->sta) ++ rx->sta->rx_packets++; ++ return RX_QUEUED; ++} ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); ++ int sig = 0; ++ ++ /* skip known-bad action frames and return them in the next handler */ ++ if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) ++ return RX_CONTINUE; ++ ++ /* ++ * Getting here means the kernel doesn't know how to handle ++ * it, but maybe userspace does ... include returned frames ++ * so userspace can register for those to know whether ones ++ * it transmitted were processed or returned. ++ */ ++ ++ if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ++ sig = status->signal; ++ ++ if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, ++ rx->skb->data, rx->skb->len, 0)) { ++ if (rx->sta) ++ rx->sta->rx_packets++; ++ dev_kfree_skb(rx->skb); ++ return RX_QUEUED; ++ } ++ ++ return RX_CONTINUE; ++} ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_local *local = rx->local; ++ struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; ++ struct sk_buff *nskb; ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); ++ ++ if (!ieee80211_is_action(mgmt->frame_control)) ++ return RX_CONTINUE; ++ ++ /* ++ * For AP mode, hostapd is responsible for handling any action ++ * frames that we didn't handle, including returning unknown ++ * ones. For all other modes we will return them to the sender, ++ * setting the 0x80 bit in the action category, as required by ++ * 802.11-2012 9.24.4. ++ * Newer versions of hostapd shall also use the management frame ++ * registration mechanisms, but older ones still use cooked ++ * monitor interfaces so push all frames there. ++ */ ++ if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && ++ (sdata->vif.type == NL80211_IFTYPE_AP || ++ sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) ++ return RX_DROP_MONITOR; ++ ++ if (is_multicast_ether_addr(mgmt->da)) ++ return RX_DROP_MONITOR; ++ ++ /* do not return rejected action frames */ ++ if (mgmt->u.action.category & 0x80) ++ return RX_DROP_UNUSABLE; ++ ++ nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, ++ GFP_ATOMIC); ++ if (nskb) { ++ struct ieee80211_mgmt *nmgmt = (void *)nskb->data; ++ ++ nmgmt->u.action.category |= 0x80; ++ memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); ++ memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); ++ ++ memset(nskb->cb, 0, sizeof(nskb->cb)); ++ ++ if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { ++ struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); ++ ++ info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | ++ IEEE80211_TX_INTFL_OFFCHAN_TX_OK | ++ IEEE80211_TX_CTL_NO_CCK_RATE; ++ if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) ++ info->hw_queue = ++ local->hw.offchannel_tx_hw_queue; ++ } ++ ++ __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, ++ status->band); ++ } ++ dev_kfree_skb(rx->skb); ++ return RX_QUEUED; ++} ++ ++static ieee80211_rx_result debug_noinline ++ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) ++{ ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; ++ __le16 stype; ++ ++ stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); ++ ++ if (!ieee80211_vif_is_mesh(&sdata->vif) && ++ sdata->vif.type != NL80211_IFTYPE_ADHOC && ++ sdata->vif.type != NL80211_IFTYPE_STATION) ++ return RX_DROP_MONITOR; ++ ++ switch (stype) { ++ case cpu_to_le16(IEEE80211_STYPE_AUTH): ++ case cpu_to_le16(IEEE80211_STYPE_BEACON): ++ case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): ++ /* process for all: mesh, mlme, ibss */ ++ break; ++ case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): ++ case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): ++ case cpu_to_le16(IEEE80211_STYPE_DEAUTH): ++ case cpu_to_le16(IEEE80211_STYPE_DISASSOC): ++ if (is_multicast_ether_addr(mgmt->da) && ++ !is_broadcast_ether_addr(mgmt->da)) ++ return RX_DROP_MONITOR; ++ ++ /* process only for station */ ++ if (sdata->vif.type != NL80211_IFTYPE_STATION) ++ return RX_DROP_MONITOR; ++ break; ++ case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): ++ /* process only for ibss and mesh */ ++ if (sdata->vif.type != NL80211_IFTYPE_ADHOC && ++ sdata->vif.type != NL80211_IFTYPE_MESH_POINT) ++ return RX_DROP_MONITOR; ++ break; ++ default: ++ return RX_DROP_MONITOR; ++ } ++ ++ /* queue up frame and kick off work to process it */ ++ rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; ++ skb_queue_tail(&sdata->skb_queue, rx->skb); ++ ieee80211_queue_work(&rx->local->hw, &sdata->work); ++ if (rx->sta) ++ rx->sta->rx_packets++; ++ ++ return RX_QUEUED; ++} ++ ++/* TODO: use IEEE80211_RX_FRAGMENTED */ ++static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, ++ struct ieee80211_rate *rate) ++{ ++ struct ieee80211_sub_if_data *sdata; ++ struct ieee80211_local *local = rx->local; ++ struct sk_buff *skb = rx->skb, *skb2; ++ struct net_device *prev_dev = NULL; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ int needed_headroom; ++ ++ /* ++ * If cooked monitor has been processed already, then ++ * don't do it again. If not, set the flag. ++ */ ++ if (rx->flags & IEEE80211_RX_CMNTR) ++ goto out_free_skb; ++ rx->flags |= IEEE80211_RX_CMNTR; ++ ++ /* If there are no cooked monitor interfaces, just free the SKB */ ++ if (!local->cooked_mntrs) ++ goto out_free_skb; ++ ++ /* room for the radiotap header based on driver features */ ++ needed_headroom = ieee80211_rx_radiotap_space(local, status); ++ ++ if (skb_headroom(skb) < needed_headroom && ++ pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) ++ goto out_free_skb; ++ ++ /* prepend radiotap information */ ++ ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, ++ false); ++ ++ skb_set_mac_header(skb, 0); ++ skb->ip_summed = CHECKSUM_UNNECESSARY; ++ skb->pkt_type = PACKET_OTHERHOST; ++ skb->protocol = htons(ETH_P_802_2); ++ ++ list_for_each_entry_rcu(sdata, &local->interfaces, list) { ++ if (!ieee80211_sdata_running(sdata)) ++ continue; ++ ++ if (sdata->vif.type != NL80211_IFTYPE_MONITOR || ++ !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) ++ continue; ++ ++ if (prev_dev) { ++ skb2 = skb_clone(skb, GFP_ATOMIC); ++ if (skb2) { ++ skb2->dev = prev_dev; ++ netif_receive_skb(skb2); ++ } ++ } ++ ++ prev_dev = sdata->dev; ++ sdata->dev->stats.rx_packets++; ++ sdata->dev->stats.rx_bytes += skb->len; ++ } ++ ++ if (prev_dev) { ++ skb->dev = prev_dev; ++ netif_receive_skb(skb); ++ return; ++ } ++ ++ out_free_skb: ++ dev_kfree_skb(skb); ++} ++ ++static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, ++ ieee80211_rx_result res) ++{ ++ switch (res) { ++ case RX_DROP_MONITOR: ++ I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); ++ if (rx->sta) ++ rx->sta->rx_dropped++; ++ /* fall through */ ++ case RX_CONTINUE: { ++ struct ieee80211_rate *rate = NULL; ++ struct ieee80211_supported_band *sband; ++ struct ieee80211_rx_status *status; ++ ++ status = IEEE80211_SKB_RXCB((rx->skb)); ++ ++ sband = rx->local->hw.wiphy->bands[status->band]; ++ if (!(status->flag & RX_FLAG_HT) && ++ !(status->flag & RX_FLAG_VHT)) ++ rate = &sband->bitrates[status->rate_idx]; ++ ++ ieee80211_rx_cooked_monitor(rx, rate); ++ break; ++ } ++ case RX_DROP_UNUSABLE: ++ I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); ++ if (rx->sta) ++ rx->sta->rx_dropped++; ++ dev_kfree_skb(rx->skb); ++ break; ++ case RX_QUEUED: ++ I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); ++ break; ++ } ++} ++ ++static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, ++ struct sk_buff_head *frames) ++{ ++ ieee80211_rx_result res = RX_DROP_MONITOR; ++ struct sk_buff *skb; ++ ++#define CALL_RXH(rxh) \ ++ do { \ ++ res = rxh(rx); \ ++ if (res != RX_CONTINUE) \ ++ goto rxh_next; \ ++ } while (0); ++ ++ spin_lock_bh(&rx->local->rx_path_lock); ++ ++ while ((skb = __skb_dequeue(frames))) { ++ /* ++ * all the other fields are valid across frames ++ * that belong to an aMPDU since they are on the ++ * same TID from the same station ++ */ ++ rx->skb = skb; ++ ++ CALL_RXH(ieee80211_rx_h_check_more_data) ++ CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) ++ CALL_RXH(ieee80211_rx_h_sta_process) ++ CALL_RXH(ieee80211_rx_h_decrypt) ++ CALL_RXH(ieee80211_rx_h_defragment) ++ CALL_RXH(ieee80211_rx_h_michael_mic_verify) ++ /* must be after MMIC verify so header is counted in MPDU mic */ ++#ifdef CONFIG_MAC80211_MESH ++ if (ieee80211_vif_is_mesh(&rx->sdata->vif)) ++ CALL_RXH(ieee80211_rx_h_mesh_fwding); ++#endif ++ CALL_RXH(ieee80211_rx_h_amsdu) ++ CALL_RXH(ieee80211_rx_h_data) ++ ++ /* special treatment -- needs the queue */ ++ res = ieee80211_rx_h_ctrl(rx, frames); ++ if (res != RX_CONTINUE) ++ goto rxh_next; ++ ++ CALL_RXH(ieee80211_rx_h_mgmt_check) ++ CALL_RXH(ieee80211_rx_h_action) ++ CALL_RXH(ieee80211_rx_h_userspace_mgmt) ++ CALL_RXH(ieee80211_rx_h_action_return) ++ CALL_RXH(ieee80211_rx_h_mgmt) ++ ++ rxh_next: ++ ieee80211_rx_handlers_result(rx, res); ++ ++#undef CALL_RXH ++ } ++ ++ spin_unlock_bh(&rx->local->rx_path_lock); ++} ++ ++static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) ++{ ++ struct sk_buff_head reorder_release; ++ ieee80211_rx_result res = RX_DROP_MONITOR; ++ ++ __skb_queue_head_init(&reorder_release); ++ ++#define CALL_RXH(rxh) \ ++ do { \ ++ res = rxh(rx); \ ++ if (res != RX_CONTINUE) \ ++ goto rxh_next; \ ++ } while (0); ++ ++ CALL_RXH(ieee80211_rx_h_check) ++ ++ ieee80211_rx_reorder_ampdu(rx, &reorder_release); ++ ++ ieee80211_rx_handlers(rx, &reorder_release); ++ return; ++ ++ rxh_next: ++ ieee80211_rx_handlers_result(rx, res); ++ ++#undef CALL_RXH ++} ++ ++/* ++ * This function makes calls into the RX path, therefore ++ * it has to be invoked under RCU read lock. ++ */ ++void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) ++{ ++ struct sk_buff_head frames; ++ struct ieee80211_rx_data rx = { ++ .sta = sta, ++ .sdata = sta->sdata, ++ .local = sta->local, ++ /* This is OK -- must be QoS data frame */ ++ .security_idx = tid, ++ .seqno_idx = tid, ++ .flags = 0, ++ }; ++ struct tid_ampdu_rx *tid_agg_rx; ++ ++ tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); ++ if (!tid_agg_rx) ++ return; ++ ++ __skb_queue_head_init(&frames); ++ ++ spin_lock(&tid_agg_rx->reorder_lock); ++ ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); ++ spin_unlock(&tid_agg_rx->reorder_lock); ++ ++ ieee80211_rx_handlers(&rx, &frames); ++} ++ ++/* main receive path */ ++ ++static bool prepare_for_handlers(struct ieee80211_rx_data *rx, ++ struct ieee80211_hdr *hdr) ++{ ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ struct sk_buff *skb = rx->skb; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); ++ int multicast = is_multicast_ether_addr(hdr->addr1); ++ ++ switch (sdata->vif.type) { ++ case NL80211_IFTYPE_STATION: ++ if (!bssid && !sdata->u.mgd.use_4addr) ++ return false; ++ if (!multicast && ++ !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { ++ if (!(sdata->dev->flags & IFF_PROMISC) || ++ sdata->u.mgd.use_4addr) ++ return false; ++ status->rx_flags &= ~IEEE80211_RX_RA_MATCH; ++ } ++ break; ++ case NL80211_IFTYPE_ADHOC: ++ if (!bssid) ++ return false; ++ if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || ++ ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) ++ return false; ++ if (ieee80211_is_beacon(hdr->frame_control)) { ++ return true; ++ } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { ++ return false; ++ } else if (!multicast && ++ !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { ++ if (!(sdata->dev->flags & IFF_PROMISC)) ++ return false; ++ status->rx_flags &= ~IEEE80211_RX_RA_MATCH; ++ } else if (!rx->sta) { ++ int rate_idx; ++ if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) ++ rate_idx = 0; /* TODO: HT/VHT rates */ ++ else ++ rate_idx = status->rate_idx; ++ ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, ++ BIT(rate_idx)); ++ } ++ break; ++ case NL80211_IFTYPE_MESH_POINT: ++ if (!multicast && ++ !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { ++ if (!(sdata->dev->flags & IFF_PROMISC)) ++ return false; ++ ++ status->rx_flags &= ~IEEE80211_RX_RA_MATCH; ++ } ++ break; ++ case NL80211_IFTYPE_AP_VLAN: ++ case NL80211_IFTYPE_AP: ++ if (!bssid) { ++ if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) ++ return false; ++ } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { ++ /* ++ * Accept public action frames even when the ++ * BSSID doesn't match, this is used for P2P ++ * and location updates. Note that mac80211 ++ * itself never looks at these frames. ++ */ ++ if (!multicast && ++ !ether_addr_equal(sdata->vif.addr, hdr->addr1)) ++ return false; ++ if (ieee80211_is_public_action(hdr, skb->len)) ++ return true; ++ if (!ieee80211_is_beacon(hdr->frame_control)) ++ return false; ++ status->rx_flags &= ~IEEE80211_RX_RA_MATCH; ++ } else if (!ieee80211_has_tods(hdr->frame_control)) { ++ /* ignore data frames to TDLS-peers */ ++ if (ieee80211_is_data(hdr->frame_control)) ++ return false; ++ /* ignore action frames to TDLS-peers */ ++ if (ieee80211_is_action(hdr->frame_control) && ++ !ether_addr_equal(bssid, hdr->addr1)) ++ return false; ++ } ++ break; ++ case NL80211_IFTYPE_WDS: ++ if (bssid || !ieee80211_is_data(hdr->frame_control)) ++ return false; ++ if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) ++ return false; ++ break; ++ case NL80211_IFTYPE_P2P_DEVICE: ++ if (!ieee80211_is_public_action(hdr, skb->len) && ++ !ieee80211_is_probe_req(hdr->frame_control) && ++ !ieee80211_is_probe_resp(hdr->frame_control) && ++ !ieee80211_is_beacon(hdr->frame_control)) ++ return false; ++ if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && ++ !multicast) ++ status->rx_flags &= ~IEEE80211_RX_RA_MATCH; ++ break; ++ default: ++ /* should never get here */ ++ WARN_ON_ONCE(1); ++ break; ++ } ++ ++ return true; ++} ++ ++/* ++ * This function returns whether or not the SKB ++ * was destined for RX processing or not, which, ++ * if consume is true, is equivalent to whether ++ * or not the skb was consumed. ++ */ ++static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, ++ struct sk_buff *skb, bool consume) ++{ ++ struct ieee80211_local *local = rx->local; ++ struct ieee80211_sub_if_data *sdata = rx->sdata; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ struct ieee80211_hdr *hdr = (void *)skb->data; ++ ++ rx->skb = skb; ++ status->rx_flags |= IEEE80211_RX_RA_MATCH; ++ ++ if (!prepare_for_handlers(rx, hdr)) ++ return false; ++ ++ if (!consume) { ++ skb = skb_copy(skb, GFP_ATOMIC); ++ if (!skb) { ++ if (net_ratelimit()) ++ wiphy_debug(local->hw.wiphy, ++ "failed to copy skb for %s\n", ++ sdata->name); ++ return true; ++ } ++ ++ rx->skb = skb; ++ } ++ ++ ieee80211_invoke_rx_handlers(rx); ++ return true; ++} ++ ++/* ++ * This is the actual Rx frames handler. as it belongs to Rx path it must ++ * be called with rcu_read_lock protection. ++ */ ++static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, ++ struct sk_buff *skb) ++{ ++ struct ieee80211_local *local = hw_to_local(hw); ++ struct ieee80211_sub_if_data *sdata; ++ struct ieee80211_hdr *hdr; ++ __le16 fc; ++ struct ieee80211_rx_data rx; ++ struct ieee80211_sub_if_data *prev; ++ struct sta_info *sta, *tmp, *prev_sta; ++ int err = 0; ++ ++ fc = ((struct ieee80211_hdr *)skb->data)->frame_control; ++ memset(&rx, 0, sizeof(rx)); ++ rx.skb = skb; ++ rx.local = local; ++ ++ if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) ++ local->dot11ReceivedFragmentCount++; ++ ++ if (ieee80211_is_mgmt(fc)) { ++ /* drop frame if too short for header */ ++ if (skb->len < ieee80211_hdrlen(fc)) ++ err = -ENOBUFS; ++ else ++ err = skb_linearize(skb); ++ } else { ++ err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); ++ } ++ ++ if (err) { ++ dev_kfree_skb(skb); ++ return; ++ } ++ ++ hdr = (struct ieee80211_hdr *)skb->data; ++ ieee80211_parse_qos(&rx); ++ ieee80211_verify_alignment(&rx); ++ ++ if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || ++ ieee80211_is_beacon(hdr->frame_control))) ++ ieee80211_scan_rx(local, skb); ++ ++ if (ieee80211_is_data(fc)) { ++ prev_sta = NULL; ++ ++ for_each_sta_info(local, hdr->addr2, sta, tmp) { ++ if (!prev_sta) { ++ prev_sta = sta; ++ continue; ++ } ++ ++ rx.sta = prev_sta; ++ rx.sdata = prev_sta->sdata; ++ ieee80211_prepare_and_rx_handle(&rx, skb, false); ++ ++ prev_sta = sta; ++ } ++ ++ if (prev_sta) { ++ rx.sta = prev_sta; ++ rx.sdata = prev_sta->sdata; ++ ++ if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) ++ return; ++ goto out; ++ } ++ } ++ ++ prev = NULL; ++ ++ list_for_each_entry_rcu(sdata, &local->interfaces, list) { ++ if (!ieee80211_sdata_running(sdata)) ++ continue; ++ ++ if (sdata->vif.type == NL80211_IFTYPE_MONITOR || ++ sdata->vif.type == NL80211_IFTYPE_AP_VLAN) ++ continue; ++ ++ /* ++ * frame is destined for this interface, but if it's ++ * not also for the previous one we handle that after ++ * the loop to avoid copying the SKB once too much ++ */ ++ ++ if (!prev) { ++ prev = sdata; ++ continue; ++ } ++ ++ rx.sta = sta_info_get_bss(prev, hdr->addr2); ++ rx.sdata = prev; ++ ieee80211_prepare_and_rx_handle(&rx, skb, false); ++ ++ prev = sdata; ++ } ++ ++ if (prev) { ++ rx.sta = sta_info_get_bss(prev, hdr->addr2); ++ rx.sdata = prev; ++ ++ if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) ++ return; ++ } ++ ++ out: ++ dev_kfree_skb(skb); ++} ++ ++/* ++ * This is the receive path handler. It is called by a low level driver when an ++ * 802.11 MPDU is received from the hardware. ++ */ ++void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) ++{ ++ struct ieee80211_local *local = hw_to_local(hw); ++ struct ieee80211_rate *rate = NULL; ++ struct ieee80211_supported_band *sband; ++ struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); ++ ++ WARN_ON_ONCE(softirq_count() == 0); ++ ++ if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) ++ goto drop; ++ ++ sband = local->hw.wiphy->bands[status->band]; ++ if (WARN_ON(!sband)) ++ goto drop; ++ ++ /* ++ * If we're suspending, it is possible although not too likely ++ * that we'd be receiving frames after having already partially ++ * quiesced the stack. We can't process such frames then since ++ * that might, for example, cause stations to be added or other ++ * driver callbacks be invoked. ++ */ ++ if (unlikely(local->quiescing || local->suspended)) ++ goto drop; ++ ++ /* We might be during a HW reconfig, prevent Rx for the same reason */ ++ if (unlikely(local->in_reconfig)) ++ goto drop; ++ ++ /* ++ * The same happens when we're not even started, ++ * but that's worth a warning. ++ */ ++ if (WARN_ON(!local->started)) ++ goto drop; ++ ++ if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { ++ /* ++ * Validate the rate, unless a PLCP error means that ++ * we probably can't have a valid rate here anyway. ++ */ ++ ++ if (status->flag & RX_FLAG_HT) { ++ /* ++ * rate_idx is MCS index, which can be [0-76] ++ * as documented on: ++ * ++ * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n ++ * ++ * Anything else would be some sort of driver or ++ * hardware error. The driver should catch hardware ++ * errors. ++ */ ++ if (WARN(status->rate_idx > 76, ++ "Rate marked as an HT rate but passed " ++ "status->rate_idx is not " ++ "an MCS index [0-76]: %d (0x%02x)\n", ++ status->rate_idx, ++ status->rate_idx)) ++ goto drop; ++ } else if (status->flag & RX_FLAG_VHT) { ++ if (WARN_ONCE(status->rate_idx > 9 || ++ !status->vht_nss || ++ status->vht_nss > 8, ++ "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", ++ status->rate_idx, status->vht_nss)) ++ goto drop; ++ } else { ++ if (WARN_ON(status->rate_idx >= sband->n_bitrates)) ++ goto drop; ++ rate = &sband->bitrates[status->rate_idx]; ++ } ++ } ++ ++ status->rx_flags = 0; ++ ++ /* ++ * key references and virtual interfaces are protected using RCU ++ * and this requires that we are in a read-side RCU section during ++ * receive processing ++ */ ++ rcu_read_lock(); ++ ++ /* ++ * Frames with failed FCS/PLCP checksum are not returned, ++ * all other frames are returned without radiotap header ++ * if it was previously present. ++ * Also, frames with less than 16 bytes are dropped. ++ */ ++ skb = ieee80211_rx_monitor(local, skb, rate); ++ if (!skb) { ++ rcu_read_unlock(); ++ return; ++ } ++ ++ ieee80211_tpt_led_trig_rx(local, ++ ((struct ieee80211_hdr *)skb->data)->frame_control, ++ skb->len); ++ __ieee80211_rx_handle_packet(hw, skb); ++ ++ rcu_read_unlock(); ++ ++ return; ++ drop: ++ kfree_skb(skb); ++} ++EXPORT_SYMBOL(ieee80211_rx); ++ ++/* This is a version of the rx handler that can be called from hard irq ++ * context. Post the skb on the queue and schedule the tasklet */ ++void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) ++{ ++ struct ieee80211_local *local = hw_to_local(hw); ++ ++ BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); ++ ++ skb->pkt_type = IEEE80211_RX_MSG; ++ skb_queue_tail(&local->skb_queue, skb); ++ tasklet_schedule(&local->tasklet); ++} ++EXPORT_SYMBOL(ieee80211_rx_irqsafe); +diff -Nur linux-3.18.12.orig/net/netfilter/core.c linux-3.18.12/net/netfilter/core.c +--- linux-3.18.12.orig/net/netfilter/core.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/netfilter/core.c 2015-04-26 13:32:22.471684003 -0500 +@@ -21,11 +21,17 @@ + #include + #include + #include ++#include + #include + #include + + #include "nf_internals.h" + ++#ifdef CONFIG_PREEMPT_RT_BASE ++DEFINE_LOCAL_IRQ_LOCK(xt_write_lock); ++EXPORT_PER_CPU_SYMBOL(xt_write_lock); ++#endif ++ + static DEFINE_MUTEX(afinfo_mutex); + + const struct nf_afinfo __rcu *nf_afinfo[NFPROTO_NUMPROTO] __read_mostly; +diff -Nur linux-3.18.12.orig/net/packet/af_packet.c linux-3.18.12/net/packet/af_packet.c +--- linux-3.18.12.orig/net/packet/af_packet.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/packet/af_packet.c 2015-04-26 13:32:22.471684003 -0500 +@@ -63,6 +63,7 @@ + #include + #include + #include ++#include + #include + #include + #include +@@ -692,7 +693,7 @@ + if (BLOCK_NUM_PKTS(pbd)) { + while (atomic_read(&pkc->blk_fill_in_prog)) { + /* Waiting for skb_copy_bits to finish... */ +- cpu_relax(); ++ cpu_chill(); + } + } + +@@ -943,7 +944,7 @@ + if (!(status & TP_STATUS_BLK_TMO)) { + while (atomic_read(&pkc->blk_fill_in_prog)) { + /* Waiting for skb_copy_bits to finish... */ +- cpu_relax(); ++ cpu_chill(); + } + } + prb_close_block(pkc, pbd, po, status); +diff -Nur linux-3.18.12.orig/net/rds/ib_rdma.c linux-3.18.12/net/rds/ib_rdma.c +--- linux-3.18.12.orig/net/rds/ib_rdma.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/rds/ib_rdma.c 2015-04-26 13:32:22.471684003 -0500 +@@ -34,6 +34,7 @@ + #include + #include + #include ++#include + + #include "rds.h" + #include "ib.h" +@@ -286,7 +287,7 @@ + for_each_online_cpu(cpu) { + flag = &per_cpu(clean_list_grace, cpu); + while (test_bit(CLEAN_LIST_BUSY_BIT, flag)) +- cpu_relax(); ++ cpu_chill(); + } + } + +diff -Nur linux-3.18.12.orig/net/sched/sch_generic.c linux-3.18.12/net/sched/sch_generic.c +--- linux-3.18.12.orig/net/sched/sch_generic.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/sched/sch_generic.c 2015-04-26 13:32:22.471684003 -0500 +@@ -894,7 +894,7 @@ + /* Wait for outstanding qdisc_run calls. */ + list_for_each_entry(dev, head, close_list) + while (some_qdisc_is_busy(dev)) +- yield(); ++ msleep(1); + } + + void dev_deactivate(struct net_device *dev) +diff -Nur linux-3.18.12.orig/net/sunrpc/svc_xprt.c linux-3.18.12/net/sunrpc/svc_xprt.c +--- linux-3.18.12.orig/net/sunrpc/svc_xprt.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/net/sunrpc/svc_xprt.c 2015-04-26 13:32:22.475684003 -0500 +@@ -357,7 +357,7 @@ + return; + } + +- cpu = get_cpu(); ++ cpu = get_cpu_light(); + pool = svc_pool_for_cpu(xprt->xpt_server, cpu); + spin_lock_bh(&pool->sp_lock); + +@@ -390,7 +390,7 @@ + } + + spin_unlock_bh(&pool->sp_lock); +- put_cpu(); ++ put_cpu_light(); + } + + /* +diff -Nur linux-3.18.12.orig/scripts/mkcompile_h linux-3.18.12/scripts/mkcompile_h +--- linux-3.18.12.orig/scripts/mkcompile_h 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/scripts/mkcompile_h 2015-04-26 13:32:22.475684003 -0500 +@@ -4,7 +4,8 @@ + ARCH=$2 + SMP=$3 + PREEMPT=$4 +-CC=$5 ++RT=$5 ++CC=$6 + + vecho() { [ "${quiet}" = "silent_" ] || echo "$@" ; } + +@@ -57,6 +58,7 @@ + CONFIG_FLAGS="" + if [ -n "$SMP" ] ; then CONFIG_FLAGS="SMP"; fi + if [ -n "$PREEMPT" ] ; then CONFIG_FLAGS="$CONFIG_FLAGS PREEMPT"; fi ++if [ -n "$RT" ] ; then CONFIG_FLAGS="$CONFIG_FLAGS RT"; fi + UTS_VERSION="$UTS_VERSION $CONFIG_FLAGS $TIMESTAMP" + + # Truncate to maximum length +diff -Nur linux-3.18.12.orig/sound/core/pcm_native.c linux-3.18.12/sound/core/pcm_native.c +--- linux-3.18.12.orig/sound/core/pcm_native.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/sound/core/pcm_native.c 2015-04-26 13:32:22.475684003 -0500 +@@ -104,7 +104,7 @@ + void snd_pcm_stream_lock_irq(struct snd_pcm_substream *substream) + { + if (!substream->pcm->nonatomic) +- local_irq_disable(); ++ local_irq_disable_nort(); + snd_pcm_stream_lock(substream); + } + EXPORT_SYMBOL_GPL(snd_pcm_stream_lock_irq); +@@ -113,7 +113,7 @@ + { + snd_pcm_stream_unlock(substream); + if (!substream->pcm->nonatomic) +- local_irq_enable(); ++ local_irq_enable_nort(); + } + EXPORT_SYMBOL_GPL(snd_pcm_stream_unlock_irq); + +@@ -121,7 +121,7 @@ + { + unsigned long flags = 0; + if (!substream->pcm->nonatomic) +- local_irq_save(flags); ++ local_irq_save_nort(flags); + snd_pcm_stream_lock(substream); + return flags; + } +@@ -132,7 +132,7 @@ + { + snd_pcm_stream_unlock(substream); + if (!substream->pcm->nonatomic) +- local_irq_restore(flags); ++ local_irq_restore_nort(flags); + } + EXPORT_SYMBOL_GPL(snd_pcm_stream_unlock_irqrestore); + +diff -Nur linux-3.18.12.orig/virt/kvm/async_pf.c linux-3.18.12/virt/kvm/async_pf.c +--- linux-3.18.12.orig/virt/kvm/async_pf.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/virt/kvm/async_pf.c 2015-04-26 13:32:22.475684003 -0500 +@@ -94,8 +94,8 @@ + + trace_kvm_async_pf_completed(addr, gva); + +- if (waitqueue_active(&vcpu->wq)) +- wake_up_interruptible(&vcpu->wq); ++ if (swaitqueue_active(&vcpu->wq)) ++ swait_wake_interruptible(&vcpu->wq); + + mmput(mm); + kvm_put_kvm(vcpu->kvm); +diff -Nur linux-3.18.12.orig/virt/kvm/kvm_main.c linux-3.18.12/virt/kvm/kvm_main.c +--- linux-3.18.12.orig/virt/kvm/kvm_main.c 2015-04-20 14:48:02.000000000 -0500 ++++ linux-3.18.12/virt/kvm/kvm_main.c 2015-04-26 13:32:22.475684003 -0500 +@@ -221,7 +221,7 @@ + vcpu->kvm = kvm; + vcpu->vcpu_id = id; + vcpu->pid = NULL; +- init_waitqueue_head(&vcpu->wq); ++ init_swait_head(&vcpu->wq); + kvm_async_pf_vcpu_init(vcpu); + + page = alloc_page(GFP_KERNEL | __GFP_ZERO); +@@ -1740,10 +1740,10 @@ + */ + void kvm_vcpu_block(struct kvm_vcpu *vcpu) + { +- DEFINE_WAIT(wait); ++ DEFINE_SWAITER(wait); + + for (;;) { +- prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); ++ swait_prepare(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); + + if (kvm_arch_vcpu_runnable(vcpu)) { + kvm_make_request(KVM_REQ_UNHALT, vcpu); +@@ -1757,7 +1757,7 @@ + schedule(); + } + +- finish_wait(&vcpu->wq, &wait); ++ swait_finish(&vcpu->wq, &wait); + } + EXPORT_SYMBOL_GPL(kvm_vcpu_block); + +@@ -1769,11 +1769,11 @@ + { + int me; + int cpu = vcpu->cpu; +- wait_queue_head_t *wqp; ++ struct swait_head *wqp; + + wqp = kvm_arch_vcpu_wq(vcpu); +- if (waitqueue_active(wqp)) { +- wake_up_interruptible(wqp); ++ if (swaitqueue_active(wqp)) { ++ swait_wake_interruptible(wqp); + ++vcpu->stat.halt_wakeup; + } + +@@ -1878,7 +1878,7 @@ + continue; + if (vcpu == me) + continue; +- if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) ++ if (swaitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) + continue; + if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) + continue; -- cgit v1.2.3