From 34f64dab4829227378994f1a7f8d60d13eb33652 Mon Sep 17 00:00:00 2001 From: Waldemar Brodkorb Date: Fri, 9 Apr 2021 16:34:40 +0200 Subject: gcc: fix sparc toolchain, patch from buildroot --- toolchain/gcc/patches/10.3.0/revert-sparc.patch | 23628 ++++++++++++++++++++++ 1 file changed, 23628 insertions(+) create mode 100644 toolchain/gcc/patches/10.3.0/revert-sparc.patch diff --git a/toolchain/gcc/patches/10.3.0/revert-sparc.patch b/toolchain/gcc/patches/10.3.0/revert-sparc.patch new file mode 100644 index 000000000..5df11ce40 --- /dev/null +++ b/toolchain/gcc/patches/10.3.0/revert-sparc.patch @@ -0,0 +1,23628 @@ +diff -Nur gcc-10.3.0.orig/gcc/config/sparc/sparc.c gcc-10.3.0/gcc/config/sparc/sparc.c +--- gcc-10.3.0.orig/gcc/config/sparc/sparc.c 2021-04-08 13:56:28.201742273 +0200 ++++ gcc-10.3.0/gcc/config/sparc/sparc.c 2021-04-09 07:51:37.884501308 +0200 +@@ -4157,6 +4157,13 @@ + static bool + sparc_cannot_force_const_mem (machine_mode mode, rtx x) + { ++ /* After IRA has run in PIC mode, it is too late to put anything into the ++ constant pool if the PIC register hasn't already been initialized. */ ++ if ((lra_in_progress || reload_in_progress) ++ && flag_pic ++ && !crtl->uses_pic_offset_table) ++ return true; ++ + switch (GET_CODE (x)) + { + case CONST_INT: +@@ -4192,11 +4199,9 @@ + } + + /* Global Offset Table support. */ +-static GTY(()) rtx got_symbol_rtx = NULL_RTX; +-static GTY(()) rtx got_register_rtx = NULL_RTX; + static GTY(()) rtx got_helper_rtx = NULL_RTX; +- +-static GTY(()) bool got_helper_needed = false; ++static GTY(()) rtx got_register_rtx = NULL_RTX; ++static GTY(()) rtx got_symbol_rtx = NULL_RTX; + + /* Return the SYMBOL_REF for the Global Offset Table. */ + +@@ -4209,6 +4214,27 @@ + return got_symbol_rtx; + } + ++#ifdef HAVE_GAS_HIDDEN ++# define USE_HIDDEN_LINKONCE 1 ++#else ++# define USE_HIDDEN_LINKONCE 0 ++#endif ++ ++static void ++get_pc_thunk_name (char name[32], unsigned int regno) ++{ ++ const char *reg_name = reg_names[regno]; ++ ++ /* Skip the leading '%' as that cannot be used in a ++ symbol name. */ ++ reg_name += 1; ++ ++ if (USE_HIDDEN_LINKONCE) ++ sprintf (name, "__sparc_get_pc_thunk.%s", reg_name); ++ else ++ ASM_GENERATE_INTERNAL_LABEL (name, "LADDPC", regno); ++} ++ + /* Wrapper around the load_pcrel_sym{si,di} patterns. */ + + static rtx +@@ -4228,78 +4254,30 @@ + return insn; + } + +-/* Output the load_pcrel_sym{si,di} patterns. */ +- +-const char * +-output_load_pcrel_sym (rtx *operands) +-{ +- if (flag_delayed_branch) +- { +- output_asm_insn ("sethi\t%%hi(%a1-4), %0", operands); +- output_asm_insn ("call\t%a2", operands); +- output_asm_insn (" add\t%0, %%lo(%a1+4), %0", operands); +- } +- else +- { +- output_asm_insn ("sethi\t%%hi(%a1-8), %0", operands); +- output_asm_insn ("add\t%0, %%lo(%a1-4), %0", operands); +- output_asm_insn ("call\t%a2", operands); +- output_asm_insn (" nop", NULL); +- } +- +- if (operands[2] == got_helper_rtx) +- got_helper_needed = true; +- +- return ""; +-} +- +-#ifdef HAVE_GAS_HIDDEN +-# define USE_HIDDEN_LINKONCE 1 +-#else +-# define USE_HIDDEN_LINKONCE 0 +-#endif +- + /* Emit code to load the GOT register. */ + + void + load_got_register (void) + { +- rtx insn; ++ if (!got_register_rtx) ++ got_register_rtx = gen_rtx_REG (Pmode, GLOBAL_OFFSET_TABLE_REGNUM); + + if (TARGET_VXWORKS_RTP) +- { +- if (!got_register_rtx) +- got_register_rtx = pic_offset_table_rtx; +- +- insn = gen_vxworks_load_got (); +- } ++ emit_insn (gen_vxworks_load_got ()); + else + { +- if (!got_register_rtx) +- got_register_rtx = gen_rtx_REG (Pmode, GLOBAL_OFFSET_TABLE_REGNUM); +- + /* The GOT symbol is subject to a PC-relative relocation so we need a + helper function to add the PC value and thus get the final value. */ + if (!got_helper_rtx) + { + char name[32]; +- +- /* Skip the leading '%' as that cannot be used in a symbol name. */ +- if (USE_HIDDEN_LINKONCE) +- sprintf (name, "__sparc_get_pc_thunk.%s", +- reg_names[REGNO (got_register_rtx)] + 1); +- else +- ASM_GENERATE_INTERNAL_LABEL (name, "LADDPC", +- REGNO (got_register_rtx)); +- ++ get_pc_thunk_name (name, GLOBAL_OFFSET_TABLE_REGNUM); + got_helper_rtx = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); + } + +- insn +- = gen_load_pcrel_sym (got_register_rtx, sparc_got (), got_helper_rtx); ++ emit_insn (gen_load_pcrel_sym (got_register_rtx, sparc_got (), ++ got_helper_rtx)); + } +- +- emit_insn (insn); + } + + /* Ensure that we are not using patterns that are not OK with PIC. */ +@@ -5464,7 +5442,7 @@ + return true; + + /* GOT register (%l7) if needed. */ +- if (got_register_rtx && regno == REGNO (got_register_rtx)) ++ if (regno == GLOBAL_OFFSET_TABLE_REGNUM && got_register_rtx) + return true; + + /* If the function accesses prior frames, the frame pointer and the return +@@ -12507,9 +12485,10 @@ + sparc_file_end (void) + { + /* If we need to emit the special GOT helper function, do so now. */ +- if (got_helper_needed) ++ if (got_helper_rtx) + { + const char *name = XSTR (got_helper_rtx, 0); ++ const char *reg_name = reg_names[GLOBAL_OFFSET_TABLE_REGNUM]; + #ifdef DWARF2_UNWIND_INFO + bool do_cfi; + #endif +@@ -12546,22 +12525,17 @@ + #ifdef DWARF2_UNWIND_INFO + do_cfi = dwarf2out_do_cfi_asm (); + if (do_cfi) +- output_asm_insn (".cfi_startproc", NULL); ++ fprintf (asm_out_file, "\t.cfi_startproc\n"); + #endif + if (flag_delayed_branch) +- { +- output_asm_insn ("jmp\t%%o7+8", NULL); +- output_asm_insn (" add\t%%o7, %0, %0", &got_register_rtx); +- } ++ fprintf (asm_out_file, "\tjmp\t%%o7+8\n\t add\t%%o7, %s, %s\n", ++ reg_name, reg_name); + else +- { +- output_asm_insn ("add\t%%o7, %0, %0", &got_register_rtx); +- output_asm_insn ("jmp\t%%o7+8", NULL); +- output_asm_insn (" nop", NULL); +- } ++ fprintf (asm_out_file, "\tadd\t%%o7, %s, %s\n\tjmp\t%%o7+8\n\t nop\n", ++ reg_name, reg_name); + #ifdef DWARF2_UNWIND_INFO + if (do_cfi) +- output_asm_insn (".cfi_endproc", NULL); ++ fprintf (asm_out_file, "\t.cfi_endproc\n"); + #endif + } + +@@ -13056,10 +13030,7 @@ + edge entry_edge; + rtx_insn *seq; + +- /* In PIC mode, we need to always initialize the PIC register if optimization +- is enabled, because we are called from IRA and LRA may later force things +- to the constant pool for optimization purposes. */ +- if (!flag_pic || (!crtl->uses_pic_offset_table && !optimize)) ++ if (!crtl->uses_pic_offset_table) + return; + + start_sequence (); +diff -Nur gcc-10.3.0.orig/gcc/config/sparc/sparc.c.orig gcc-10.3.0/gcc/config/sparc/sparc.c.orig +--- gcc-10.3.0.orig/gcc/config/sparc/sparc.c.orig 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-10.3.0/gcc/config/sparc/sparc.c.orig 2021-04-08 13:56:28.201742273 +0200 +@@ -0,0 +1,13813 @@ ++/* Subroutines for insn-output.c for SPARC. ++ Copyright (C) 1987-2020 Free Software Foundation, Inc. ++ Contributed by Michael Tiemann (tiemann@cygnus.com) ++ 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, ++ at Cygnus Support. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++. */ ++ ++#define IN_TARGET_CODE 1 ++ ++#include "config.h" ++#include "system.h" ++#include "coretypes.h" ++#include "backend.h" ++#include "target.h" ++#include "rtl.h" ++#include "tree.h" ++#include "memmodel.h" ++#include "gimple.h" ++#include "df.h" ++#include "tm_p.h" ++#include "stringpool.h" ++#include "attribs.h" ++#include "expmed.h" ++#include "optabs.h" ++#include "regs.h" ++#include "emit-rtl.h" ++#include "recog.h" ++#include "diagnostic-core.h" ++#include "alias.h" ++#include "fold-const.h" ++#include "stor-layout.h" ++#include "calls.h" ++#include "varasm.h" ++#include "output.h" ++#include "insn-attr.h" ++#include "explow.h" ++#include "expr.h" ++#include "debug.h" ++#include "cfgrtl.h" ++#include "common/common-target.h" ++#include "gimplify.h" ++#include "langhooks.h" ++#include "reload.h" ++#include "tree-pass.h" ++#include "context.h" ++#include "builtins.h" ++#include "tree-vector-builder.h" ++#include "opts.h" ++ ++/* This file should be included last. */ ++#include "target-def.h" ++ ++/* Processor costs */ ++ ++struct processor_costs { ++ /* Integer load */ ++ const int int_load; ++ ++ /* Integer signed load */ ++ const int int_sload; ++ ++ /* Integer zeroed load */ ++ const int int_zload; ++ ++ /* Float load */ ++ const int float_load; ++ ++ /* fmov, fneg, fabs */ ++ const int float_move; ++ ++ /* fadd, fsub */ ++ const int float_plusminus; ++ ++ /* fcmp */ ++ const int float_cmp; ++ ++ /* fmov, fmovr */ ++ const int float_cmove; ++ ++ /* fmul */ ++ const int float_mul; ++ ++ /* fdivs */ ++ const int float_div_sf; ++ ++ /* fdivd */ ++ const int float_div_df; ++ ++ /* fsqrts */ ++ const int float_sqrt_sf; ++ ++ /* fsqrtd */ ++ const int float_sqrt_df; ++ ++ /* umul/smul */ ++ const int int_mul; ++ ++ /* mulX */ ++ const int int_mulX; ++ ++ /* integer multiply cost for each bit set past the most ++ significant 3, so the formula for multiply cost becomes: ++ ++ if (rs1 < 0) ++ highest_bit = highest_clear_bit(rs1); ++ else ++ highest_bit = highest_set_bit(rs1); ++ if (highest_bit < 3) ++ highest_bit = 3; ++ cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor); ++ ++ A value of zero indicates that the multiply costs is fixed, ++ and not variable. */ ++ const int int_mul_bit_factor; ++ ++ /* udiv/sdiv */ ++ const int int_div; ++ ++ /* divX */ ++ const int int_divX; ++ ++ /* movcc, movr */ ++ const int int_cmove; ++ ++ /* penalty for shifts, due to scheduling rules etc. */ ++ const int shift_penalty; ++ ++ /* cost of a (predictable) branch. */ ++ const int branch_cost; ++}; ++ ++static const ++struct processor_costs cypress_costs = { ++ COSTS_N_INSNS (2), /* int load */ ++ COSTS_N_INSNS (2), /* int signed load */ ++ COSTS_N_INSNS (2), /* int zeroed load */ ++ COSTS_N_INSNS (2), /* float load */ ++ COSTS_N_INSNS (5), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (5), /* fadd, fsub */ ++ COSTS_N_INSNS (1), /* fcmp */ ++ COSTS_N_INSNS (1), /* fmov, fmovr */ ++ COSTS_N_INSNS (7), /* fmul */ ++ COSTS_N_INSNS (37), /* fdivs */ ++ COSTS_N_INSNS (37), /* fdivd */ ++ COSTS_N_INSNS (63), /* fsqrts */ ++ COSTS_N_INSNS (63), /* fsqrtd */ ++ COSTS_N_INSNS (1), /* imul */ ++ COSTS_N_INSNS (1), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (1), /* idiv */ ++ COSTS_N_INSNS (1), /* idivX */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 3 /* branch cost */ ++}; ++ ++static const ++struct processor_costs supersparc_costs = { ++ COSTS_N_INSNS (1), /* int load */ ++ COSTS_N_INSNS (1), /* int signed load */ ++ COSTS_N_INSNS (1), /* int zeroed load */ ++ COSTS_N_INSNS (0), /* float load */ ++ COSTS_N_INSNS (3), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (3), /* fadd, fsub */ ++ COSTS_N_INSNS (3), /* fcmp */ ++ COSTS_N_INSNS (1), /* fmov, fmovr */ ++ COSTS_N_INSNS (3), /* fmul */ ++ COSTS_N_INSNS (6), /* fdivs */ ++ COSTS_N_INSNS (9), /* fdivd */ ++ COSTS_N_INSNS (12), /* fsqrts */ ++ COSTS_N_INSNS (12), /* fsqrtd */ ++ COSTS_N_INSNS (4), /* imul */ ++ COSTS_N_INSNS (4), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (4), /* idiv */ ++ COSTS_N_INSNS (4), /* idivX */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 1, /* shift penalty */ ++ 3 /* branch cost */ ++}; ++ ++static const ++struct processor_costs hypersparc_costs = { ++ COSTS_N_INSNS (1), /* int load */ ++ COSTS_N_INSNS (1), /* int signed load */ ++ COSTS_N_INSNS (1), /* int zeroed load */ ++ COSTS_N_INSNS (1), /* float load */ ++ COSTS_N_INSNS (1), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (1), /* fadd, fsub */ ++ COSTS_N_INSNS (1), /* fcmp */ ++ COSTS_N_INSNS (1), /* fmov, fmovr */ ++ COSTS_N_INSNS (1), /* fmul */ ++ COSTS_N_INSNS (8), /* fdivs */ ++ COSTS_N_INSNS (12), /* fdivd */ ++ COSTS_N_INSNS (17), /* fsqrts */ ++ COSTS_N_INSNS (17), /* fsqrtd */ ++ COSTS_N_INSNS (17), /* imul */ ++ COSTS_N_INSNS (17), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (17), /* idiv */ ++ COSTS_N_INSNS (17), /* idivX */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 3 /* branch cost */ ++}; ++ ++static const ++struct processor_costs leon_costs = { ++ COSTS_N_INSNS (1), /* int load */ ++ COSTS_N_INSNS (1), /* int signed load */ ++ COSTS_N_INSNS (1), /* int zeroed load */ ++ COSTS_N_INSNS (1), /* float load */ ++ COSTS_N_INSNS (1), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (1), /* fadd, fsub */ ++ COSTS_N_INSNS (1), /* fcmp */ ++ COSTS_N_INSNS (1), /* fmov, fmovr */ ++ COSTS_N_INSNS (1), /* fmul */ ++ COSTS_N_INSNS (15), /* fdivs */ ++ COSTS_N_INSNS (15), /* fdivd */ ++ COSTS_N_INSNS (23), /* fsqrts */ ++ COSTS_N_INSNS (23), /* fsqrtd */ ++ COSTS_N_INSNS (5), /* imul */ ++ COSTS_N_INSNS (5), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (5), /* idiv */ ++ COSTS_N_INSNS (5), /* idivX */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 3 /* branch cost */ ++}; ++ ++static const ++struct processor_costs leon3_costs = { ++ COSTS_N_INSNS (1), /* int load */ ++ COSTS_N_INSNS (1), /* int signed load */ ++ COSTS_N_INSNS (1), /* int zeroed load */ ++ COSTS_N_INSNS (1), /* float load */ ++ COSTS_N_INSNS (1), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (1), /* fadd, fsub */ ++ COSTS_N_INSNS (1), /* fcmp */ ++ COSTS_N_INSNS (1), /* fmov, fmovr */ ++ COSTS_N_INSNS (1), /* fmul */ ++ COSTS_N_INSNS (14), /* fdivs */ ++ COSTS_N_INSNS (15), /* fdivd */ ++ COSTS_N_INSNS (22), /* fsqrts */ ++ COSTS_N_INSNS (23), /* fsqrtd */ ++ COSTS_N_INSNS (5), /* imul */ ++ COSTS_N_INSNS (5), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (35), /* idiv */ ++ COSTS_N_INSNS (35), /* idivX */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 3 /* branch cost */ ++}; ++ ++static const ++struct processor_costs sparclet_costs = { ++ COSTS_N_INSNS (3), /* int load */ ++ COSTS_N_INSNS (3), /* int signed load */ ++ COSTS_N_INSNS (1), /* int zeroed load */ ++ COSTS_N_INSNS (1), /* float load */ ++ COSTS_N_INSNS (1), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (1), /* fadd, fsub */ ++ COSTS_N_INSNS (1), /* fcmp */ ++ COSTS_N_INSNS (1), /* fmov, fmovr */ ++ COSTS_N_INSNS (1), /* fmul */ ++ COSTS_N_INSNS (1), /* fdivs */ ++ COSTS_N_INSNS (1), /* fdivd */ ++ COSTS_N_INSNS (1), /* fsqrts */ ++ COSTS_N_INSNS (1), /* fsqrtd */ ++ COSTS_N_INSNS (5), /* imul */ ++ COSTS_N_INSNS (5), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (5), /* idiv */ ++ COSTS_N_INSNS (5), /* idivX */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 3 /* branch cost */ ++}; ++ ++static const ++struct processor_costs ultrasparc_costs = { ++ COSTS_N_INSNS (2), /* int load */ ++ COSTS_N_INSNS (3), /* int signed load */ ++ COSTS_N_INSNS (2), /* int zeroed load */ ++ COSTS_N_INSNS (2), /* float load */ ++ COSTS_N_INSNS (1), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (4), /* fadd, fsub */ ++ COSTS_N_INSNS (1), /* fcmp */ ++ COSTS_N_INSNS (2), /* fmov, fmovr */ ++ COSTS_N_INSNS (4), /* fmul */ ++ COSTS_N_INSNS (13), /* fdivs */ ++ COSTS_N_INSNS (23), /* fdivd */ ++ COSTS_N_INSNS (13), /* fsqrts */ ++ COSTS_N_INSNS (23), /* fsqrtd */ ++ COSTS_N_INSNS (4), /* imul */ ++ COSTS_N_INSNS (4), /* imulX */ ++ 2, /* imul bit factor */ ++ COSTS_N_INSNS (37), /* idiv */ ++ COSTS_N_INSNS (68), /* idivX */ ++ COSTS_N_INSNS (2), /* movcc/movr */ ++ 2, /* shift penalty */ ++ 2 /* branch cost */ ++}; ++ ++static const ++struct processor_costs ultrasparc3_costs = { ++ COSTS_N_INSNS (2), /* int load */ ++ COSTS_N_INSNS (3), /* int signed load */ ++ COSTS_N_INSNS (3), /* int zeroed load */ ++ COSTS_N_INSNS (2), /* float load */ ++ COSTS_N_INSNS (3), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (4), /* fadd, fsub */ ++ COSTS_N_INSNS (5), /* fcmp */ ++ COSTS_N_INSNS (3), /* fmov, fmovr */ ++ COSTS_N_INSNS (4), /* fmul */ ++ COSTS_N_INSNS (17), /* fdivs */ ++ COSTS_N_INSNS (20), /* fdivd */ ++ COSTS_N_INSNS (20), /* fsqrts */ ++ COSTS_N_INSNS (29), /* fsqrtd */ ++ COSTS_N_INSNS (6), /* imul */ ++ COSTS_N_INSNS (6), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (40), /* idiv */ ++ COSTS_N_INSNS (71), /* idivX */ ++ COSTS_N_INSNS (2), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 2 /* branch cost */ ++}; ++ ++static const ++struct processor_costs niagara_costs = { ++ COSTS_N_INSNS (3), /* int load */ ++ COSTS_N_INSNS (3), /* int signed load */ ++ COSTS_N_INSNS (3), /* int zeroed load */ ++ COSTS_N_INSNS (9), /* float load */ ++ COSTS_N_INSNS (8), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (8), /* fadd, fsub */ ++ COSTS_N_INSNS (26), /* fcmp */ ++ COSTS_N_INSNS (8), /* fmov, fmovr */ ++ COSTS_N_INSNS (29), /* fmul */ ++ COSTS_N_INSNS (54), /* fdivs */ ++ COSTS_N_INSNS (83), /* fdivd */ ++ COSTS_N_INSNS (100), /* fsqrts - not implemented in hardware */ ++ COSTS_N_INSNS (100), /* fsqrtd - not implemented in hardware */ ++ COSTS_N_INSNS (11), /* imul */ ++ COSTS_N_INSNS (11), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (72), /* idiv */ ++ COSTS_N_INSNS (72), /* idivX */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 4 /* branch cost */ ++}; ++ ++static const ++struct processor_costs niagara2_costs = { ++ COSTS_N_INSNS (3), /* int load */ ++ COSTS_N_INSNS (3), /* int signed load */ ++ COSTS_N_INSNS (3), /* int zeroed load */ ++ COSTS_N_INSNS (3), /* float load */ ++ COSTS_N_INSNS (6), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (6), /* fadd, fsub */ ++ COSTS_N_INSNS (6), /* fcmp */ ++ COSTS_N_INSNS (6), /* fmov, fmovr */ ++ COSTS_N_INSNS (6), /* fmul */ ++ COSTS_N_INSNS (19), /* fdivs */ ++ COSTS_N_INSNS (33), /* fdivd */ ++ COSTS_N_INSNS (19), /* fsqrts */ ++ COSTS_N_INSNS (33), /* fsqrtd */ ++ COSTS_N_INSNS (5), /* imul */ ++ COSTS_N_INSNS (5), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (26), /* idiv, average of 12 - 41 cycle range */ ++ COSTS_N_INSNS (26), /* idivX, average of 12 - 41 cycle range */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 5 /* branch cost */ ++}; ++ ++static const ++struct processor_costs niagara3_costs = { ++ COSTS_N_INSNS (3), /* int load */ ++ COSTS_N_INSNS (3), /* int signed load */ ++ COSTS_N_INSNS (3), /* int zeroed load */ ++ COSTS_N_INSNS (3), /* float load */ ++ COSTS_N_INSNS (9), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (9), /* fadd, fsub */ ++ COSTS_N_INSNS (9), /* fcmp */ ++ COSTS_N_INSNS (9), /* fmov, fmovr */ ++ COSTS_N_INSNS (9), /* fmul */ ++ COSTS_N_INSNS (23), /* fdivs */ ++ COSTS_N_INSNS (37), /* fdivd */ ++ COSTS_N_INSNS (23), /* fsqrts */ ++ COSTS_N_INSNS (37), /* fsqrtd */ ++ COSTS_N_INSNS (9), /* imul */ ++ COSTS_N_INSNS (9), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (31), /* idiv, average of 17 - 45 cycle range */ ++ COSTS_N_INSNS (30), /* idivX, average of 16 - 44 cycle range */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 5 /* branch cost */ ++}; ++ ++static const ++struct processor_costs niagara4_costs = { ++ COSTS_N_INSNS (5), /* int load */ ++ COSTS_N_INSNS (5), /* int signed load */ ++ COSTS_N_INSNS (5), /* int zeroed load */ ++ COSTS_N_INSNS (5), /* float load */ ++ COSTS_N_INSNS (11), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (11), /* fadd, fsub */ ++ COSTS_N_INSNS (11), /* fcmp */ ++ COSTS_N_INSNS (11), /* fmov, fmovr */ ++ COSTS_N_INSNS (11), /* fmul */ ++ COSTS_N_INSNS (24), /* fdivs */ ++ COSTS_N_INSNS (37), /* fdivd */ ++ COSTS_N_INSNS (24), /* fsqrts */ ++ COSTS_N_INSNS (37), /* fsqrtd */ ++ COSTS_N_INSNS (12), /* imul */ ++ COSTS_N_INSNS (12), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (50), /* idiv, average of 41 - 60 cycle range */ ++ COSTS_N_INSNS (35), /* idivX, average of 26 - 44 cycle range */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 2 /* branch cost */ ++}; ++ ++static const ++struct processor_costs niagara7_costs = { ++ COSTS_N_INSNS (5), /* int load */ ++ COSTS_N_INSNS (5), /* int signed load */ ++ COSTS_N_INSNS (5), /* int zeroed load */ ++ COSTS_N_INSNS (5), /* float load */ ++ COSTS_N_INSNS (11), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (11), /* fadd, fsub */ ++ COSTS_N_INSNS (11), /* fcmp */ ++ COSTS_N_INSNS (11), /* fmov, fmovr */ ++ COSTS_N_INSNS (11), /* fmul */ ++ COSTS_N_INSNS (24), /* fdivs */ ++ COSTS_N_INSNS (37), /* fdivd */ ++ COSTS_N_INSNS (24), /* fsqrts */ ++ COSTS_N_INSNS (37), /* fsqrtd */ ++ COSTS_N_INSNS (12), /* imul */ ++ COSTS_N_INSNS (12), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (51), /* idiv, average of 42 - 61 cycle range */ ++ COSTS_N_INSNS (35), /* idivX, average of 26 - 44 cycle range */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 1 /* branch cost */ ++}; ++ ++static const ++struct processor_costs m8_costs = { ++ COSTS_N_INSNS (3), /* int load */ ++ COSTS_N_INSNS (3), /* int signed load */ ++ COSTS_N_INSNS (3), /* int zeroed load */ ++ COSTS_N_INSNS (3), /* float load */ ++ COSTS_N_INSNS (9), /* fmov, fneg, fabs */ ++ COSTS_N_INSNS (9), /* fadd, fsub */ ++ COSTS_N_INSNS (9), /* fcmp */ ++ COSTS_N_INSNS (9), /* fmov, fmovr */ ++ COSTS_N_INSNS (9), /* fmul */ ++ COSTS_N_INSNS (26), /* fdivs */ ++ COSTS_N_INSNS (30), /* fdivd */ ++ COSTS_N_INSNS (33), /* fsqrts */ ++ COSTS_N_INSNS (41), /* fsqrtd */ ++ COSTS_N_INSNS (12), /* imul */ ++ COSTS_N_INSNS (10), /* imulX */ ++ 0, /* imul bit factor */ ++ COSTS_N_INSNS (57), /* udiv/sdiv */ ++ COSTS_N_INSNS (30), /* udivx/sdivx */ ++ COSTS_N_INSNS (1), /* movcc/movr */ ++ 0, /* shift penalty */ ++ 1 /* branch cost */ ++}; ++ ++static const struct processor_costs *sparc_costs = &cypress_costs; ++ ++#ifdef HAVE_AS_RELAX_OPTION ++/* If 'as' and 'ld' are relaxing tail call insns into branch always, use ++ "or %o7,%g0,X; call Y; or X,%g0,%o7" always, so that it can be optimized. ++ With sethi/jmp, neither 'as' nor 'ld' has an easy way how to find out if ++ somebody does not branch between the sethi and jmp. */ ++#define LEAF_SIBCALL_SLOT_RESERVED_P 1 ++#else ++#define LEAF_SIBCALL_SLOT_RESERVED_P \ ++ ((TARGET_ARCH64 && !TARGET_CM_MEDLOW) || flag_pic) ++#endif ++ ++/* Vector to say how input registers are mapped to output registers. ++ HARD_FRAME_POINTER_REGNUM cannot be remapped by this function to ++ eliminate it. You must use -fomit-frame-pointer to get that. */ ++char leaf_reg_remap[] = ++{ 0, 1, 2, 3, 4, 5, 6, 7, ++ -1, -1, -1, -1, -1, -1, 14, -1, ++ -1, -1, -1, -1, -1, -1, -1, -1, ++ 8, 9, 10, 11, 12, 13, -1, 15, ++ ++ 32, 33, 34, 35, 36, 37, 38, 39, ++ 40, 41, 42, 43, 44, 45, 46, 47, ++ 48, 49, 50, 51, 52, 53, 54, 55, ++ 56, 57, 58, 59, 60, 61, 62, 63, ++ 64, 65, 66, 67, 68, 69, 70, 71, ++ 72, 73, 74, 75, 76, 77, 78, 79, ++ 80, 81, 82, 83, 84, 85, 86, 87, ++ 88, 89, 90, 91, 92, 93, 94, 95, ++ 96, 97, 98, 99, 100, 101, 102}; ++ ++/* Vector, indexed by hard register number, which contains 1 ++ for a register that is allowable in a candidate for leaf ++ function treatment. */ ++char sparc_leaf_regs[] = ++{ 1, 1, 1, 1, 1, 1, 1, 1, ++ 0, 0, 0, 0, 0, 0, 1, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, ++ 1, 1, 1, 1, 1, 1, 0, 1, ++ 1, 1, 1, 1, 1, 1, 1, 1, ++ 1, 1, 1, 1, 1, 1, 1, 1, ++ 1, 1, 1, 1, 1, 1, 1, 1, ++ 1, 1, 1, 1, 1, 1, 1, 1, ++ 1, 1, 1, 1, 1, 1, 1, 1, ++ 1, 1, 1, 1, 1, 1, 1, 1, ++ 1, 1, 1, 1, 1, 1, 1, 1, ++ 1, 1, 1, 1, 1, 1, 1, 1, ++ 1, 1, 1, 1, 1, 1, 1}; ++ ++struct GTY(()) machine_function ++{ ++ /* Size of the frame of the function. */ ++ HOST_WIDE_INT frame_size; ++ ++ /* Size of the frame of the function minus the register window save area ++ and the outgoing argument area. */ ++ HOST_WIDE_INT apparent_frame_size; ++ ++ /* Register we pretend the frame pointer is allocated to. Normally, this ++ is %fp, but if we are in a leaf procedure, this is (%sp + offset). We ++ record "offset" separately as it may be too big for (reg + disp). */ ++ rtx frame_base_reg; ++ HOST_WIDE_INT frame_base_offset; ++ ++ /* Number of global or FP registers to be saved (as 4-byte quantities). */ ++ int n_global_fp_regs; ++ ++ /* True if the current function is leaf and uses only leaf regs, ++ so that the SPARC leaf function optimization can be applied. ++ Private version of crtl->uses_only_leaf_regs, see ++ sparc_expand_prologue for the rationale. */ ++ int leaf_function_p; ++ ++ /* True if the prologue saves local or in registers. */ ++ bool save_local_in_regs_p; ++ ++ /* True if the data calculated by sparc_expand_prologue are valid. */ ++ bool prologue_data_valid_p; ++}; ++ ++#define sparc_frame_size cfun->machine->frame_size ++#define sparc_apparent_frame_size cfun->machine->apparent_frame_size ++#define sparc_frame_base_reg cfun->machine->frame_base_reg ++#define sparc_frame_base_offset cfun->machine->frame_base_offset ++#define sparc_n_global_fp_regs cfun->machine->n_global_fp_regs ++#define sparc_leaf_function_p cfun->machine->leaf_function_p ++#define sparc_save_local_in_regs_p cfun->machine->save_local_in_regs_p ++#define sparc_prologue_data_valid_p cfun->machine->prologue_data_valid_p ++ ++/* 1 if the next opcode is to be specially indented. */ ++int sparc_indent_opcode = 0; ++ ++static void sparc_option_override (void); ++static void sparc_init_modes (void); ++static int function_arg_slotno (const CUMULATIVE_ARGS *, machine_mode, ++ const_tree, bool, bool, int *, int *); ++ ++static int supersparc_adjust_cost (rtx_insn *, int, rtx_insn *, int); ++static int hypersparc_adjust_cost (rtx_insn *, int, rtx_insn *, int); ++ ++static void sparc_emit_set_const32 (rtx, rtx); ++static void sparc_emit_set_const64 (rtx, rtx); ++static void sparc_output_addr_vec (rtx); ++static void sparc_output_addr_diff_vec (rtx); ++static void sparc_output_deferred_case_vectors (void); ++static bool sparc_legitimate_address_p (machine_mode, rtx, bool); ++static bool sparc_legitimate_constant_p (machine_mode, rtx); ++static rtx sparc_builtin_saveregs (void); ++static int epilogue_renumber (rtx *, int); ++static bool sparc_assemble_integer (rtx, unsigned int, int); ++static int set_extends (rtx_insn *); ++static void sparc_asm_function_prologue (FILE *); ++static void sparc_asm_function_epilogue (FILE *); ++#ifdef TARGET_SOLARIS ++static void sparc_solaris_elf_asm_named_section (const char *, unsigned int, ++ tree) ATTRIBUTE_UNUSED; ++#endif ++static int sparc_adjust_cost (rtx_insn *, int, rtx_insn *, int, unsigned int); ++static int sparc_issue_rate (void); ++static void sparc_sched_init (FILE *, int, int); ++static int sparc_use_sched_lookahead (void); ++ ++static void emit_soft_tfmode_libcall (const char *, int, rtx *); ++static void emit_soft_tfmode_binop (enum rtx_code, rtx *); ++static void emit_soft_tfmode_unop (enum rtx_code, rtx *); ++static void emit_soft_tfmode_cvt (enum rtx_code, rtx *); ++static void emit_hard_tfmode_operation (enum rtx_code, rtx *); ++ ++static bool sparc_function_ok_for_sibcall (tree, tree); ++static void sparc_init_libfuncs (void); ++static void sparc_init_builtins (void); ++static void sparc_fpu_init_builtins (void); ++static void sparc_vis_init_builtins (void); ++static tree sparc_builtin_decl (unsigned, bool); ++static rtx sparc_expand_builtin (tree, rtx, rtx, machine_mode, int); ++static tree sparc_fold_builtin (tree, int, tree *, bool); ++static void sparc_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, ++ HOST_WIDE_INT, tree); ++static bool sparc_can_output_mi_thunk (const_tree, HOST_WIDE_INT, ++ HOST_WIDE_INT, const_tree); ++static struct machine_function * sparc_init_machine_status (void); ++static bool sparc_cannot_force_const_mem (machine_mode, rtx); ++static rtx sparc_tls_get_addr (void); ++static rtx sparc_tls_got (void); ++static int sparc_register_move_cost (machine_mode, ++ reg_class_t, reg_class_t); ++static bool sparc_rtx_costs (rtx, machine_mode, int, int, int *, bool); ++static machine_mode sparc_promote_function_mode (const_tree, machine_mode, ++ int *, const_tree, int); ++static bool sparc_strict_argument_naming (cumulative_args_t); ++static void sparc_va_start (tree, rtx); ++static tree sparc_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *); ++static bool sparc_vector_mode_supported_p (machine_mode); ++static bool sparc_tls_referenced_p (rtx); ++static rtx sparc_legitimize_tls_address (rtx); ++static rtx sparc_legitimize_pic_address (rtx, rtx); ++static rtx sparc_legitimize_address (rtx, rtx, machine_mode); ++static rtx sparc_delegitimize_address (rtx); ++static bool sparc_mode_dependent_address_p (const_rtx, addr_space_t); ++static bool sparc_pass_by_reference (cumulative_args_t, ++ const function_arg_info &); ++static void sparc_function_arg_advance (cumulative_args_t, ++ const function_arg_info &); ++static rtx sparc_function_arg (cumulative_args_t, const function_arg_info &); ++static rtx sparc_function_incoming_arg (cumulative_args_t, ++ const function_arg_info &); ++static pad_direction sparc_function_arg_padding (machine_mode, const_tree); ++static unsigned int sparc_function_arg_boundary (machine_mode, ++ const_tree); ++static int sparc_arg_partial_bytes (cumulative_args_t, ++ const function_arg_info &); ++static bool sparc_return_in_memory (const_tree, const_tree); ++static rtx sparc_struct_value_rtx (tree, int); ++static rtx sparc_function_value (const_tree, const_tree, bool); ++static rtx sparc_libcall_value (machine_mode, const_rtx); ++static bool sparc_function_value_regno_p (const unsigned int); ++static unsigned HOST_WIDE_INT sparc_asan_shadow_offset (void); ++static void sparc_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED; ++static void sparc_file_end (void); ++static bool sparc_frame_pointer_required (void); ++static bool sparc_can_eliminate (const int, const int); ++static void sparc_conditional_register_usage (void); ++static bool sparc_use_pseudo_pic_reg (void); ++static void sparc_init_pic_reg (void); ++#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING ++static const char *sparc_mangle_type (const_tree); ++#endif ++static void sparc_trampoline_init (rtx, tree, rtx); ++static machine_mode sparc_preferred_simd_mode (scalar_mode); ++static reg_class_t sparc_preferred_reload_class (rtx x, reg_class_t rclass); ++static bool sparc_lra_p (void); ++static bool sparc_print_operand_punct_valid_p (unsigned char); ++static void sparc_print_operand (FILE *, rtx, int); ++static void sparc_print_operand_address (FILE *, machine_mode, rtx); ++static reg_class_t sparc_secondary_reload (bool, rtx, reg_class_t, ++ machine_mode, ++ secondary_reload_info *); ++static bool sparc_secondary_memory_needed (machine_mode, reg_class_t, ++ reg_class_t); ++static machine_mode sparc_secondary_memory_needed_mode (machine_mode); ++static scalar_int_mode sparc_cstore_mode (enum insn_code icode); ++static void sparc_atomic_assign_expand_fenv (tree *, tree *, tree *); ++static bool sparc_fixed_condition_code_regs (unsigned int *, unsigned int *); ++static unsigned int sparc_min_arithmetic_precision (void); ++static unsigned int sparc_hard_regno_nregs (unsigned int, machine_mode); ++static bool sparc_hard_regno_mode_ok (unsigned int, machine_mode); ++static bool sparc_modes_tieable_p (machine_mode, machine_mode); ++static bool sparc_can_change_mode_class (machine_mode, machine_mode, ++ reg_class_t); ++static HOST_WIDE_INT sparc_constant_alignment (const_tree, HOST_WIDE_INT); ++static bool sparc_vectorize_vec_perm_const (machine_mode, rtx, rtx, rtx, ++ const vec_perm_indices &); ++static bool sparc_can_follow_jump (const rtx_insn *, const rtx_insn *); ++ ++#ifdef SUBTARGET_ATTRIBUTE_TABLE ++/* Table of valid machine attributes. */ ++static const struct attribute_spec sparc_attribute_table[] = ++{ ++ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, ++ do_diagnostic, handler, exclude } */ ++ SUBTARGET_ATTRIBUTE_TABLE, ++ { NULL, 0, 0, false, false, false, false, NULL, NULL } ++}; ++#endif ++ ++char sparc_hard_reg_printed[8]; ++ ++/* Initialize the GCC target structure. */ ++ ++/* The default is to use .half rather than .short for aligned HI objects. */ ++#undef TARGET_ASM_ALIGNED_HI_OP ++#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t" ++ ++#undef TARGET_ASM_UNALIGNED_HI_OP ++#define TARGET_ASM_UNALIGNED_HI_OP "\t.uahalf\t" ++#undef TARGET_ASM_UNALIGNED_SI_OP ++#define TARGET_ASM_UNALIGNED_SI_OP "\t.uaword\t" ++#undef TARGET_ASM_UNALIGNED_DI_OP ++#define TARGET_ASM_UNALIGNED_DI_OP "\t.uaxword\t" ++ ++/* The target hook has to handle DI-mode values. */ ++#undef TARGET_ASM_INTEGER ++#define TARGET_ASM_INTEGER sparc_assemble_integer ++ ++#undef TARGET_ASM_FUNCTION_PROLOGUE ++#define TARGET_ASM_FUNCTION_PROLOGUE sparc_asm_function_prologue ++#undef TARGET_ASM_FUNCTION_EPILOGUE ++#define TARGET_ASM_FUNCTION_EPILOGUE sparc_asm_function_epilogue ++ ++#undef TARGET_SCHED_ADJUST_COST ++#define TARGET_SCHED_ADJUST_COST sparc_adjust_cost ++#undef TARGET_SCHED_ISSUE_RATE ++#define TARGET_SCHED_ISSUE_RATE sparc_issue_rate ++#undef TARGET_SCHED_INIT ++#define TARGET_SCHED_INIT sparc_sched_init ++#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ++#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD sparc_use_sched_lookahead ++ ++#undef TARGET_FUNCTION_OK_FOR_SIBCALL ++#define TARGET_FUNCTION_OK_FOR_SIBCALL sparc_function_ok_for_sibcall ++ ++#undef TARGET_INIT_LIBFUNCS ++#define TARGET_INIT_LIBFUNCS sparc_init_libfuncs ++ ++#undef TARGET_LEGITIMIZE_ADDRESS ++#define TARGET_LEGITIMIZE_ADDRESS sparc_legitimize_address ++#undef TARGET_DELEGITIMIZE_ADDRESS ++#define TARGET_DELEGITIMIZE_ADDRESS sparc_delegitimize_address ++#undef TARGET_MODE_DEPENDENT_ADDRESS_P ++#define TARGET_MODE_DEPENDENT_ADDRESS_P sparc_mode_dependent_address_p ++ ++#undef TARGET_INIT_BUILTINS ++#define TARGET_INIT_BUILTINS sparc_init_builtins ++#undef TARGET_BUILTIN_DECL ++#define TARGET_BUILTIN_DECL sparc_builtin_decl ++#undef TARGET_EXPAND_BUILTIN ++#define TARGET_EXPAND_BUILTIN sparc_expand_builtin ++#undef TARGET_FOLD_BUILTIN ++#define TARGET_FOLD_BUILTIN sparc_fold_builtin ++ ++#if TARGET_TLS ++#undef TARGET_HAVE_TLS ++#define TARGET_HAVE_TLS true ++#endif ++ ++#undef TARGET_CANNOT_FORCE_CONST_MEM ++#define TARGET_CANNOT_FORCE_CONST_MEM sparc_cannot_force_const_mem ++ ++#undef TARGET_ASM_OUTPUT_MI_THUNK ++#define TARGET_ASM_OUTPUT_MI_THUNK sparc_output_mi_thunk ++#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK ++#define TARGET_ASM_CAN_OUTPUT_MI_THUNK sparc_can_output_mi_thunk ++ ++#undef TARGET_RTX_COSTS ++#define TARGET_RTX_COSTS sparc_rtx_costs ++#undef TARGET_ADDRESS_COST ++#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0 ++#undef TARGET_REGISTER_MOVE_COST ++#define TARGET_REGISTER_MOVE_COST sparc_register_move_cost ++ ++#undef TARGET_PROMOTE_FUNCTION_MODE ++#define TARGET_PROMOTE_FUNCTION_MODE sparc_promote_function_mode ++#undef TARGET_STRICT_ARGUMENT_NAMING ++#define TARGET_STRICT_ARGUMENT_NAMING sparc_strict_argument_naming ++ ++#undef TARGET_MUST_PASS_IN_STACK ++#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size ++#undef TARGET_PASS_BY_REFERENCE ++#define TARGET_PASS_BY_REFERENCE sparc_pass_by_reference ++#undef TARGET_ARG_PARTIAL_BYTES ++#define TARGET_ARG_PARTIAL_BYTES sparc_arg_partial_bytes ++#undef TARGET_FUNCTION_ARG_ADVANCE ++#define TARGET_FUNCTION_ARG_ADVANCE sparc_function_arg_advance ++#undef TARGET_FUNCTION_ARG ++#define TARGET_FUNCTION_ARG sparc_function_arg ++#undef TARGET_FUNCTION_INCOMING_ARG ++#define TARGET_FUNCTION_INCOMING_ARG sparc_function_incoming_arg ++#undef TARGET_FUNCTION_ARG_PADDING ++#define TARGET_FUNCTION_ARG_PADDING sparc_function_arg_padding ++#undef TARGET_FUNCTION_ARG_BOUNDARY ++#define TARGET_FUNCTION_ARG_BOUNDARY sparc_function_arg_boundary ++ ++#undef TARGET_RETURN_IN_MEMORY ++#define TARGET_RETURN_IN_MEMORY sparc_return_in_memory ++#undef TARGET_STRUCT_VALUE_RTX ++#define TARGET_STRUCT_VALUE_RTX sparc_struct_value_rtx ++#undef TARGET_FUNCTION_VALUE ++#define TARGET_FUNCTION_VALUE sparc_function_value ++#undef TARGET_LIBCALL_VALUE ++#define TARGET_LIBCALL_VALUE sparc_libcall_value ++#undef TARGET_FUNCTION_VALUE_REGNO_P ++#define TARGET_FUNCTION_VALUE_REGNO_P sparc_function_value_regno_p ++ ++#undef TARGET_EXPAND_BUILTIN_SAVEREGS ++#define TARGET_EXPAND_BUILTIN_SAVEREGS sparc_builtin_saveregs ++ ++#undef TARGET_ASAN_SHADOW_OFFSET ++#define TARGET_ASAN_SHADOW_OFFSET sparc_asan_shadow_offset ++ ++#undef TARGET_EXPAND_BUILTIN_VA_START ++#define TARGET_EXPAND_BUILTIN_VA_START sparc_va_start ++#undef TARGET_GIMPLIFY_VA_ARG_EXPR ++#define TARGET_GIMPLIFY_VA_ARG_EXPR sparc_gimplify_va_arg ++ ++#undef TARGET_VECTOR_MODE_SUPPORTED_P ++#define TARGET_VECTOR_MODE_SUPPORTED_P sparc_vector_mode_supported_p ++ ++#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE ++#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE sparc_preferred_simd_mode ++ ++#ifdef SUBTARGET_INSERT_ATTRIBUTES ++#undef TARGET_INSERT_ATTRIBUTES ++#define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES ++#endif ++ ++#ifdef SUBTARGET_ATTRIBUTE_TABLE ++#undef TARGET_ATTRIBUTE_TABLE ++#define TARGET_ATTRIBUTE_TABLE sparc_attribute_table ++#endif ++ ++#undef TARGET_OPTION_OVERRIDE ++#define TARGET_OPTION_OVERRIDE sparc_option_override ++ ++#ifdef TARGET_THREAD_SSP_OFFSET ++#undef TARGET_STACK_PROTECT_GUARD ++#define TARGET_STACK_PROTECT_GUARD hook_tree_void_null ++#endif ++ ++#if TARGET_GNU_TLS && defined(HAVE_AS_SPARC_UA_PCREL) ++#undef TARGET_ASM_OUTPUT_DWARF_DTPREL ++#define TARGET_ASM_OUTPUT_DWARF_DTPREL sparc_output_dwarf_dtprel ++#endif ++ ++#undef TARGET_ASM_FILE_END ++#define TARGET_ASM_FILE_END sparc_file_end ++ ++#undef TARGET_FRAME_POINTER_REQUIRED ++#define TARGET_FRAME_POINTER_REQUIRED sparc_frame_pointer_required ++ ++#undef TARGET_CAN_ELIMINATE ++#define TARGET_CAN_ELIMINATE sparc_can_eliminate ++ ++#undef TARGET_PREFERRED_RELOAD_CLASS ++#define TARGET_PREFERRED_RELOAD_CLASS sparc_preferred_reload_class ++ ++#undef TARGET_SECONDARY_RELOAD ++#define TARGET_SECONDARY_RELOAD sparc_secondary_reload ++#undef TARGET_SECONDARY_MEMORY_NEEDED ++#define TARGET_SECONDARY_MEMORY_NEEDED sparc_secondary_memory_needed ++#undef TARGET_SECONDARY_MEMORY_NEEDED_MODE ++#define TARGET_SECONDARY_MEMORY_NEEDED_MODE sparc_secondary_memory_needed_mode ++ ++#undef TARGET_CONDITIONAL_REGISTER_USAGE ++#define TARGET_CONDITIONAL_REGISTER_USAGE sparc_conditional_register_usage ++ ++#undef TARGET_INIT_PIC_REG ++#define TARGET_INIT_PIC_REG sparc_init_pic_reg ++ ++#undef TARGET_USE_PSEUDO_PIC_REG ++#define TARGET_USE_PSEUDO_PIC_REG sparc_use_pseudo_pic_reg ++ ++#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING ++#undef TARGET_MANGLE_TYPE ++#define TARGET_MANGLE_TYPE sparc_mangle_type ++#endif ++ ++#undef TARGET_LRA_P ++#define TARGET_LRA_P sparc_lra_p ++ ++#undef TARGET_LEGITIMATE_ADDRESS_P ++#define TARGET_LEGITIMATE_ADDRESS_P sparc_legitimate_address_p ++ ++#undef TARGET_LEGITIMATE_CONSTANT_P ++#define TARGET_LEGITIMATE_CONSTANT_P sparc_legitimate_constant_p ++ ++#undef TARGET_TRAMPOLINE_INIT ++#define TARGET_TRAMPOLINE_INIT sparc_trampoline_init ++ ++#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P ++#define TARGET_PRINT_OPERAND_PUNCT_VALID_P sparc_print_operand_punct_valid_p ++#undef TARGET_PRINT_OPERAND ++#define TARGET_PRINT_OPERAND sparc_print_operand ++#undef TARGET_PRINT_OPERAND_ADDRESS ++#define TARGET_PRINT_OPERAND_ADDRESS sparc_print_operand_address ++ ++/* The value stored by LDSTUB. */ ++#undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL ++#define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 0xff ++ ++#undef TARGET_CSTORE_MODE ++#define TARGET_CSTORE_MODE sparc_cstore_mode ++ ++#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV ++#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV sparc_atomic_assign_expand_fenv ++ ++#undef TARGET_FIXED_CONDITION_CODE_REGS ++#define TARGET_FIXED_CONDITION_CODE_REGS sparc_fixed_condition_code_regs ++ ++#undef TARGET_MIN_ARITHMETIC_PRECISION ++#define TARGET_MIN_ARITHMETIC_PRECISION sparc_min_arithmetic_precision ++ ++#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS ++#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1 ++ ++#undef TARGET_HARD_REGNO_NREGS ++#define TARGET_HARD_REGNO_NREGS sparc_hard_regno_nregs ++#undef TARGET_HARD_REGNO_MODE_OK ++#define TARGET_HARD_REGNO_MODE_OK sparc_hard_regno_mode_ok ++ ++#undef TARGET_MODES_TIEABLE_P ++#define TARGET_MODES_TIEABLE_P sparc_modes_tieable_p ++ ++#undef TARGET_CAN_CHANGE_MODE_CLASS ++#define TARGET_CAN_CHANGE_MODE_CLASS sparc_can_change_mode_class ++ ++#undef TARGET_CONSTANT_ALIGNMENT ++#define TARGET_CONSTANT_ALIGNMENT sparc_constant_alignment ++ ++#undef TARGET_VECTORIZE_VEC_PERM_CONST ++#define TARGET_VECTORIZE_VEC_PERM_CONST sparc_vectorize_vec_perm_const ++ ++#undef TARGET_CAN_FOLLOW_JUMP ++#define TARGET_CAN_FOLLOW_JUMP sparc_can_follow_jump ++ ++struct gcc_target targetm = TARGET_INITIALIZER; ++ ++/* Return the memory reference contained in X if any, zero otherwise. */ ++ ++static rtx ++mem_ref (rtx x) ++{ ++ if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND) ++ x = XEXP (x, 0); ++ ++ if (MEM_P (x)) ++ return x; ++ ++ return NULL_RTX; ++} ++ ++/* True if any of INSN's source register(s) is REG. */ ++ ++static bool ++insn_uses_reg_p (rtx_insn *insn, unsigned int reg) ++{ ++ extract_insn (insn); ++ return ((REG_P (recog_data.operand[1]) ++ && REGNO (recog_data.operand[1]) == reg) ++ || (recog_data.n_operands == 3 ++ && REG_P (recog_data.operand[2]) ++ && REGNO (recog_data.operand[2]) == reg)); ++} ++ ++/* True if INSN is a floating-point division or square-root. */ ++ ++static bool ++div_sqrt_insn_p (rtx_insn *insn) ++{ ++ if (GET_CODE (PATTERN (insn)) != SET) ++ return false; ++ ++ switch (get_attr_type (insn)) ++ { ++ case TYPE_FPDIVS: ++ case TYPE_FPSQRTS: ++ case TYPE_FPDIVD: ++ case TYPE_FPSQRTD: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++/* True if INSN is a floating-point instruction. */ ++ ++static bool ++fpop_insn_p (rtx_insn *insn) ++{ ++ if (GET_CODE (PATTERN (insn)) != SET) ++ return false; ++ ++ switch (get_attr_type (insn)) ++ { ++ case TYPE_FPMOVE: ++ case TYPE_FPCMOVE: ++ case TYPE_FP: ++ case TYPE_FPCMP: ++ case TYPE_FPMUL: ++ case TYPE_FPDIVS: ++ case TYPE_FPSQRTS: ++ case TYPE_FPDIVD: ++ case TYPE_FPSQRTD: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++/* True if INSN is an atomic instruction. */ ++ ++static bool ++atomic_insn_for_leon3_p (rtx_insn *insn) ++{ ++ switch (INSN_CODE (insn)) ++ { ++ case CODE_FOR_swapsi: ++ case CODE_FOR_ldstub: ++ case CODE_FOR_atomic_compare_and_swap_leon3_1: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++/* We use a machine specific pass to enable workarounds for errata. ++ ++ We need to have the (essentially) final form of the insn stream in order ++ to properly detect the various hazards. Therefore, this machine specific ++ pass runs as late as possible. */ ++ ++/* True if INSN is a md pattern or asm statement. */ ++#define USEFUL_INSN_P(INSN) \ ++ (NONDEBUG_INSN_P (INSN) \ ++ && GET_CODE (PATTERN (INSN)) != USE \ ++ && GET_CODE (PATTERN (INSN)) != CLOBBER) ++ ++static unsigned int ++sparc_do_work_around_errata (void) ++{ ++ rtx_insn *insn, *next; ++ ++ /* Force all instructions to be split into their final form. */ ++ split_all_insns_noflow (); ++ ++ /* Now look for specific patterns in the insn stream. */ ++ for (insn = get_insns (); insn; insn = next) ++ { ++ bool insert_nop = false; ++ rtx set; ++ rtx_insn *jump; ++ rtx_sequence *seq; ++ ++ /* Look into the instruction in a delay slot. */ ++ if (NONJUMP_INSN_P (insn) ++ && (seq = dyn_cast (PATTERN (insn)))) ++ { ++ jump = seq->insn (0); ++ insn = seq->insn (1); ++ } ++ else if (JUMP_P (insn)) ++ jump = insn; ++ else ++ jump = NULL; ++ ++ /* Place a NOP at the branch target of an integer branch if it is a ++ floating-point operation or a floating-point branch. */ ++ if (sparc_fix_gr712rc ++ && jump ++ && jump_to_label_p (jump) ++ && get_attr_branch_type (jump) == BRANCH_TYPE_ICC) ++ { ++ rtx_insn *target = next_active_insn (JUMP_LABEL_AS_INSN (jump)); ++ if (target ++ && (fpop_insn_p (target) ++ || (JUMP_P (target) ++ && get_attr_branch_type (target) == BRANCH_TYPE_FCC))) ++ emit_insn_before (gen_nop (), target); ++ } ++ ++ /* Insert a NOP between load instruction and atomic instruction. Insert ++ a NOP at branch target if there is a load in delay slot and an atomic ++ instruction at branch target. */ ++ if (sparc_fix_ut700 ++ && NONJUMP_INSN_P (insn) ++ && (set = single_set (insn)) != NULL_RTX ++ && mem_ref (SET_SRC (set)) ++ && REG_P (SET_DEST (set))) ++ { ++ if (jump && jump_to_label_p (jump)) ++ { ++ rtx_insn *target = next_active_insn (JUMP_LABEL_AS_INSN (jump)); ++ if (target && atomic_insn_for_leon3_p (target)) ++ emit_insn_before (gen_nop (), target); ++ } ++ ++ next = next_active_insn (insn); ++ if (!next) ++ break; ++ ++ if (atomic_insn_for_leon3_p (next)) ++ insert_nop = true; ++ } ++ ++ /* Look for a sequence that starts with a fdiv or fsqrt instruction and ++ ends with another fdiv or fsqrt instruction with no dependencies on ++ the former, along with an appropriate pattern in between. */ ++ if (sparc_fix_lost_divsqrt ++ && NONJUMP_INSN_P (insn) ++ && div_sqrt_insn_p (insn)) ++ { ++ int i; ++ int fp_found = 0; ++ rtx_insn *after; ++ ++ const unsigned int dest_reg = REGNO (SET_DEST (single_set (insn))); ++ ++ next = next_active_insn (insn); ++ if (!next) ++ break; ++ ++ for (after = next, i = 0; i < 4; i++) ++ { ++ /* Count floating-point operations. */ ++ if (i != 3 && fpop_insn_p (after)) ++ { ++ /* If the insn uses the destination register of ++ the div/sqrt, then it cannot be problematic. */ ++ if (insn_uses_reg_p (after, dest_reg)) ++ break; ++ fp_found++; ++ } ++ ++ /* Count floating-point loads. */ ++ if (i != 3 ++ && (set = single_set (after)) != NULL_RTX ++ && REG_P (SET_DEST (set)) ++ && REGNO (SET_DEST (set)) > 31) ++ { ++ /* If the insn uses the destination register of ++ the div/sqrt, then it cannot be problematic. */ ++ if (REGNO (SET_DEST (set)) == dest_reg) ++ break; ++ fp_found++; ++ } ++ ++ /* Check if this is a problematic sequence. */ ++ if (i > 1 ++ && fp_found >= 2 ++ && div_sqrt_insn_p (after)) ++ { ++ /* If this is the short version of the problematic ++ sequence we add two NOPs in a row to also prevent ++ the long version. */ ++ if (i == 2) ++ emit_insn_before (gen_nop (), next); ++ insert_nop = true; ++ break; ++ } ++ ++ /* No need to scan past a second div/sqrt. */ ++ if (div_sqrt_insn_p (after)) ++ break; ++ ++ /* Insert NOP before branch. */ ++ if (i < 3 ++ && (!NONJUMP_INSN_P (after) ++ || GET_CODE (PATTERN (after)) == SEQUENCE)) ++ { ++ insert_nop = true; ++ break; ++ } ++ ++ after = next_active_insn (after); ++ if (!after) ++ break; ++ } ++ } ++ ++ /* Look for either of these two sequences: ++ ++ Sequence A: ++ 1. store of word size or less (e.g. st / stb / sth / stf) ++ 2. any single instruction that is not a load or store ++ 3. any store instruction (e.g. st / stb / sth / stf / std / stdf) ++ ++ Sequence B: ++ 1. store of double word size (e.g. std / stdf) ++ 2. any store instruction (e.g. st / stb / sth / stf / std / stdf) */ ++ if (sparc_fix_b2bst ++ && NONJUMP_INSN_P (insn) ++ && (set = single_set (insn)) != NULL_RTX ++ && MEM_P (SET_DEST (set))) ++ { ++ /* Sequence B begins with a double-word store. */ ++ bool seq_b = GET_MODE_SIZE (GET_MODE (SET_DEST (set))) == 8; ++ rtx_insn *after; ++ int i; ++ ++ next = next_active_insn (insn); ++ if (!next) ++ break; ++ ++ for (after = next, i = 0; i < 2; i++) ++ { ++ /* Skip empty assembly statements. */ ++ if ((GET_CODE (PATTERN (after)) == UNSPEC_VOLATILE) ++ || (USEFUL_INSN_P (after) ++ && (asm_noperands (PATTERN (after))>=0) ++ && !strcmp (decode_asm_operands (PATTERN (after), ++ NULL, NULL, NULL, ++ NULL, NULL), ""))) ++ after = next_active_insn (after); ++ if (!after) ++ break; ++ ++ /* If the insn is a branch, then it cannot be problematic. */ ++ if (!NONJUMP_INSN_P (after) ++ || GET_CODE (PATTERN (after)) == SEQUENCE) ++ break; ++ ++ /* Sequence B is only two instructions long. */ ++ if (seq_b) ++ { ++ /* Add NOP if followed by a store. */ ++ if ((set = single_set (after)) != NULL_RTX ++ && MEM_P (SET_DEST (set))) ++ insert_nop = true; ++ ++ /* Otherwise it is ok. */ ++ break; ++ } ++ ++ /* If the second instruction is a load or a store, ++ then the sequence cannot be problematic. */ ++ if (i == 0) ++ { ++ if ((set = single_set (after)) != NULL_RTX ++ && (MEM_P (SET_DEST (set)) || mem_ref (SET_SRC (set)))) ++ break; ++ ++ after = next_active_insn (after); ++ if (!after) ++ break; ++ } ++ ++ /* Add NOP if third instruction is a store. */ ++ if (i == 1 ++ && (set = single_set (after)) != NULL_RTX ++ && MEM_P (SET_DEST (set))) ++ insert_nop = true; ++ } ++ } ++ ++ /* Look for a single-word load into an odd-numbered FP register. */ ++ else if (sparc_fix_at697f ++ && NONJUMP_INSN_P (insn) ++ && (set = single_set (insn)) != NULL_RTX ++ && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4 ++ && mem_ref (SET_SRC (set)) ++ && REG_P (SET_DEST (set)) ++ && REGNO (SET_DEST (set)) > 31 ++ && REGNO (SET_DEST (set)) % 2 != 0) ++ { ++ /* The wrong dependency is on the enclosing double register. */ ++ const unsigned int x = REGNO (SET_DEST (set)) - 1; ++ unsigned int src1, src2, dest; ++ int code; ++ ++ next = next_active_insn (insn); ++ if (!next) ++ break; ++ /* If the insn is a branch, then it cannot be problematic. */ ++ if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE) ++ continue; ++ ++ extract_insn (next); ++ code = INSN_CODE (next); ++ ++ switch (code) ++ { ++ case CODE_FOR_adddf3: ++ case CODE_FOR_subdf3: ++ case CODE_FOR_muldf3: ++ case CODE_FOR_divdf3: ++ dest = REGNO (recog_data.operand[0]); ++ src1 = REGNO (recog_data.operand[1]); ++ src2 = REGNO (recog_data.operand[2]); ++ if (src1 != src2) ++ { ++ /* Case [1-4]: ++ ld [address], %fx+1 ++ FPOPd %f{x,y}, %f{y,x}, %f{x,y} */ ++ if ((src1 == x || src2 == x) ++ && (dest == src1 || dest == src2)) ++ insert_nop = true; ++ } ++ else ++ { ++ /* Case 5: ++ ld [address], %fx+1 ++ FPOPd %fx, %fx, %fx */ ++ if (src1 == x ++ && dest == src1 ++ && (code == CODE_FOR_adddf3 || code == CODE_FOR_muldf3)) ++ insert_nop = true; ++ } ++ break; ++ ++ case CODE_FOR_sqrtdf2: ++ dest = REGNO (recog_data.operand[0]); ++ src1 = REGNO (recog_data.operand[1]); ++ /* Case 6: ++ ld [address], %fx+1 ++ fsqrtd %fx, %fx */ ++ if (src1 == x && dest == src1) ++ insert_nop = true; ++ break; ++ ++ default: ++ break; ++ } ++ } ++ ++ /* Look for a single-word load into an integer register. */ ++ else if (sparc_fix_ut699 ++ && NONJUMP_INSN_P (insn) ++ && (set = single_set (insn)) != NULL_RTX ++ && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) <= 4 ++ && (mem_ref (SET_SRC (set)) != NULL_RTX ++ || INSN_CODE (insn) == CODE_FOR_movsi_pic_gotdata_op) ++ && REG_P (SET_DEST (set)) ++ && REGNO (SET_DEST (set)) < 32) ++ { ++ /* There is no problem if the second memory access has a data ++ dependency on the first single-cycle load. */ ++ rtx x = SET_DEST (set); ++ ++ next = next_active_insn (insn); ++ if (!next) ++ break; ++ /* If the insn is a branch, then it cannot be problematic. */ ++ if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE) ++ continue; ++ ++ /* Look for a second memory access to/from an integer register. */ ++ if ((set = single_set (next)) != NULL_RTX) ++ { ++ rtx src = SET_SRC (set); ++ rtx dest = SET_DEST (set); ++ rtx mem; ++ ++ /* LDD is affected. */ ++ if ((mem = mem_ref (src)) != NULL_RTX ++ && REG_P (dest) ++ && REGNO (dest) < 32 ++ && !reg_mentioned_p (x, XEXP (mem, 0))) ++ insert_nop = true; ++ ++ /* STD is *not* affected. */ ++ else if (MEM_P (dest) ++ && GET_MODE_SIZE (GET_MODE (dest)) <= 4 ++ && (src == CONST0_RTX (GET_MODE (dest)) ++ || (REG_P (src) ++ && REGNO (src) < 32 ++ && REGNO (src) != REGNO (x))) ++ && !reg_mentioned_p (x, XEXP (dest, 0))) ++ insert_nop = true; ++ ++ /* GOT accesses uses LD. */ ++ else if (INSN_CODE (next) == CODE_FOR_movsi_pic_gotdata_op ++ && !reg_mentioned_p (x, XEXP (XEXP (src, 0), 1))) ++ insert_nop = true; ++ } ++ } ++ ++ /* Look for a single-word load/operation into an FP register. */ ++ else if (sparc_fix_ut699 ++ && NONJUMP_INSN_P (insn) ++ && (set = single_set (insn)) != NULL_RTX ++ && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4 ++ && REG_P (SET_DEST (set)) ++ && REGNO (SET_DEST (set)) > 31) ++ { ++ /* Number of instructions in the problematic window. */ ++ const int n_insns = 4; ++ /* The problematic combination is with the sibling FP register. */ ++ const unsigned int x = REGNO (SET_DEST (set)); ++ const unsigned int y = x ^ 1; ++ rtx_insn *after; ++ int i; ++ ++ next = next_active_insn (insn); ++ if (!next) ++ break; ++ /* If the insn is a branch, then it cannot be problematic. */ ++ if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE) ++ continue; ++ ++ /* Look for a second load/operation into the sibling FP register. */ ++ if (!((set = single_set (next)) != NULL_RTX ++ && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4 ++ && REG_P (SET_DEST (set)) ++ && REGNO (SET_DEST (set)) == y)) ++ continue; ++ ++ /* Look for a (possible) store from the FP register in the next N ++ instructions, but bail out if it is again modified or if there ++ is a store from the sibling FP register before this store. */ ++ for (after = next, i = 0; i < n_insns; i++) ++ { ++ bool branch_p; ++ ++ after = next_active_insn (after); ++ if (!after) ++ break; ++ ++ /* This is a branch with an empty delay slot. */ ++ if (!NONJUMP_INSN_P (after)) ++ { ++ if (++i == n_insns) ++ break; ++ branch_p = true; ++ after = NULL; ++ } ++ /* This is a branch with a filled delay slot. */ ++ else if (rtx_sequence *seq = ++ dyn_cast (PATTERN (after))) ++ { ++ if (++i == n_insns) ++ break; ++ branch_p = true; ++ after = seq->insn (1); ++ } ++ /* This is a regular instruction. */ ++ else ++ branch_p = false; ++ ++ if (after && (set = single_set (after)) != NULL_RTX) ++ { ++ const rtx src = SET_SRC (set); ++ const rtx dest = SET_DEST (set); ++ const unsigned int size = GET_MODE_SIZE (GET_MODE (dest)); ++ ++ /* If the FP register is again modified before the store, ++ then the store isn't affected. */ ++ if (REG_P (dest) ++ && (REGNO (dest) == x ++ || (REGNO (dest) == y && size == 8))) ++ break; ++ ++ if (MEM_P (dest) && REG_P (src)) ++ { ++ /* If there is a store from the sibling FP register ++ before the store, then the store is not affected. */ ++ if (REGNO (src) == y || (REGNO (src) == x && size == 8)) ++ break; ++ ++ /* Otherwise, the store is affected. */ ++ if (REGNO (src) == x && size == 4) ++ { ++ insert_nop = true; ++ break; ++ } ++ } ++ } ++ ++ /* If we have a branch in the first M instructions, then we ++ cannot see the (M+2)th instruction so we play safe. */ ++ if (branch_p && i <= (n_insns - 2)) ++ { ++ insert_nop = true; ++ break; ++ } ++ } ++ } ++ ++ else ++ next = NEXT_INSN (insn); ++ ++ if (insert_nop) ++ emit_insn_before (gen_nop (), next); ++ } ++ ++ return 0; ++} ++ ++namespace { ++ ++const pass_data pass_data_work_around_errata = ++{ ++ RTL_PASS, /* type */ ++ "errata", /* name */ ++ OPTGROUP_NONE, /* optinfo_flags */ ++ TV_MACH_DEP, /* tv_id */ ++ 0, /* properties_required */ ++ 0, /* properties_provided */ ++ 0, /* properties_destroyed */ ++ 0, /* todo_flags_start */ ++ 0, /* todo_flags_finish */ ++}; ++ ++class pass_work_around_errata : public rtl_opt_pass ++{ ++public: ++ pass_work_around_errata(gcc::context *ctxt) ++ : rtl_opt_pass(pass_data_work_around_errata, ctxt) ++ {} ++ ++ /* opt_pass methods: */ ++ virtual bool gate (function *) ++ { ++ return sparc_fix_at697f ++ || sparc_fix_ut699 || sparc_fix_ut700 || sparc_fix_gr712rc ++ || sparc_fix_b2bst || sparc_fix_lost_divsqrt; ++ } ++ ++ virtual unsigned int execute (function *) ++ { ++ return sparc_do_work_around_errata (); ++ } ++ ++}; // class pass_work_around_errata ++ ++} // anon namespace ++ ++rtl_opt_pass * ++make_pass_work_around_errata (gcc::context *ctxt) ++{ ++ return new pass_work_around_errata (ctxt); ++} ++ ++/* Helpers for TARGET_DEBUG_OPTIONS. */ ++static void ++dump_target_flag_bits (const int flags) ++{ ++ if (flags & MASK_64BIT) ++ fprintf (stderr, "64BIT "); ++ if (flags & MASK_APP_REGS) ++ fprintf (stderr, "APP_REGS "); ++ if (flags & MASK_FASTER_STRUCTS) ++ fprintf (stderr, "FASTER_STRUCTS "); ++ if (flags & MASK_FLAT) ++ fprintf (stderr, "FLAT "); ++ if (flags & MASK_FMAF) ++ fprintf (stderr, "FMAF "); ++ if (flags & MASK_FSMULD) ++ fprintf (stderr, "FSMULD "); ++ if (flags & MASK_FPU) ++ fprintf (stderr, "FPU "); ++ if (flags & MASK_HARD_QUAD) ++ fprintf (stderr, "HARD_QUAD "); ++ if (flags & MASK_POPC) ++ fprintf (stderr, "POPC "); ++ if (flags & MASK_PTR64) ++ fprintf (stderr, "PTR64 "); ++ if (flags & MASK_STACK_BIAS) ++ fprintf (stderr, "STACK_BIAS "); ++ if (flags & MASK_UNALIGNED_DOUBLES) ++ fprintf (stderr, "UNALIGNED_DOUBLES "); ++ if (flags & MASK_V8PLUS) ++ fprintf (stderr, "V8PLUS "); ++ if (flags & MASK_VIS) ++ fprintf (stderr, "VIS "); ++ if (flags & MASK_VIS2) ++ fprintf (stderr, "VIS2 "); ++ if (flags & MASK_VIS3) ++ fprintf (stderr, "VIS3 "); ++ if (flags & MASK_VIS4) ++ fprintf (stderr, "VIS4 "); ++ if (flags & MASK_VIS4B) ++ fprintf (stderr, "VIS4B "); ++ if (flags & MASK_CBCOND) ++ fprintf (stderr, "CBCOND "); ++ if (flags & MASK_DEPRECATED_V8_INSNS) ++ fprintf (stderr, "DEPRECATED_V8_INSNS "); ++ if (flags & MASK_SPARCLET) ++ fprintf (stderr, "SPARCLET "); ++ if (flags & MASK_SPARCLITE) ++ fprintf (stderr, "SPARCLITE "); ++ if (flags & MASK_V8) ++ fprintf (stderr, "V8 "); ++ if (flags & MASK_V9) ++ fprintf (stderr, "V9 "); ++} ++ ++static void ++dump_target_flags (const char *prefix, const int flags) ++{ ++ fprintf (stderr, "%s: (%08x) [ ", prefix, flags); ++ dump_target_flag_bits (flags); ++ fprintf(stderr, "]\n"); ++} ++ ++/* Validate and override various options, and do some machine dependent ++ initialization. */ ++ ++static void ++sparc_option_override (void) ++{ ++ /* Map TARGET_CPU_DEFAULT to value for -m{cpu,tune}=. */ ++ static struct cpu_default { ++ const int cpu; ++ const enum sparc_processor_type processor; ++ } const cpu_default[] = { ++ /* There must be one entry here for each TARGET_CPU value. */ ++ { TARGET_CPU_sparc, PROCESSOR_CYPRESS }, ++ { TARGET_CPU_v8, PROCESSOR_V8 }, ++ { TARGET_CPU_supersparc, PROCESSOR_SUPERSPARC }, ++ { TARGET_CPU_hypersparc, PROCESSOR_HYPERSPARC }, ++ { TARGET_CPU_leon, PROCESSOR_LEON }, ++ { TARGET_CPU_leon3, PROCESSOR_LEON3 }, ++ { TARGET_CPU_leon3v7, PROCESSOR_LEON3V7 }, ++ { TARGET_CPU_sparclite, PROCESSOR_F930 }, ++ { TARGET_CPU_sparclite86x, PROCESSOR_SPARCLITE86X }, ++ { TARGET_CPU_sparclet, PROCESSOR_TSC701 }, ++ { TARGET_CPU_v9, PROCESSOR_V9 }, ++ { TARGET_CPU_ultrasparc, PROCESSOR_ULTRASPARC }, ++ { TARGET_CPU_ultrasparc3, PROCESSOR_ULTRASPARC3 }, ++ { TARGET_CPU_niagara, PROCESSOR_NIAGARA }, ++ { TARGET_CPU_niagara2, PROCESSOR_NIAGARA2 }, ++ { TARGET_CPU_niagara3, PROCESSOR_NIAGARA3 }, ++ { TARGET_CPU_niagara4, PROCESSOR_NIAGARA4 }, ++ { TARGET_CPU_niagara7, PROCESSOR_NIAGARA7 }, ++ { TARGET_CPU_m8, PROCESSOR_M8 }, ++ { -1, PROCESSOR_V7 } ++ }; ++ const struct cpu_default *def; ++ /* Table of values for -m{cpu,tune}=. This must match the order of ++ the enum processor_type in sparc-opts.h. */ ++ static struct cpu_table { ++ const char *const name; ++ const int disable; ++ const int enable; ++ } const cpu_table[] = { ++ { "v7", MASK_ISA, 0 }, ++ { "cypress", MASK_ISA, 0 }, ++ { "v8", MASK_ISA, MASK_V8 }, ++ /* TI TMS390Z55 supersparc */ ++ { "supersparc", MASK_ISA, MASK_V8 }, ++ { "hypersparc", MASK_ISA, MASK_V8 }, ++ { "leon", MASK_ISA|MASK_FSMULD, MASK_V8|MASK_LEON }, ++ { "leon3", MASK_ISA, MASK_V8|MASK_LEON3 }, ++ { "leon3v7", MASK_ISA, MASK_LEON3 }, ++ { "sparclite", MASK_ISA, MASK_SPARCLITE }, ++ /* The Fujitsu MB86930 is the original sparclite chip, with no FPU. */ ++ { "f930", MASK_ISA|MASK_FPU, MASK_SPARCLITE }, ++ /* The Fujitsu MB86934 is the recent sparclite chip, with an FPU. */ ++ { "f934", MASK_ISA, MASK_SPARCLITE }, ++ { "sparclite86x", MASK_ISA|MASK_FPU, MASK_SPARCLITE }, ++ { "sparclet", MASK_ISA, MASK_SPARCLET }, ++ /* TEMIC sparclet */ ++ { "tsc701", MASK_ISA, MASK_SPARCLET }, ++ { "v9", MASK_ISA, MASK_V9 }, ++ /* UltraSPARC I, II, IIi */ ++ { "ultrasparc", MASK_ISA, ++ /* Although insns using %y are deprecated, it is a clear win. */ ++ MASK_V9|MASK_DEPRECATED_V8_INSNS }, ++ /* UltraSPARC III */ ++ /* ??? Check if %y issue still holds true. */ ++ { "ultrasparc3", MASK_ISA, ++ MASK_V9|MASK_DEPRECATED_V8_INSNS|MASK_VIS2 }, ++ /* UltraSPARC T1 */ ++ { "niagara", MASK_ISA, ++ MASK_V9|MASK_DEPRECATED_V8_INSNS }, ++ /* UltraSPARC T2 */ ++ { "niagara2", MASK_ISA, ++ MASK_V9|MASK_POPC|MASK_VIS2 }, ++ /* UltraSPARC T3 */ ++ { "niagara3", MASK_ISA, ++ MASK_V9|MASK_POPC|MASK_VIS3|MASK_FMAF }, ++ /* UltraSPARC T4 */ ++ { "niagara4", MASK_ISA, ++ MASK_V9|MASK_POPC|MASK_VIS3|MASK_FMAF|MASK_CBCOND }, ++ /* UltraSPARC M7 */ ++ { "niagara7", MASK_ISA, ++ MASK_V9|MASK_POPC|MASK_VIS4|MASK_FMAF|MASK_CBCOND|MASK_SUBXC }, ++ /* UltraSPARC M8 */ ++ { "m8", MASK_ISA, ++ MASK_V9|MASK_POPC|MASK_VIS4B|MASK_FMAF|MASK_CBCOND|MASK_SUBXC } ++ }; ++ const struct cpu_table *cpu; ++ unsigned int i; ++ ++ if (sparc_debug_string != NULL) ++ { ++ const char *q; ++ char *p; ++ ++ p = ASTRDUP (sparc_debug_string); ++ while ((q = strtok (p, ",")) != NULL) ++ { ++ bool invert; ++ int mask; ++ ++ p = NULL; ++ if (*q == '!') ++ { ++ invert = true; ++ q++; ++ } ++ else ++ invert = false; ++ ++ if (! strcmp (q, "all")) ++ mask = MASK_DEBUG_ALL; ++ else if (! strcmp (q, "options")) ++ mask = MASK_DEBUG_OPTIONS; ++ else ++ error ("unknown %<-mdebug-%s%> switch", q); ++ ++ if (invert) ++ sparc_debug &= ~mask; ++ else ++ sparc_debug |= mask; ++ } ++ } ++ ++ /* Enable the FsMULd instruction by default if not explicitly specified by ++ the user. It may be later disabled by the CPU (explicitly or not). */ ++ if (TARGET_FPU && !(target_flags_explicit & MASK_FSMULD)) ++ target_flags |= MASK_FSMULD; ++ ++ if (TARGET_DEBUG_OPTIONS) ++ { ++ dump_target_flags("Initial target_flags", target_flags); ++ dump_target_flags("target_flags_explicit", target_flags_explicit); ++ } ++ ++#ifdef SUBTARGET_OVERRIDE_OPTIONS ++ SUBTARGET_OVERRIDE_OPTIONS; ++#endif ++ ++#ifndef SPARC_BI_ARCH ++ /* Check for unsupported architecture size. */ ++ if (!TARGET_64BIT != DEFAULT_ARCH32_P) ++ error ("%s is not supported by this configuration", ++ DEFAULT_ARCH32_P ? "-m64" : "-m32"); ++#endif ++ ++ /* We force all 64bit archs to use 128 bit long double */ ++ if (TARGET_ARCH64 && !TARGET_LONG_DOUBLE_128) ++ { ++ error ("%<-mlong-double-64%> not allowed with %<-m64%>"); ++ target_flags |= MASK_LONG_DOUBLE_128; ++ } ++ ++ /* Check that -fcall-saved-REG wasn't specified for out registers. */ ++ for (i = 8; i < 16; i++) ++ if (!call_used_regs [i]) ++ { ++ error ("%<-fcall-saved-REG%> is not supported for out registers"); ++ call_used_regs [i] = 1; ++ } ++ ++ /* Set the default CPU if no -mcpu option was specified. */ ++ if (!global_options_set.x_sparc_cpu_and_features) ++ { ++ for (def = &cpu_default[0]; def->cpu != -1; ++def) ++ if (def->cpu == TARGET_CPU_DEFAULT) ++ break; ++ gcc_assert (def->cpu != -1); ++ sparc_cpu_and_features = def->processor; ++ } ++ ++ /* Set the default CPU if no -mtune option was specified. */ ++ if (!global_options_set.x_sparc_cpu) ++ sparc_cpu = sparc_cpu_and_features; ++ ++ cpu = &cpu_table[(int) sparc_cpu_and_features]; ++ ++ if (TARGET_DEBUG_OPTIONS) ++ { ++ fprintf (stderr, "sparc_cpu_and_features: %s\n", cpu->name); ++ dump_target_flags ("cpu->disable", cpu->disable); ++ dump_target_flags ("cpu->enable", cpu->enable); ++ } ++ ++ target_flags &= ~cpu->disable; ++ target_flags |= (cpu->enable ++#ifndef HAVE_AS_FMAF_HPC_VIS3 ++ & ~(MASK_FMAF | MASK_VIS3) ++#endif ++#ifndef HAVE_AS_SPARC4 ++ & ~MASK_CBCOND ++#endif ++#ifndef HAVE_AS_SPARC5_VIS4 ++ & ~(MASK_VIS4 | MASK_SUBXC) ++#endif ++#ifndef HAVE_AS_SPARC6 ++ & ~(MASK_VIS4B) ++#endif ++#ifndef HAVE_AS_LEON ++ & ~(MASK_LEON | MASK_LEON3) ++#endif ++ & ~(target_flags_explicit & MASK_FEATURES) ++ ); ++ ++ /* FsMULd is a V8 instruction. */ ++ if (!TARGET_V8 && !TARGET_V9) ++ target_flags &= ~MASK_FSMULD; ++ ++ /* -mvis2 implies -mvis. */ ++ if (TARGET_VIS2) ++ target_flags |= MASK_VIS; ++ ++ /* -mvis3 implies -mvis2 and -mvis. */ ++ if (TARGET_VIS3) ++ target_flags |= MASK_VIS2 | MASK_VIS; ++ ++ /* -mvis4 implies -mvis3, -mvis2 and -mvis. */ ++ if (TARGET_VIS4) ++ target_flags |= MASK_VIS3 | MASK_VIS2 | MASK_VIS; ++ ++ /* -mvis4b implies -mvis4, -mvis3, -mvis2 and -mvis */ ++ if (TARGET_VIS4B) ++ target_flags |= MASK_VIS4 | MASK_VIS3 | MASK_VIS2 | MASK_VIS; ++ ++ /* Don't allow -mvis, -mvis2, -mvis3, -mvis4, -mvis4b, -mfmaf and -mfsmuld if ++ FPU is disabled. */ ++ if (!TARGET_FPU) ++ target_flags &= ~(MASK_VIS | MASK_VIS2 | MASK_VIS3 | MASK_VIS4 ++ | MASK_VIS4B | MASK_FMAF | MASK_FSMULD); ++ ++ /* -mvis assumes UltraSPARC+, so we are sure v9 instructions ++ are available; -m64 also implies v9. */ ++ if (TARGET_VIS || TARGET_ARCH64) ++ { ++ target_flags |= MASK_V9; ++ target_flags &= ~(MASK_V8 | MASK_SPARCLET | MASK_SPARCLITE); ++ } ++ ++ /* -mvis also implies -mv8plus on 32-bit. */ ++ if (TARGET_VIS && !TARGET_ARCH64) ++ target_flags |= MASK_V8PLUS; ++ ++ /* Use the deprecated v8 insns for sparc64 in 32-bit mode. */ ++ if (TARGET_V9 && TARGET_ARCH32) ++ target_flags |= MASK_DEPRECATED_V8_INSNS; ++ ++ /* V8PLUS requires V9 and makes no sense in 64-bit mode. */ ++ if (!TARGET_V9 || TARGET_ARCH64) ++ target_flags &= ~MASK_V8PLUS; ++ ++ /* Don't use stack biasing in 32-bit mode. */ ++ if (TARGET_ARCH32) ++ target_flags &= ~MASK_STACK_BIAS; ++ ++ /* Use LRA instead of reload, unless otherwise instructed. */ ++ if (!(target_flags_explicit & MASK_LRA)) ++ target_flags |= MASK_LRA; ++ ++ /* Enable applicable errata workarounds for LEON3FT. */ ++ if (sparc_fix_ut699 || sparc_fix_ut700 || sparc_fix_gr712rc) ++ { ++ sparc_fix_b2bst = 1; ++ sparc_fix_lost_divsqrt = 1; ++ } ++ ++ /* Disable FsMULd for the UT699 since it doesn't work correctly. */ ++ if (sparc_fix_ut699) ++ target_flags &= ~MASK_FSMULD; ++ ++#ifdef TARGET_DEFAULT_LONG_DOUBLE_128 ++ if (!(target_flags_explicit & MASK_LONG_DOUBLE_128)) ++ target_flags |= MASK_LONG_DOUBLE_128; ++#endif ++ ++ if (TARGET_DEBUG_OPTIONS) ++ dump_target_flags ("Final target_flags", target_flags); ++ ++ /* Set the code model if no -mcmodel option was specified. */ ++ if (global_options_set.x_sparc_code_model) ++ { ++ if (TARGET_ARCH32) ++ error ("%<-mcmodel=%> is not supported in 32-bit mode"); ++ } ++ else ++ { ++ if (TARGET_ARCH32) ++ sparc_code_model = CM_32; ++ else ++ sparc_code_model = SPARC_DEFAULT_CMODEL; ++ } ++ ++ /* Set the memory model if no -mmemory-model option was specified. */ ++ if (!global_options_set.x_sparc_memory_model) ++ { ++ /* Choose the memory model for the operating system. */ ++ enum sparc_memory_model_type os_default = SUBTARGET_DEFAULT_MEMORY_MODEL; ++ if (os_default != SMM_DEFAULT) ++ sparc_memory_model = os_default; ++ /* Choose the most relaxed model for the processor. */ ++ else if (TARGET_V9) ++ sparc_memory_model = SMM_RMO; ++ else if (TARGET_LEON3) ++ sparc_memory_model = SMM_TSO; ++ else if (TARGET_LEON) ++ sparc_memory_model = SMM_SC; ++ else if (TARGET_V8) ++ sparc_memory_model = SMM_PSO; ++ else ++ sparc_memory_model = SMM_SC; ++ } ++ ++ /* Supply a default value for align_functions. */ ++ if (flag_align_functions && !str_align_functions) ++ { ++ if (sparc_cpu == PROCESSOR_ULTRASPARC ++ || sparc_cpu == PROCESSOR_ULTRASPARC3 ++ || sparc_cpu == PROCESSOR_NIAGARA ++ || sparc_cpu == PROCESSOR_NIAGARA2 ++ || sparc_cpu == PROCESSOR_NIAGARA3 ++ || sparc_cpu == PROCESSOR_NIAGARA4) ++ str_align_functions = "32"; ++ else if (sparc_cpu == PROCESSOR_NIAGARA7 ++ || sparc_cpu == PROCESSOR_M8) ++ str_align_functions = "64"; ++ } ++ ++ /* Validate PCC_STRUCT_RETURN. */ ++ if (flag_pcc_struct_return == DEFAULT_PCC_STRUCT_RETURN) ++ flag_pcc_struct_return = (TARGET_ARCH64 ? 0 : 1); ++ ++ /* Only use .uaxword when compiling for a 64-bit target. */ ++ if (!TARGET_ARCH64) ++ targetm.asm_out.unaligned_op.di = NULL; ++ ++ /* Set the processor costs. */ ++ switch (sparc_cpu) ++ { ++ case PROCESSOR_V7: ++ case PROCESSOR_CYPRESS: ++ sparc_costs = &cypress_costs; ++ break; ++ case PROCESSOR_V8: ++ case PROCESSOR_SPARCLITE: ++ case PROCESSOR_SUPERSPARC: ++ sparc_costs = &supersparc_costs; ++ break; ++ case PROCESSOR_F930: ++ case PROCESSOR_F934: ++ case PROCESSOR_HYPERSPARC: ++ case PROCESSOR_SPARCLITE86X: ++ sparc_costs = &hypersparc_costs; ++ break; ++ case PROCESSOR_LEON: ++ sparc_costs = &leon_costs; ++ break; ++ case PROCESSOR_LEON3: ++ case PROCESSOR_LEON3V7: ++ sparc_costs = &leon3_costs; ++ break; ++ case PROCESSOR_SPARCLET: ++ case PROCESSOR_TSC701: ++ sparc_costs = &sparclet_costs; ++ break; ++ case PROCESSOR_V9: ++ case PROCESSOR_ULTRASPARC: ++ sparc_costs = &ultrasparc_costs; ++ break; ++ case PROCESSOR_ULTRASPARC3: ++ sparc_costs = &ultrasparc3_costs; ++ break; ++ case PROCESSOR_NIAGARA: ++ sparc_costs = &niagara_costs; ++ break; ++ case PROCESSOR_NIAGARA2: ++ sparc_costs = &niagara2_costs; ++ break; ++ case PROCESSOR_NIAGARA3: ++ sparc_costs = &niagara3_costs; ++ break; ++ case PROCESSOR_NIAGARA4: ++ sparc_costs = &niagara4_costs; ++ break; ++ case PROCESSOR_NIAGARA7: ++ sparc_costs = &niagara7_costs; ++ break; ++ case PROCESSOR_M8: ++ sparc_costs = &m8_costs; ++ break; ++ case PROCESSOR_NATIVE: ++ gcc_unreachable (); ++ }; ++ ++ /* param_simultaneous_prefetches is the number of prefetches that ++ can run at the same time. More important, it is the threshold ++ defining when additional prefetches will be dropped by the ++ hardware. ++ ++ The UltraSPARC-III features a documented prefetch queue with a ++ size of 8. Additional prefetches issued in the cpu are ++ dropped. ++ ++ Niagara processors are different. In these processors prefetches ++ are handled much like regular loads. The L1 miss buffer is 32 ++ entries, but prefetches start getting affected when 30 entries ++ become occupied. That occupation could be a mix of regular loads ++ and prefetches though. And that buffer is shared by all threads. ++ Once the threshold is reached, if the core is running a single ++ thread the prefetch will retry. If more than one thread is ++ running, the prefetch will be dropped. ++ ++ All this makes it very difficult to determine how many ++ simultaneous prefetches can be issued simultaneously, even in a ++ single-threaded program. Experimental results show that setting ++ this parameter to 32 works well when the number of threads is not ++ high. */ ++ SET_OPTION_IF_UNSET (&global_options, &global_options_set, ++ param_simultaneous_prefetches, ++ ((sparc_cpu == PROCESSOR_ULTRASPARC ++ || sparc_cpu == PROCESSOR_NIAGARA ++ || sparc_cpu == PROCESSOR_NIAGARA2 ++ || sparc_cpu == PROCESSOR_NIAGARA3 ++ || sparc_cpu == PROCESSOR_NIAGARA4) ++ ? 2 ++ : (sparc_cpu == PROCESSOR_ULTRASPARC3 ++ ? 8 : ((sparc_cpu == PROCESSOR_NIAGARA7 ++ || sparc_cpu == PROCESSOR_M8) ++ ? 32 : 3)))); ++ ++ /* param_l1_cache_line_size is the size of the L1 cache line, in ++ bytes. ++ ++ The Oracle SPARC Architecture (previously the UltraSPARC ++ Architecture) specification states that when a PREFETCH[A] ++ instruction is executed an implementation-specific amount of data ++ is prefetched, and that it is at least 64 bytes long (aligned to ++ at least 64 bytes). ++ ++ However, this is not correct. The M7 (and implementations prior ++ to that) does not guarantee a 64B prefetch into a cache if the ++ line size is smaller. A single cache line is all that is ever ++ prefetched. So for the M7, where the L1D$ has 32B lines and the ++ L2D$ and L3 have 64B lines, a prefetch will prefetch 64B into the ++ L2 and L3, but only 32B are brought into the L1D$. (Assuming it ++ is a read_n prefetch, which is the only type which allocates to ++ the L1.) */ ++ SET_OPTION_IF_UNSET (&global_options, &global_options_set, ++ param_l1_cache_line_size, ++ (sparc_cpu == PROCESSOR_M8 ? 64 : 32)); ++ ++ /* param_l1_cache_size is the size of the L1D$ (most SPARC chips use ++ Hardvard level-1 caches) in kilobytes. Both UltraSPARC and ++ Niagara processors feature a L1D$ of 16KB. */ ++ SET_OPTION_IF_UNSET (&global_options, &global_options_set, ++ param_l1_cache_size, ++ ((sparc_cpu == PROCESSOR_ULTRASPARC ++ || sparc_cpu == PROCESSOR_ULTRASPARC3 ++ || sparc_cpu == PROCESSOR_NIAGARA ++ || sparc_cpu == PROCESSOR_NIAGARA2 ++ || sparc_cpu == PROCESSOR_NIAGARA3 ++ || sparc_cpu == PROCESSOR_NIAGARA4 ++ || sparc_cpu == PROCESSOR_NIAGARA7 ++ || sparc_cpu == PROCESSOR_M8) ++ ? 16 : 64)); ++ ++ /* param_l2_cache_size is the size fo the L2 in kilobytes. Note ++ that 512 is the default in params.def. */ ++ SET_OPTION_IF_UNSET (&global_options, &global_options_set, ++ param_l2_cache_size, ++ ((sparc_cpu == PROCESSOR_NIAGARA4 ++ || sparc_cpu == PROCESSOR_M8) ++ ? 128 : (sparc_cpu == PROCESSOR_NIAGARA7 ++ ? 256 : 512))); ++ ++ ++ /* Disable save slot sharing for call-clobbered registers by default. ++ The IRA sharing algorithm works on single registers only and this ++ pessimizes for double floating-point registers. */ ++ if (!global_options_set.x_flag_ira_share_save_slots) ++ flag_ira_share_save_slots = 0; ++ ++ /* Only enable REE by default in 64-bit mode where it helps to eliminate ++ redundant 32-to-64-bit extensions. */ ++ if (!global_options_set.x_flag_ree && TARGET_ARCH32) ++ flag_ree = 0; ++ ++ /* Do various machine dependent initializations. */ ++ sparc_init_modes (); ++ ++ /* Set up function hooks. */ ++ init_machine_status = sparc_init_machine_status; ++} ++ ++/* Miscellaneous utilities. */ ++ ++/* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move ++ or branch on register contents instructions. */ ++ ++int ++v9_regcmp_p (enum rtx_code code) ++{ ++ return (code == EQ || code == NE || code == GE || code == LT ++ || code == LE || code == GT); ++} ++ ++/* Nonzero if OP is a floating point constant which can ++ be loaded into an integer register using a single ++ sethi instruction. */ ++ ++int ++fp_sethi_p (rtx op) ++{ ++ if (GET_CODE (op) == CONST_DOUBLE) ++ { ++ long i; ++ ++ REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i); ++ return !SPARC_SIMM13_P (i) && SPARC_SETHI_P (i); ++ } ++ ++ return 0; ++} ++ ++/* Nonzero if OP is a floating point constant which can ++ be loaded into an integer register using a single ++ mov instruction. */ ++ ++int ++fp_mov_p (rtx op) ++{ ++ if (GET_CODE (op) == CONST_DOUBLE) ++ { ++ long i; ++ ++ REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i); ++ return SPARC_SIMM13_P (i); ++ } ++ ++ return 0; ++} ++ ++/* Nonzero if OP is a floating point constant which can ++ be loaded into an integer register using a high/losum ++ instruction sequence. */ ++ ++int ++fp_high_losum_p (rtx op) ++{ ++ /* The constraints calling this should only be in ++ SFmode move insns, so any constant which cannot ++ be moved using a single insn will do. */ ++ if (GET_CODE (op) == CONST_DOUBLE) ++ { ++ long i; ++ ++ REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i); ++ return !SPARC_SIMM13_P (i) && !SPARC_SETHI_P (i); ++ } ++ ++ return 0; ++} ++ ++/* Return true if the address of LABEL can be loaded by means of the ++ mov{si,di}_pic_label_ref patterns in PIC mode. */ ++ ++static bool ++can_use_mov_pic_label_ref (rtx label) ++{ ++ /* VxWorks does not impose a fixed gap between segments; the run-time ++ gap can be different from the object-file gap. We therefore can't ++ assume X - _GLOBAL_OFFSET_TABLE_ is a link-time constant unless we ++ are absolutely sure that X is in the same segment as the GOT. ++ Unfortunately, the flexibility of linker scripts means that we ++ can't be sure of that in general, so assume that GOT-relative ++ accesses are never valid on VxWorks. */ ++ if (TARGET_VXWORKS_RTP) ++ return false; ++ ++ /* Similarly, if the label is non-local, it might end up being placed ++ in a different section than the current one; now mov_pic_label_ref ++ requires the label and the code to be in the same section. */ ++ if (LABEL_REF_NONLOCAL_P (label)) ++ return false; ++ ++ /* Finally, if we are reordering basic blocks and partition into hot ++ and cold sections, this might happen for any label. */ ++ if (flag_reorder_blocks_and_partition) ++ return false; ++ ++ return true; ++} ++ ++/* Expand a move instruction. Return true if all work is done. */ ++ ++bool ++sparc_expand_move (machine_mode mode, rtx *operands) ++{ ++ /* Handle sets of MEM first. */ ++ if (GET_CODE (operands[0]) == MEM) ++ { ++ /* 0 is a register (or a pair of registers) on SPARC. */ ++ if (register_or_zero_operand (operands[1], mode)) ++ return false; ++ ++ if (!reload_in_progress) ++ { ++ operands[0] = validize_mem (operands[0]); ++ operands[1] = force_reg (mode, operands[1]); ++ } ++ } ++ ++ /* Fix up TLS cases. */ ++ if (TARGET_HAVE_TLS ++ && CONSTANT_P (operands[1]) ++ && sparc_tls_referenced_p (operands [1])) ++ { ++ operands[1] = sparc_legitimize_tls_address (operands[1]); ++ return false; ++ } ++ ++ /* Fix up PIC cases. */ ++ if (flag_pic && CONSTANT_P (operands[1])) ++ { ++ if (pic_address_needs_scratch (operands[1])) ++ operands[1] = sparc_legitimize_pic_address (operands[1], NULL_RTX); ++ ++ /* We cannot use the mov{si,di}_pic_label_ref patterns in all cases. */ ++ if ((GET_CODE (operands[1]) == LABEL_REF ++ && can_use_mov_pic_label_ref (operands[1])) ++ || (GET_CODE (operands[1]) == CONST ++ && GET_CODE (XEXP (operands[1], 0)) == PLUS ++ && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF ++ && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == CONST_INT ++ && can_use_mov_pic_label_ref (XEXP (XEXP (operands[1], 0), 0)))) ++ { ++ if (mode == SImode) ++ { ++ emit_insn (gen_movsi_pic_label_ref (operands[0], operands[1])); ++ return true; ++ } ++ ++ if (mode == DImode) ++ { ++ emit_insn (gen_movdi_pic_label_ref (operands[0], operands[1])); ++ return true; ++ } ++ } ++ ++ if (symbolic_operand (operands[1], mode)) ++ { ++ operands[1] ++ = sparc_legitimize_pic_address (operands[1], ++ reload_in_progress ++ ? operands[0] : NULL_RTX); ++ return false; ++ } ++ } ++ ++ /* If we are trying to toss an integer constant into FP registers, ++ or loading a FP or vector constant, force it into memory. */ ++ if (CONSTANT_P (operands[1]) ++ && REG_P (operands[0]) ++ && (SPARC_FP_REG_P (REGNO (operands[0])) ++ || SCALAR_FLOAT_MODE_P (mode) ++ || VECTOR_MODE_P (mode))) ++ { ++ /* emit_group_store will send such bogosity to us when it is ++ not storing directly into memory. So fix this up to avoid ++ crashes in output_constant_pool. */ ++ if (operands [1] == const0_rtx) ++ operands[1] = CONST0_RTX (mode); ++ ++ /* We can clear or set to all-ones FP registers if TARGET_VIS, and ++ always other regs. */ ++ if ((TARGET_VIS || REGNO (operands[0]) < SPARC_FIRST_FP_REG) ++ && (const_zero_operand (operands[1], mode) ++ || const_all_ones_operand (operands[1], mode))) ++ return false; ++ ++ if (REGNO (operands[0]) < SPARC_FIRST_FP_REG ++ /* We are able to build any SF constant in integer registers ++ with at most 2 instructions. */ ++ && (mode == SFmode ++ /* And any DF constant in integer registers if needed. */ ++ || (mode == DFmode && !can_create_pseudo_p ()))) ++ return false; ++ ++ operands[1] = force_const_mem (mode, operands[1]); ++ if (!reload_in_progress) ++ operands[1] = validize_mem (operands[1]); ++ return false; ++ } ++ ++ /* Accept non-constants and valid constants unmodified. */ ++ if (!CONSTANT_P (operands[1]) ++ || GET_CODE (operands[1]) == HIGH ++ || input_operand (operands[1], mode)) ++ return false; ++ ++ switch (mode) ++ { ++ case E_QImode: ++ /* All QImode constants require only one insn, so proceed. */ ++ break; ++ ++ case E_HImode: ++ case E_SImode: ++ sparc_emit_set_const32 (operands[0], operands[1]); ++ return true; ++ ++ case E_DImode: ++ /* input_operand should have filtered out 32-bit mode. */ ++ sparc_emit_set_const64 (operands[0], operands[1]); ++ return true; ++ ++ case E_TImode: ++ { ++ rtx high, low; ++ /* TImode isn't available in 32-bit mode. */ ++ split_double (operands[1], &high, &low); ++ emit_insn (gen_movdi (operand_subword (operands[0], 0, 0, TImode), ++ high)); ++ emit_insn (gen_movdi (operand_subword (operands[0], 1, 0, TImode), ++ low)); ++ } ++ return true; ++ ++ default: ++ gcc_unreachable (); ++ } ++ ++ return false; ++} ++ ++/* Load OP1, a 32-bit constant, into OP0, a register. ++ We know it can't be done in one insn when we get ++ here, the move expander guarantees this. */ ++ ++static void ++sparc_emit_set_const32 (rtx op0, rtx op1) ++{ ++ machine_mode mode = GET_MODE (op0); ++ rtx temp = op0; ++ ++ if (can_create_pseudo_p ()) ++ temp = gen_reg_rtx (mode); ++ ++ if (GET_CODE (op1) == CONST_INT) ++ { ++ gcc_assert (!small_int_operand (op1, mode) ++ && !const_high_operand (op1, mode)); ++ ++ /* Emit them as real moves instead of a HIGH/LO_SUM, ++ this way CSE can see everything and reuse intermediate ++ values if it wants. */ ++ emit_insn (gen_rtx_SET (temp, GEN_INT (INTVAL (op1) ++ & ~(HOST_WIDE_INT) 0x3ff))); ++ ++ emit_insn (gen_rtx_SET (op0, ++ gen_rtx_IOR (mode, temp, ++ GEN_INT (INTVAL (op1) & 0x3ff)))); ++ } ++ else ++ { ++ /* A symbol, emit in the traditional way. */ ++ emit_insn (gen_rtx_SET (temp, gen_rtx_HIGH (mode, op1))); ++ emit_insn (gen_rtx_SET (op0, gen_rtx_LO_SUM (mode, temp, op1))); ++ } ++} ++ ++/* Load OP1, a symbolic 64-bit constant, into OP0, a DImode register. ++ If TEMP is nonzero, we are forbidden to use any other scratch ++ registers. Otherwise, we are allowed to generate them as needed. ++ ++ Note that TEMP may have TImode if the code model is TARGET_CM_MEDANY ++ or TARGET_CM_EMBMEDANY (see the reload_indi and reload_outdi patterns). */ ++ ++void ++sparc_emit_set_symbolic_const64 (rtx op0, rtx op1, rtx temp) ++{ ++ rtx cst, temp1, temp2, temp3, temp4, temp5; ++ rtx ti_temp = 0; ++ ++ /* Deal with too large offsets. */ ++ if (GET_CODE (op1) == CONST ++ && GET_CODE (XEXP (op1, 0)) == PLUS ++ && CONST_INT_P (cst = XEXP (XEXP (op1, 0), 1)) ++ && trunc_int_for_mode (INTVAL (cst), SImode) != INTVAL (cst)) ++ { ++ gcc_assert (!temp); ++ temp1 = gen_reg_rtx (DImode); ++ temp2 = gen_reg_rtx (DImode); ++ sparc_emit_set_const64 (temp2, cst); ++ sparc_emit_set_symbolic_const64 (temp1, XEXP (XEXP (op1, 0), 0), ++ NULL_RTX); ++ emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp1, temp2))); ++ return; ++ } ++ ++ if (temp && GET_MODE (temp) == TImode) ++ { ++ ti_temp = temp; ++ temp = gen_rtx_REG (DImode, REGNO (temp)); ++ } ++ ++ /* SPARC-V9 code model support. */ ++ switch (sparc_code_model) ++ { ++ case CM_MEDLOW: ++ /* The range spanned by all instructions in the object is less ++ than 2^31 bytes (2GB) and the distance from any instruction ++ to the location of the label _GLOBAL_OFFSET_TABLE_ is less ++ than 2^31 bytes (2GB). ++ ++ The executable must be in the low 4TB of the virtual address ++ space. ++ ++ sethi %hi(symbol), %temp1 ++ or %temp1, %lo(symbol), %reg */ ++ if (temp) ++ temp1 = temp; /* op0 is allowed. */ ++ else ++ temp1 = gen_reg_rtx (DImode); ++ ++ emit_insn (gen_rtx_SET (temp1, gen_rtx_HIGH (DImode, op1))); ++ emit_insn (gen_rtx_SET (op0, gen_rtx_LO_SUM (DImode, temp1, op1))); ++ break; ++ ++ case CM_MEDMID: ++ /* The range spanned by all instructions in the object is less ++ than 2^31 bytes (2GB) and the distance from any instruction ++ to the location of the label _GLOBAL_OFFSET_TABLE_ is less ++ than 2^31 bytes (2GB). ++ ++ The executable must be in the low 16TB of the virtual address ++ space. ++ ++ sethi %h44(symbol), %temp1 ++ or %temp1, %m44(symbol), %temp2 ++ sllx %temp2, 12, %temp3 ++ or %temp3, %l44(symbol), %reg */ ++ if (temp) ++ { ++ temp1 = op0; ++ temp2 = op0; ++ temp3 = temp; /* op0 is allowed. */ ++ } ++ else ++ { ++ temp1 = gen_reg_rtx (DImode); ++ temp2 = gen_reg_rtx (DImode); ++ temp3 = gen_reg_rtx (DImode); ++ } ++ ++ emit_insn (gen_seth44 (temp1, op1)); ++ emit_insn (gen_setm44 (temp2, temp1, op1)); ++ emit_insn (gen_rtx_SET (temp3, ++ gen_rtx_ASHIFT (DImode, temp2, GEN_INT (12)))); ++ emit_insn (gen_setl44 (op0, temp3, op1)); ++ break; ++ ++ case CM_MEDANY: ++ /* The range spanned by all instructions in the object is less ++ than 2^31 bytes (2GB) and the distance from any instruction ++ to the location of the label _GLOBAL_OFFSET_TABLE_ is less ++ than 2^31 bytes (2GB). ++ ++ The executable can be placed anywhere in the virtual address ++ space. ++ ++ sethi %hh(symbol), %temp1 ++ sethi %lm(symbol), %temp2 ++ or %temp1, %hm(symbol), %temp3 ++ sllx %temp3, 32, %temp4 ++ or %temp4, %temp2, %temp5 ++ or %temp5, %lo(symbol), %reg */ ++ if (temp) ++ { ++ /* It is possible that one of the registers we got for operands[2] ++ might coincide with that of operands[0] (which is why we made ++ it TImode). Pick the other one to use as our scratch. */ ++ if (rtx_equal_p (temp, op0)) ++ { ++ gcc_assert (ti_temp); ++ temp = gen_rtx_REG (DImode, REGNO (temp) + 1); ++ } ++ temp1 = op0; ++ temp2 = temp; /* op0 is _not_ allowed, see above. */ ++ temp3 = op0; ++ temp4 = op0; ++ temp5 = op0; ++ } ++ else ++ { ++ temp1 = gen_reg_rtx (DImode); ++ temp2 = gen_reg_rtx (DImode); ++ temp3 = gen_reg_rtx (DImode); ++ temp4 = gen_reg_rtx (DImode); ++ temp5 = gen_reg_rtx (DImode); ++ } ++ ++ emit_insn (gen_sethh (temp1, op1)); ++ emit_insn (gen_setlm (temp2, op1)); ++ emit_insn (gen_sethm (temp3, temp1, op1)); ++ emit_insn (gen_rtx_SET (temp4, ++ gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32)))); ++ emit_insn (gen_rtx_SET (temp5, gen_rtx_PLUS (DImode, temp4, temp2))); ++ emit_insn (gen_setlo (op0, temp5, op1)); ++ break; ++ ++ case CM_EMBMEDANY: ++ /* Old old old backwards compatibility kruft here. ++ Essentially it is MEDLOW with a fixed 64-bit ++ virtual base added to all data segment addresses. ++ Text-segment stuff is computed like MEDANY, we can't ++ reuse the code above because the relocation knobs ++ look different. ++ ++ Data segment: sethi %hi(symbol), %temp1 ++ add %temp1, EMBMEDANY_BASE_REG, %temp2 ++ or %temp2, %lo(symbol), %reg */ ++ if (data_segment_operand (op1, GET_MODE (op1))) ++ { ++ if (temp) ++ { ++ temp1 = temp; /* op0 is allowed. */ ++ temp2 = op0; ++ } ++ else ++ { ++ temp1 = gen_reg_rtx (DImode); ++ temp2 = gen_reg_rtx (DImode); ++ } ++ ++ emit_insn (gen_embmedany_sethi (temp1, op1)); ++ emit_insn (gen_embmedany_brsum (temp2, temp1)); ++ emit_insn (gen_embmedany_losum (op0, temp2, op1)); ++ } ++ ++ /* Text segment: sethi %uhi(symbol), %temp1 ++ sethi %hi(symbol), %temp2 ++ or %temp1, %ulo(symbol), %temp3 ++ sllx %temp3, 32, %temp4 ++ or %temp4, %temp2, %temp5 ++ or %temp5, %lo(symbol), %reg */ ++ else ++ { ++ if (temp) ++ { ++ /* It is possible that one of the registers we got for operands[2] ++ might coincide with that of operands[0] (which is why we made ++ it TImode). Pick the other one to use as our scratch. */ ++ if (rtx_equal_p (temp, op0)) ++ { ++ gcc_assert (ti_temp); ++ temp = gen_rtx_REG (DImode, REGNO (temp) + 1); ++ } ++ temp1 = op0; ++ temp2 = temp; /* op0 is _not_ allowed, see above. */ ++ temp3 = op0; ++ temp4 = op0; ++ temp5 = op0; ++ } ++ else ++ { ++ temp1 = gen_reg_rtx (DImode); ++ temp2 = gen_reg_rtx (DImode); ++ temp3 = gen_reg_rtx (DImode); ++ temp4 = gen_reg_rtx (DImode); ++ temp5 = gen_reg_rtx (DImode); ++ } ++ ++ emit_insn (gen_embmedany_textuhi (temp1, op1)); ++ emit_insn (gen_embmedany_texthi (temp2, op1)); ++ emit_insn (gen_embmedany_textulo (temp3, temp1, op1)); ++ emit_insn (gen_rtx_SET (temp4, ++ gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32)))); ++ emit_insn (gen_rtx_SET (temp5, gen_rtx_PLUS (DImode, temp4, temp2))); ++ emit_insn (gen_embmedany_textlo (op0, temp5, op1)); ++ } ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++} ++ ++/* These avoid problems when cross compiling. If we do not ++ go through all this hair then the optimizer will see ++ invalid REG_EQUAL notes or in some cases none at all. */ ++static rtx gen_safe_HIGH64 (rtx, HOST_WIDE_INT); ++static rtx gen_safe_SET64 (rtx, HOST_WIDE_INT); ++static rtx gen_safe_OR64 (rtx, HOST_WIDE_INT); ++static rtx gen_safe_XOR64 (rtx, HOST_WIDE_INT); ++ ++/* The optimizer is not to assume anything about exactly ++ which bits are set for a HIGH, they are unspecified. ++ Unfortunately this leads to many missed optimizations ++ during CSE. We mask out the non-HIGH bits, and matches ++ a plain movdi, to alleviate this problem. */ ++static rtx ++gen_safe_HIGH64 (rtx dest, HOST_WIDE_INT val) ++{ ++ return gen_rtx_SET (dest, GEN_INT (val & ~(HOST_WIDE_INT)0x3ff)); ++} ++ ++static rtx ++gen_safe_SET64 (rtx dest, HOST_WIDE_INT val) ++{ ++ return gen_rtx_SET (dest, GEN_INT (val)); ++} ++ ++static rtx ++gen_safe_OR64 (rtx src, HOST_WIDE_INT val) ++{ ++ return gen_rtx_IOR (DImode, src, GEN_INT (val)); ++} ++ ++static rtx ++gen_safe_XOR64 (rtx src, HOST_WIDE_INT val) ++{ ++ return gen_rtx_XOR (DImode, src, GEN_INT (val)); ++} ++ ++/* Worker routines for 64-bit constant formation on arch64. ++ One of the key things to be doing in these emissions is ++ to create as many temp REGs as possible. This makes it ++ possible for half-built constants to be used later when ++ such values are similar to something required later on. ++ Without doing this, the optimizer cannot see such ++ opportunities. */ ++ ++static void sparc_emit_set_const64_quick1 (rtx, rtx, ++ unsigned HOST_WIDE_INT, int); ++ ++static void ++sparc_emit_set_const64_quick1 (rtx op0, rtx temp, ++ unsigned HOST_WIDE_INT low_bits, int is_neg) ++{ ++ unsigned HOST_WIDE_INT high_bits; ++ ++ if (is_neg) ++ high_bits = (~low_bits) & 0xffffffff; ++ else ++ high_bits = low_bits; ++ ++ emit_insn (gen_safe_HIGH64 (temp, high_bits)); ++ if (!is_neg) ++ { ++ emit_insn (gen_rtx_SET (op0, gen_safe_OR64 (temp, (high_bits & 0x3ff)))); ++ } ++ else ++ { ++ /* If we are XOR'ing with -1, then we should emit a one's complement ++ instead. This way the combiner will notice logical operations ++ such as ANDN later on and substitute. */ ++ if ((low_bits & 0x3ff) == 0x3ff) ++ { ++ emit_insn (gen_rtx_SET (op0, gen_rtx_NOT (DImode, temp))); ++ } ++ else ++ { ++ emit_insn (gen_rtx_SET (op0, ++ gen_safe_XOR64 (temp, ++ (-(HOST_WIDE_INT)0x400 ++ | (low_bits & 0x3ff))))); ++ } ++ } ++} ++ ++static void sparc_emit_set_const64_quick2 (rtx, rtx, unsigned HOST_WIDE_INT, ++ unsigned HOST_WIDE_INT, int); ++ ++static void ++sparc_emit_set_const64_quick2 (rtx op0, rtx temp, ++ unsigned HOST_WIDE_INT high_bits, ++ unsigned HOST_WIDE_INT low_immediate, ++ int shift_count) ++{ ++ rtx temp2 = op0; ++ ++ if ((high_bits & 0xfffffc00) != 0) ++ { ++ emit_insn (gen_safe_HIGH64 (temp, high_bits)); ++ if ((high_bits & ~0xfffffc00) != 0) ++ emit_insn (gen_rtx_SET (op0, ++ gen_safe_OR64 (temp, (high_bits & 0x3ff)))); ++ else ++ temp2 = temp; ++ } ++ else ++ { ++ emit_insn (gen_safe_SET64 (temp, high_bits)); ++ temp2 = temp; ++ } ++ ++ /* Now shift it up into place. */ ++ emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, temp2, ++ GEN_INT (shift_count)))); ++ ++ /* If there is a low immediate part piece, finish up by ++ putting that in as well. */ ++ if (low_immediate != 0) ++ emit_insn (gen_rtx_SET (op0, gen_safe_OR64 (op0, low_immediate))); ++} ++ ++static void sparc_emit_set_const64_longway (rtx, rtx, unsigned HOST_WIDE_INT, ++ unsigned HOST_WIDE_INT); ++ ++/* Full 64-bit constant decomposition. Even though this is the ++ 'worst' case, we still optimize a few things away. */ ++static void ++sparc_emit_set_const64_longway (rtx op0, rtx temp, ++ unsigned HOST_WIDE_INT high_bits, ++ unsigned HOST_WIDE_INT low_bits) ++{ ++ rtx sub_temp = op0; ++ ++ if (can_create_pseudo_p ()) ++ sub_temp = gen_reg_rtx (DImode); ++ ++ if ((high_bits & 0xfffffc00) != 0) ++ { ++ emit_insn (gen_safe_HIGH64 (temp, high_bits)); ++ if ((high_bits & ~0xfffffc00) != 0) ++ emit_insn (gen_rtx_SET (sub_temp, ++ gen_safe_OR64 (temp, (high_bits & 0x3ff)))); ++ else ++ sub_temp = temp; ++ } ++ else ++ { ++ emit_insn (gen_safe_SET64 (temp, high_bits)); ++ sub_temp = temp; ++ } ++ ++ if (can_create_pseudo_p ()) ++ { ++ rtx temp2 = gen_reg_rtx (DImode); ++ rtx temp3 = gen_reg_rtx (DImode); ++ rtx temp4 = gen_reg_rtx (DImode); ++ ++ emit_insn (gen_rtx_SET (temp4, gen_rtx_ASHIFT (DImode, sub_temp, ++ GEN_INT (32)))); ++ ++ emit_insn (gen_safe_HIGH64 (temp2, low_bits)); ++ if ((low_bits & ~0xfffffc00) != 0) ++ { ++ emit_insn (gen_rtx_SET (temp3, ++ gen_safe_OR64 (temp2, (low_bits & 0x3ff)))); ++ emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp4, temp3))); ++ } ++ else ++ { ++ emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp4, temp2))); ++ } ++ } ++ else ++ { ++ rtx low1 = GEN_INT ((low_bits >> (32 - 12)) & 0xfff); ++ rtx low2 = GEN_INT ((low_bits >> (32 - 12 - 12)) & 0xfff); ++ rtx low3 = GEN_INT ((low_bits >> (32 - 12 - 12 - 8)) & 0x0ff); ++ int to_shift = 12; ++ ++ /* We are in the middle of reload, so this is really ++ painful. However we do still make an attempt to ++ avoid emitting truly stupid code. */ ++ if (low1 != const0_rtx) ++ { ++ emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp, ++ GEN_INT (to_shift)))); ++ emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low1))); ++ sub_temp = op0; ++ to_shift = 12; ++ } ++ else ++ { ++ to_shift += 12; ++ } ++ if (low2 != const0_rtx) ++ { ++ emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp, ++ GEN_INT (to_shift)))); ++ emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low2))); ++ sub_temp = op0; ++ to_shift = 8; ++ } ++ else ++ { ++ to_shift += 8; ++ } ++ emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp, ++ GEN_INT (to_shift)))); ++ if (low3 != const0_rtx) ++ emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low3))); ++ /* phew... */ ++ } ++} ++ ++/* Analyze a 64-bit constant for certain properties. */ ++static void analyze_64bit_constant (unsigned HOST_WIDE_INT, ++ unsigned HOST_WIDE_INT, ++ int *, int *, int *); ++ ++static void ++analyze_64bit_constant (unsigned HOST_WIDE_INT high_bits, ++ unsigned HOST_WIDE_INT low_bits, ++ int *hbsp, int *lbsp, int *abbasp) ++{ ++ int lowest_bit_set, highest_bit_set, all_bits_between_are_set; ++ int i; ++ ++ lowest_bit_set = highest_bit_set = -1; ++ i = 0; ++ do ++ { ++ if ((lowest_bit_set == -1) ++ && ((low_bits >> i) & 1)) ++ lowest_bit_set = i; ++ if ((highest_bit_set == -1) ++ && ((high_bits >> (32 - i - 1)) & 1)) ++ highest_bit_set = (64 - i - 1); ++ } ++ while (++i < 32 ++ && ((highest_bit_set == -1) ++ || (lowest_bit_set == -1))); ++ if (i == 32) ++ { ++ i = 0; ++ do ++ { ++ if ((lowest_bit_set == -1) ++ && ((high_bits >> i) & 1)) ++ lowest_bit_set = i + 32; ++ if ((highest_bit_set == -1) ++ && ((low_bits >> (32 - i - 1)) & 1)) ++ highest_bit_set = 32 - i - 1; ++ } ++ while (++i < 32 ++ && ((highest_bit_set == -1) ++ || (lowest_bit_set == -1))); ++ } ++ /* If there are no bits set this should have gone out ++ as one instruction! */ ++ gcc_assert (lowest_bit_set != -1 && highest_bit_set != -1); ++ all_bits_between_are_set = 1; ++ for (i = lowest_bit_set; i <= highest_bit_set; i++) ++ { ++ if (i < 32) ++ { ++ if ((low_bits & (1 << i)) != 0) ++ continue; ++ } ++ else ++ { ++ if ((high_bits & (1 << (i - 32))) != 0) ++ continue; ++ } ++ all_bits_between_are_set = 0; ++ break; ++ } ++ *hbsp = highest_bit_set; ++ *lbsp = lowest_bit_set; ++ *abbasp = all_bits_between_are_set; ++} ++ ++static int const64_is_2insns (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT); ++ ++static int ++const64_is_2insns (unsigned HOST_WIDE_INT high_bits, ++ unsigned HOST_WIDE_INT low_bits) ++{ ++ int highest_bit_set, lowest_bit_set, all_bits_between_are_set; ++ ++ if (high_bits == 0 ++ || high_bits == 0xffffffff) ++ return 1; ++ ++ analyze_64bit_constant (high_bits, low_bits, ++ &highest_bit_set, &lowest_bit_set, ++ &all_bits_between_are_set); ++ ++ if ((highest_bit_set == 63 ++ || lowest_bit_set == 0) ++ && all_bits_between_are_set != 0) ++ return 1; ++ ++ if ((highest_bit_set - lowest_bit_set) < 21) ++ return 1; ++ ++ return 0; ++} ++ ++static unsigned HOST_WIDE_INT create_simple_focus_bits (unsigned HOST_WIDE_INT, ++ unsigned HOST_WIDE_INT, ++ int, int); ++ ++static unsigned HOST_WIDE_INT ++create_simple_focus_bits (unsigned HOST_WIDE_INT high_bits, ++ unsigned HOST_WIDE_INT low_bits, ++ int lowest_bit_set, int shift) ++{ ++ HOST_WIDE_INT hi, lo; ++ ++ if (lowest_bit_set < 32) ++ { ++ lo = (low_bits >> lowest_bit_set) << shift; ++ hi = ((high_bits << (32 - lowest_bit_set)) << shift); ++ } ++ else ++ { ++ lo = 0; ++ hi = ((high_bits >> (lowest_bit_set - 32)) << shift); ++ } ++ gcc_assert (! (hi & lo)); ++ return (hi | lo); ++} ++ ++/* Here we are sure to be arch64 and this is an integer constant ++ being loaded into a register. Emit the most efficient ++ insn sequence possible. Detection of all the 1-insn cases ++ has been done already. */ ++static void ++sparc_emit_set_const64 (rtx op0, rtx op1) ++{ ++ unsigned HOST_WIDE_INT high_bits, low_bits; ++ int lowest_bit_set, highest_bit_set; ++ int all_bits_between_are_set; ++ rtx temp = 0; ++ ++ /* Sanity check that we know what we are working with. */ ++ gcc_assert (TARGET_ARCH64 ++ && (GET_CODE (op0) == SUBREG ++ || (REG_P (op0) && ! SPARC_FP_REG_P (REGNO (op0))))); ++ ++ if (! can_create_pseudo_p ()) ++ temp = op0; ++ ++ if (GET_CODE (op1) != CONST_INT) ++ { ++ sparc_emit_set_symbolic_const64 (op0, op1, temp); ++ return; ++ } ++ ++ if (! temp) ++ temp = gen_reg_rtx (DImode); ++ ++ high_bits = ((INTVAL (op1) >> 32) & 0xffffffff); ++ low_bits = (INTVAL (op1) & 0xffffffff); ++ ++ /* low_bits bits 0 --> 31 ++ high_bits bits 32 --> 63 */ ++ ++ analyze_64bit_constant (high_bits, low_bits, ++ &highest_bit_set, &lowest_bit_set, ++ &all_bits_between_are_set); ++ ++ /* First try for a 2-insn sequence. */ ++ ++ /* These situations are preferred because the optimizer can ++ * do more things with them: ++ * 1) mov -1, %reg ++ * sllx %reg, shift, %reg ++ * 2) mov -1, %reg ++ * srlx %reg, shift, %reg ++ * 3) mov some_small_const, %reg ++ * sllx %reg, shift, %reg ++ */ ++ if (((highest_bit_set == 63 ++ || lowest_bit_set == 0) ++ && all_bits_between_are_set != 0) ++ || ((highest_bit_set - lowest_bit_set) < 12)) ++ { ++ HOST_WIDE_INT the_const = -1; ++ int shift = lowest_bit_set; ++ ++ if ((highest_bit_set != 63 ++ && lowest_bit_set != 0) ++ || all_bits_between_are_set == 0) ++ { ++ the_const = ++ create_simple_focus_bits (high_bits, low_bits, ++ lowest_bit_set, 0); ++ } ++ else if (lowest_bit_set == 0) ++ shift = -(63 - highest_bit_set); ++ ++ gcc_assert (SPARC_SIMM13_P (the_const)); ++ gcc_assert (shift != 0); ++ ++ emit_insn (gen_safe_SET64 (temp, the_const)); ++ if (shift > 0) ++ emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, temp, ++ GEN_INT (shift)))); ++ else if (shift < 0) ++ emit_insn (gen_rtx_SET (op0, gen_rtx_LSHIFTRT (DImode, temp, ++ GEN_INT (-shift)))); ++ return; ++ } ++ ++ /* Now a range of 22 or less bits set somewhere. ++ * 1) sethi %hi(focus_bits), %reg ++ * sllx %reg, shift, %reg ++ * 2) sethi %hi(focus_bits), %reg ++ * srlx %reg, shift, %reg ++ */ ++ if ((highest_bit_set - lowest_bit_set) < 21) ++ { ++ unsigned HOST_WIDE_INT focus_bits = ++ create_simple_focus_bits (high_bits, low_bits, ++ lowest_bit_set, 10); ++ ++ gcc_assert (SPARC_SETHI_P (focus_bits)); ++ gcc_assert (lowest_bit_set != 10); ++ ++ emit_insn (gen_safe_HIGH64 (temp, focus_bits)); ++ ++ /* If lowest_bit_set == 10 then a sethi alone could have done it. */ ++ if (lowest_bit_set < 10) ++ emit_insn (gen_rtx_SET (op0, ++ gen_rtx_LSHIFTRT (DImode, temp, ++ GEN_INT (10 - lowest_bit_set)))); ++ else if (lowest_bit_set > 10) ++ emit_insn (gen_rtx_SET (op0, ++ gen_rtx_ASHIFT (DImode, temp, ++ GEN_INT (lowest_bit_set - 10)))); ++ return; ++ } ++ ++ /* 1) sethi %hi(low_bits), %reg ++ * or %reg, %lo(low_bits), %reg ++ * 2) sethi %hi(~low_bits), %reg ++ * xor %reg, %lo(-0x400 | (low_bits & 0x3ff)), %reg ++ */ ++ if (high_bits == 0 ++ || high_bits == 0xffffffff) ++ { ++ sparc_emit_set_const64_quick1 (op0, temp, low_bits, ++ (high_bits == 0xffffffff)); ++ return; ++ } ++ ++ /* Now, try 3-insn sequences. */ ++ ++ /* 1) sethi %hi(high_bits), %reg ++ * or %reg, %lo(high_bits), %reg ++ * sllx %reg, 32, %reg ++ */ ++ if (low_bits == 0) ++ { ++ sparc_emit_set_const64_quick2 (op0, temp, high_bits, 0, 32); ++ return; ++ } ++ ++ /* We may be able to do something quick ++ when the constant is negated, so try that. */ ++ if (const64_is_2insns ((~high_bits) & 0xffffffff, ++ (~low_bits) & 0xfffffc00)) ++ { ++ /* NOTE: The trailing bits get XOR'd so we need the ++ non-negated bits, not the negated ones. */ ++ unsigned HOST_WIDE_INT trailing_bits = low_bits & 0x3ff; ++ ++ if ((((~high_bits) & 0xffffffff) == 0 ++ && ((~low_bits) & 0x80000000) == 0) ++ || (((~high_bits) & 0xffffffff) == 0xffffffff ++ && ((~low_bits) & 0x80000000) != 0)) ++ { ++ unsigned HOST_WIDE_INT fast_int = (~low_bits & 0xffffffff); ++ ++ if ((SPARC_SETHI_P (fast_int) ++ && (~high_bits & 0xffffffff) == 0) ++ || SPARC_SIMM13_P (fast_int)) ++ emit_insn (gen_safe_SET64 (temp, fast_int)); ++ else ++ sparc_emit_set_const64 (temp, GEN_INT (fast_int)); ++ } ++ else ++ { ++ rtx negated_const; ++ negated_const = GEN_INT (((~low_bits) & 0xfffffc00) | ++ (((HOST_WIDE_INT)((~high_bits) & 0xffffffff))<<32)); ++ sparc_emit_set_const64 (temp, negated_const); ++ } ++ ++ /* If we are XOR'ing with -1, then we should emit a one's complement ++ instead. This way the combiner will notice logical operations ++ such as ANDN later on and substitute. */ ++ if (trailing_bits == 0x3ff) ++ { ++ emit_insn (gen_rtx_SET (op0, gen_rtx_NOT (DImode, temp))); ++ } ++ else ++ { ++ emit_insn (gen_rtx_SET (op0, ++ gen_safe_XOR64 (temp, ++ (-0x400 | trailing_bits)))); ++ } ++ return; ++ } ++ ++ /* 1) sethi %hi(xxx), %reg ++ * or %reg, %lo(xxx), %reg ++ * sllx %reg, yyy, %reg ++ * ++ * ??? This is just a generalized version of the low_bits==0 ++ * thing above, FIXME... ++ */ ++ if ((highest_bit_set - lowest_bit_set) < 32) ++ { ++ unsigned HOST_WIDE_INT focus_bits = ++ create_simple_focus_bits (high_bits, low_bits, ++ lowest_bit_set, 0); ++ ++ /* We can't get here in this state. */ ++ gcc_assert (highest_bit_set >= 32 && lowest_bit_set < 32); ++ ++ /* So what we know is that the set bits straddle the ++ middle of the 64-bit word. */ ++ sparc_emit_set_const64_quick2 (op0, temp, ++ focus_bits, 0, ++ lowest_bit_set); ++ return; ++ } ++ ++ /* 1) sethi %hi(high_bits), %reg ++ * or %reg, %lo(high_bits), %reg ++ * sllx %reg, 32, %reg ++ * or %reg, low_bits, %reg ++ */ ++ if (SPARC_SIMM13_P (low_bits) && ((int)low_bits > 0)) ++ { ++ sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_bits, 32); ++ return; ++ } ++ ++ /* The easiest way when all else fails, is full decomposition. */ ++ sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits); ++} ++ ++/* Implement TARGET_FIXED_CONDITION_CODE_REGS. */ ++ ++static bool ++sparc_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) ++{ ++ *p1 = SPARC_ICC_REG; ++ *p2 = SPARC_FCC_REG; ++ return true; ++} ++ ++/* Implement TARGET_MIN_ARITHMETIC_PRECISION. */ ++ ++static unsigned int ++sparc_min_arithmetic_precision (void) ++{ ++ return 32; ++} ++ ++/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, ++ return the mode to be used for the comparison. For floating-point, ++ CCFP[E]mode is used. CCNZmode should be used when the first operand ++ is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special ++ processing is needed. */ ++ ++machine_mode ++select_cc_mode (enum rtx_code op, rtx x, rtx y) ++{ ++ if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) ++ { ++ switch (op) ++ { ++ case EQ: ++ case NE: ++ case UNORDERED: ++ case ORDERED: ++ case UNLT: ++ case UNLE: ++ case UNGT: ++ case UNGE: ++ case UNEQ: ++ return CCFPmode; ++ ++ case LT: ++ case LE: ++ case GT: ++ case GE: ++ case LTGT: ++ return CCFPEmode; ++ ++ default: ++ gcc_unreachable (); ++ } ++ } ++ else if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS ++ || GET_CODE (x) == NEG || GET_CODE (x) == ASHIFT) ++ && y == const0_rtx) ++ { ++ if (TARGET_ARCH64 && GET_MODE (x) == DImode) ++ return CCXNZmode; ++ else ++ return CCNZmode; ++ } ++ else ++ { ++ /* This is for the cmp_sne pattern. */ ++ if (GET_CODE (x) == NOT && y == constm1_rtx) ++ { ++ if (TARGET_ARCH64 && GET_MODE (x) == DImode) ++ return CCXCmode; ++ else ++ return CCCmode; ++ } ++ ++ /* This is for the [u]addvdi4_sp32 and [u]subvdi4_sp32 patterns. */ ++ if (!TARGET_ARCH64 && GET_MODE (x) == DImode) ++ { ++ if (GET_CODE (y) == UNSPEC ++ && (XINT (y, 1) == UNSPEC_ADDV ++ || XINT (y, 1) == UNSPEC_SUBV ++ || XINT (y, 1) == UNSPEC_NEGV)) ++ return CCVmode; ++ else ++ return CCCmode; ++ } ++ ++ if (TARGET_ARCH64 && GET_MODE (x) == DImode) ++ return CCXmode; ++ else ++ return CCmode; ++ } ++} ++ ++/* Emit the compare insn and return the CC reg for a CODE comparison ++ with operands X and Y. */ ++ ++static rtx ++gen_compare_reg_1 (enum rtx_code code, rtx x, rtx y) ++{ ++ machine_mode mode; ++ rtx cc_reg; ++ ++ if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC) ++ return x; ++ ++ mode = SELECT_CC_MODE (code, x, y); ++ ++ /* ??? We don't have movcc patterns so we cannot generate pseudo regs for the ++ fcc regs (cse can't tell they're really call clobbered regs and will ++ remove a duplicate comparison even if there is an intervening function ++ call - it will then try to reload the cc reg via an int reg which is why ++ we need the movcc patterns). It is possible to provide the movcc ++ patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two ++ registers (say %g1,%g5) and it takes about 6 insns. A better fix would be ++ to tell cse that CCFPE mode registers (even pseudos) are call ++ clobbered. */ ++ ++ /* ??? This is an experiment. Rather than making changes to cse which may ++ or may not be easy/clean, we do our own cse. This is possible because ++ we will generate hard registers. Cse knows they're call clobbered (it ++ doesn't know the same thing about pseudos). If we guess wrong, no big ++ deal, but if we win, great! */ ++ ++ if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) ++#if 1 /* experiment */ ++ { ++ int reg; ++ /* We cycle through the registers to ensure they're all exercised. */ ++ static int next_fcc_reg = 0; ++ /* Previous x,y for each fcc reg. */ ++ static rtx prev_args[4][2]; ++ ++ /* Scan prev_args for x,y. */ ++ for (reg = 0; reg < 4; reg++) ++ if (prev_args[reg][0] == x && prev_args[reg][1] == y) ++ break; ++ if (reg == 4) ++ { ++ reg = next_fcc_reg; ++ prev_args[reg][0] = x; ++ prev_args[reg][1] = y; ++ next_fcc_reg = (next_fcc_reg + 1) & 3; ++ } ++ cc_reg = gen_rtx_REG (mode, reg + SPARC_FIRST_V9_FCC_REG); ++ } ++#else ++ cc_reg = gen_reg_rtx (mode); ++#endif /* ! experiment */ ++ else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) ++ cc_reg = gen_rtx_REG (mode, SPARC_FCC_REG); ++ else ++ cc_reg = gen_rtx_REG (mode, SPARC_ICC_REG); ++ ++ /* We shouldn't get there for TFmode if !TARGET_HARD_QUAD. If we do, this ++ will only result in an unrecognizable insn so no point in asserting. */ ++ emit_insn (gen_rtx_SET (cc_reg, gen_rtx_COMPARE (mode, x, y))); ++ ++ return cc_reg; ++} ++ ++ ++/* Emit the compare insn and return the CC reg for the comparison in CMP. */ ++ ++rtx ++gen_compare_reg (rtx cmp) ++{ ++ return gen_compare_reg_1 (GET_CODE (cmp), XEXP (cmp, 0), XEXP (cmp, 1)); ++} ++ ++/* This function is used for v9 only. ++ DEST is the target of the Scc insn. ++ CODE is the code for an Scc's comparison. ++ X and Y are the values we compare. ++ ++ This function is needed to turn ++ ++ (set (reg:SI 110) ++ (gt (reg:CCX 100 %icc) ++ (const_int 0))) ++ into ++ (set (reg:SI 110) ++ (gt:DI (reg:CCX 100 %icc) ++ (const_int 0))) ++ ++ IE: The instruction recognizer needs to see the mode of the comparison to ++ find the right instruction. We could use "gt:DI" right in the ++ define_expand, but leaving it out allows us to handle DI, SI, etc. */ ++ ++static int ++gen_v9_scc (rtx dest, enum rtx_code compare_code, rtx x, rtx y) ++{ ++ if (! TARGET_ARCH64 ++ && (GET_MODE (x) == DImode ++ || GET_MODE (dest) == DImode)) ++ return 0; ++ ++ /* Try to use the movrCC insns. */ ++ if (TARGET_ARCH64 ++ && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT ++ && y == const0_rtx ++ && v9_regcmp_p (compare_code)) ++ { ++ rtx op0 = x; ++ rtx temp; ++ ++ /* Special case for op0 != 0. This can be done with one instruction if ++ dest == x. */ ++ ++ if (compare_code == NE ++ && GET_MODE (dest) == DImode ++ && rtx_equal_p (op0, dest)) ++ { ++ emit_insn (gen_rtx_SET (dest, ++ gen_rtx_IF_THEN_ELSE (DImode, ++ gen_rtx_fmt_ee (compare_code, DImode, ++ op0, const0_rtx), ++ const1_rtx, ++ dest))); ++ return 1; ++ } ++ ++ if (reg_overlap_mentioned_p (dest, op0)) ++ { ++ /* Handle the case where dest == x. ++ We "early clobber" the result. */ ++ op0 = gen_reg_rtx (GET_MODE (x)); ++ emit_move_insn (op0, x); ++ } ++ ++ emit_insn (gen_rtx_SET (dest, const0_rtx)); ++ if (GET_MODE (op0) != DImode) ++ { ++ temp = gen_reg_rtx (DImode); ++ convert_move (temp, op0, 0); ++ } ++ else ++ temp = op0; ++ emit_insn (gen_rtx_SET (dest, ++ gen_rtx_IF_THEN_ELSE (GET_MODE (dest), ++ gen_rtx_fmt_ee (compare_code, DImode, ++ temp, const0_rtx), ++ const1_rtx, ++ dest))); ++ return 1; ++ } ++ else ++ { ++ x = gen_compare_reg_1 (compare_code, x, y); ++ y = const0_rtx; ++ ++ emit_insn (gen_rtx_SET (dest, const0_rtx)); ++ emit_insn (gen_rtx_SET (dest, ++ gen_rtx_IF_THEN_ELSE (GET_MODE (dest), ++ gen_rtx_fmt_ee (compare_code, ++ GET_MODE (x), x, y), ++ const1_rtx, dest))); ++ return 1; ++ } ++} ++ ++ ++/* Emit an scc insn. For seq, sne, sgeu, and sltu, we can do this ++ without jumps using the addx/subx instructions. */ ++ ++bool ++emit_scc_insn (rtx operands[]) ++{ ++ rtx tem, x, y; ++ enum rtx_code code; ++ machine_mode mode; ++ ++ /* The quad-word fp compare library routines all return nonzero to indicate ++ true, which is different from the equivalent libgcc routines, so we must ++ handle them specially here. */ ++ if (GET_MODE (operands[2]) == TFmode && ! TARGET_HARD_QUAD) ++ { ++ operands[1] = sparc_emit_float_lib_cmp (operands[2], operands[3], ++ GET_CODE (operands[1])); ++ operands[2] = XEXP (operands[1], 0); ++ operands[3] = XEXP (operands[1], 1); ++ } ++ ++ code = GET_CODE (operands[1]); ++ x = operands[2]; ++ y = operands[3]; ++ mode = GET_MODE (x); ++ ++ /* For seq/sne on v9 we use the same code as v8 (the addx/subx method has ++ more applications). The exception to this is "reg != 0" which can ++ be done in one instruction on v9 (so we do it). */ ++ if ((code == EQ || code == NE) && (mode == SImode || mode == DImode)) ++ { ++ if (y != const0_rtx) ++ x = force_reg (mode, gen_rtx_XOR (mode, x, y)); ++ ++ rtx pat = gen_rtx_SET (operands[0], ++ gen_rtx_fmt_ee (code, GET_MODE (operands[0]), ++ x, const0_rtx)); ++ ++ /* If we can use addx/subx or addxc, add a clobber for CC. */ ++ if (mode == SImode || (code == NE && TARGET_VIS3)) ++ { ++ rtx clobber ++ = gen_rtx_CLOBBER (VOIDmode, ++ gen_rtx_REG (mode == SImode ? CCmode : CCXmode, ++ SPARC_ICC_REG)); ++ pat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, pat, clobber)); ++ } ++ ++ emit_insn (pat); ++ return true; ++ } ++ ++ /* We can do LTU in DImode using the addxc instruction with VIS3. */ ++ if (TARGET_ARCH64 ++ && mode == DImode ++ && !((code == LTU || code == GTU) && TARGET_VIS3) ++ && gen_v9_scc (operands[0], code, x, y)) ++ return true; ++ ++ /* We can do LTU and GEU using the addx/subx instructions too. And ++ for GTU/LEU, if both operands are registers swap them and fall ++ back to the easy case. */ ++ if (code == GTU || code == LEU) ++ { ++ if ((GET_CODE (x) == REG || GET_CODE (x) == SUBREG) ++ && (GET_CODE (y) == REG || GET_CODE (y) == SUBREG)) ++ { ++ tem = x; ++ x = y; ++ y = tem; ++ code = swap_condition (code); ++ } ++ } ++ ++ if (code == LTU || code == GEU) ++ { ++ emit_insn (gen_rtx_SET (operands[0], ++ gen_rtx_fmt_ee (code, GET_MODE (operands[0]), ++ gen_compare_reg_1 (code, x, y), ++ const0_rtx))); ++ return true; ++ } ++ ++ /* All the posibilities to use addx/subx based sequences has been ++ exhausted, try for a 3 instruction sequence using v9 conditional ++ moves. */ ++ if (TARGET_V9 && gen_v9_scc (operands[0], code, x, y)) ++ return true; ++ ++ /* Nope, do branches. */ ++ return false; ++} ++ ++/* Emit a conditional jump insn for the v9 architecture using comparison code ++ CODE and jump target LABEL. ++ This function exists to take advantage of the v9 brxx insns. */ ++ ++static void ++emit_v9_brxx_insn (enum rtx_code code, rtx op0, rtx label) ++{ ++ emit_jump_insn (gen_rtx_SET (pc_rtx, ++ gen_rtx_IF_THEN_ELSE (VOIDmode, ++ gen_rtx_fmt_ee (code, GET_MODE (op0), ++ op0, const0_rtx), ++ gen_rtx_LABEL_REF (VOIDmode, label), ++ pc_rtx))); ++} ++ ++/* Emit a conditional jump insn for the UA2011 architecture using ++ comparison code CODE and jump target LABEL. This function exists ++ to take advantage of the UA2011 Compare and Branch insns. */ ++ ++static void ++emit_cbcond_insn (enum rtx_code code, rtx op0, rtx op1, rtx label) ++{ ++ rtx if_then_else; ++ ++ if_then_else = gen_rtx_IF_THEN_ELSE (VOIDmode, ++ gen_rtx_fmt_ee(code, GET_MODE(op0), ++ op0, op1), ++ gen_rtx_LABEL_REF (VOIDmode, label), ++ pc_rtx); ++ ++ emit_jump_insn (gen_rtx_SET (pc_rtx, if_then_else)); ++} ++ ++void ++emit_conditional_branch_insn (rtx operands[]) ++{ ++ /* The quad-word fp compare library routines all return nonzero to indicate ++ true, which is different from the equivalent libgcc routines, so we must ++ handle them specially here. */ ++ if (GET_MODE (operands[1]) == TFmode && ! TARGET_HARD_QUAD) ++ { ++ operands[0] = sparc_emit_float_lib_cmp (operands[1], operands[2], ++ GET_CODE (operands[0])); ++ operands[1] = XEXP (operands[0], 0); ++ operands[2] = XEXP (operands[0], 1); ++ } ++ ++ /* If we can tell early on that the comparison is against a constant ++ that won't fit in the 5-bit signed immediate field of a cbcond, ++ use one of the other v9 conditional branch sequences. */ ++ if (TARGET_CBCOND ++ && GET_CODE (operands[1]) == REG ++ && (GET_MODE (operands[1]) == SImode ++ || (TARGET_ARCH64 && GET_MODE (operands[1]) == DImode)) ++ && (GET_CODE (operands[2]) != CONST_INT ++ || SPARC_SIMM5_P (INTVAL (operands[2])))) ++ { ++ emit_cbcond_insn (GET_CODE (operands[0]), operands[1], operands[2], operands[3]); ++ return; ++ } ++ ++ if (TARGET_ARCH64 && operands[2] == const0_rtx ++ && GET_CODE (operands[1]) == REG ++ && GET_MODE (operands[1]) == DImode) ++ { ++ emit_v9_brxx_insn (GET_CODE (operands[0]), operands[1], operands[3]); ++ return; ++ } ++ ++ operands[1] = gen_compare_reg (operands[0]); ++ operands[2] = const0_rtx; ++ operands[0] = gen_rtx_fmt_ee (GET_CODE (operands[0]), VOIDmode, ++ operands[1], operands[2]); ++ emit_jump_insn (gen_cbranchcc4 (operands[0], operands[1], operands[2], ++ operands[3])); ++} ++ ++ ++/* Generate a DFmode part of a hard TFmode register. ++ REG is the TFmode hard register, LOW is 1 for the ++ low 64bit of the register and 0 otherwise. ++ */ ++rtx ++gen_df_reg (rtx reg, int low) ++{ ++ int regno = REGNO (reg); ++ ++ if ((WORDS_BIG_ENDIAN == 0) ^ (low != 0)) ++ regno += (TARGET_ARCH64 && SPARC_INT_REG_P (regno)) ? 1 : 2; ++ return gen_rtx_REG (DFmode, regno); ++} ++ ++/* Generate a call to FUNC with OPERANDS. Operand 0 is the return value. ++ Unlike normal calls, TFmode operands are passed by reference. It is ++ assumed that no more than 3 operands are required. */ ++ ++static void ++emit_soft_tfmode_libcall (const char *func_name, int nargs, rtx *operands) ++{ ++ rtx ret_slot = NULL, arg[3], func_sym; ++ int i; ++ ++ /* We only expect to be called for conversions, unary, and binary ops. */ ++ gcc_assert (nargs == 2 || nargs == 3); ++ ++ for (i = 0; i < nargs; ++i) ++ { ++ rtx this_arg = operands[i]; ++ rtx this_slot; ++ ++ /* TFmode arguments and return values are passed by reference. */ ++ if (GET_MODE (this_arg) == TFmode) ++ { ++ int force_stack_temp; ++ ++ force_stack_temp = 0; ++ if (TARGET_BUGGY_QP_LIB && i == 0) ++ force_stack_temp = 1; ++ ++ if (GET_CODE (this_arg) == MEM ++ && ! force_stack_temp) ++ { ++ tree expr = MEM_EXPR (this_arg); ++ if (expr) ++ mark_addressable (expr); ++ this_arg = XEXP (this_arg, 0); ++ } ++ else if (CONSTANT_P (this_arg) ++ && ! force_stack_temp) ++ { ++ this_slot = force_const_mem (TFmode, this_arg); ++ this_arg = XEXP (this_slot, 0); ++ } ++ else ++ { ++ this_slot = assign_stack_temp (TFmode, GET_MODE_SIZE (TFmode)); ++ ++ /* Operand 0 is the return value. We'll copy it out later. */ ++ if (i > 0) ++ emit_move_insn (this_slot, this_arg); ++ else ++ ret_slot = this_slot; ++ ++ this_arg = XEXP (this_slot, 0); ++ } ++ } ++ ++ arg[i] = this_arg; ++ } ++ ++ func_sym = gen_rtx_SYMBOL_REF (Pmode, func_name); ++ ++ if (GET_MODE (operands[0]) == TFmode) ++ { ++ if (nargs == 2) ++ emit_library_call (func_sym, LCT_NORMAL, VOIDmode, ++ arg[0], GET_MODE (arg[0]), ++ arg[1], GET_MODE (arg[1])); ++ else ++ emit_library_call (func_sym, LCT_NORMAL, VOIDmode, ++ arg[0], GET_MODE (arg[0]), ++ arg[1], GET_MODE (arg[1]), ++ arg[2], GET_MODE (arg[2])); ++ ++ if (ret_slot) ++ emit_move_insn (operands[0], ret_slot); ++ } ++ else ++ { ++ rtx ret; ++ ++ gcc_assert (nargs == 2); ++ ++ ret = emit_library_call_value (func_sym, operands[0], LCT_NORMAL, ++ GET_MODE (operands[0]), ++ arg[1], GET_MODE (arg[1])); ++ ++ if (ret != operands[0]) ++ emit_move_insn (operands[0], ret); ++ } ++} ++ ++/* Expand soft-float TFmode calls to sparc abi routines. */ ++ ++static void ++emit_soft_tfmode_binop (enum rtx_code code, rtx *operands) ++{ ++ const char *func; ++ ++ switch (code) ++ { ++ case PLUS: ++ func = "_Qp_add"; ++ break; ++ case MINUS: ++ func = "_Qp_sub"; ++ break; ++ case MULT: ++ func = "_Qp_mul"; ++ break; ++ case DIV: ++ func = "_Qp_div"; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ ++ emit_soft_tfmode_libcall (func, 3, operands); ++} ++ ++static void ++emit_soft_tfmode_unop (enum rtx_code code, rtx *operands) ++{ ++ const char *func; ++ ++ gcc_assert (code == SQRT); ++ func = "_Qp_sqrt"; ++ ++ emit_soft_tfmode_libcall (func, 2, operands); ++} ++ ++static void ++emit_soft_tfmode_cvt (enum rtx_code code, rtx *operands) ++{ ++ const char *func; ++ ++ switch (code) ++ { ++ case FLOAT_EXTEND: ++ switch (GET_MODE (operands[1])) ++ { ++ case E_SFmode: ++ func = "_Qp_stoq"; ++ break; ++ case E_DFmode: ++ func = "_Qp_dtoq"; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ break; ++ ++ case FLOAT_TRUNCATE: ++ switch (GET_MODE (operands[0])) ++ { ++ case E_SFmode: ++ func = "_Qp_qtos"; ++ break; ++ case E_DFmode: ++ func = "_Qp_qtod"; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ break; ++ ++ case FLOAT: ++ switch (GET_MODE (operands[1])) ++ { ++ case E_SImode: ++ func = "_Qp_itoq"; ++ if (TARGET_ARCH64) ++ operands[1] = gen_rtx_SIGN_EXTEND (DImode, operands[1]); ++ break; ++ case E_DImode: ++ func = "_Qp_xtoq"; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ break; ++ ++ case UNSIGNED_FLOAT: ++ switch (GET_MODE (operands[1])) ++ { ++ case E_SImode: ++ func = "_Qp_uitoq"; ++ if (TARGET_ARCH64) ++ operands[1] = gen_rtx_ZERO_EXTEND (DImode, operands[1]); ++ break; ++ case E_DImode: ++ func = "_Qp_uxtoq"; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ break; ++ ++ case FIX: ++ switch (GET_MODE (operands[0])) ++ { ++ case E_SImode: ++ func = "_Qp_qtoi"; ++ break; ++ case E_DImode: ++ func = "_Qp_qtox"; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ break; ++ ++ case UNSIGNED_FIX: ++ switch (GET_MODE (operands[0])) ++ { ++ case E_SImode: ++ func = "_Qp_qtoui"; ++ break; ++ case E_DImode: ++ func = "_Qp_qtoux"; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ ++ emit_soft_tfmode_libcall (func, 2, operands); ++} ++ ++/* Expand a hard-float tfmode operation. All arguments must be in ++ registers. */ ++ ++static void ++emit_hard_tfmode_operation (enum rtx_code code, rtx *operands) ++{ ++ rtx op, dest; ++ ++ if (GET_RTX_CLASS (code) == RTX_UNARY) ++ { ++ operands[1] = force_reg (GET_MODE (operands[1]), operands[1]); ++ op = gen_rtx_fmt_e (code, GET_MODE (operands[0]), operands[1]); ++ } ++ else ++ { ++ operands[1] = force_reg (GET_MODE (operands[1]), operands[1]); ++ operands[2] = force_reg (GET_MODE (operands[2]), operands[2]); ++ op = gen_rtx_fmt_ee (code, GET_MODE (operands[0]), ++ operands[1], operands[2]); ++ } ++ ++ if (register_operand (operands[0], VOIDmode)) ++ dest = operands[0]; ++ else ++ dest = gen_reg_rtx (GET_MODE (operands[0])); ++ ++ emit_insn (gen_rtx_SET (dest, op)); ++ ++ if (dest != operands[0]) ++ emit_move_insn (operands[0], dest); ++} ++ ++void ++emit_tfmode_binop (enum rtx_code code, rtx *operands) ++{ ++ if (TARGET_HARD_QUAD) ++ emit_hard_tfmode_operation (code, operands); ++ else ++ emit_soft_tfmode_binop (code, operands); ++} ++ ++void ++emit_tfmode_unop (enum rtx_code code, rtx *operands) ++{ ++ if (TARGET_HARD_QUAD) ++ emit_hard_tfmode_operation (code, operands); ++ else ++ emit_soft_tfmode_unop (code, operands); ++} ++ ++void ++emit_tfmode_cvt (enum rtx_code code, rtx *operands) ++{ ++ if (TARGET_HARD_QUAD) ++ emit_hard_tfmode_operation (code, operands); ++ else ++ emit_soft_tfmode_cvt (code, operands); ++} ++ ++/* Return nonzero if a branch/jump/call instruction will be emitting ++ nop into its delay slot. */ ++ ++int ++empty_delay_slot (rtx_insn *insn) ++{ ++ rtx seq; ++ ++ /* If no previous instruction (should not happen), return true. */ ++ if (PREV_INSN (insn) == NULL) ++ return 1; ++ ++ seq = NEXT_INSN (PREV_INSN (insn)); ++ if (GET_CODE (PATTERN (seq)) == SEQUENCE) ++ return 0; ++ ++ return 1; ++} ++ ++/* Return nonzero if we should emit a nop after a cbcond instruction. ++ The cbcond instruction does not have a delay slot, however there is ++ a severe performance penalty if a control transfer appears right ++ after a cbcond. Therefore we emit a nop when we detect this ++ situation. */ ++ ++int ++emit_cbcond_nop (rtx_insn *insn) ++{ ++ rtx next = next_active_insn (insn); ++ ++ if (!next) ++ return 1; ++ ++ if (NONJUMP_INSN_P (next) ++ && GET_CODE (PATTERN (next)) == SEQUENCE) ++ next = XVECEXP (PATTERN (next), 0, 0); ++ else if (CALL_P (next) ++ && GET_CODE (PATTERN (next)) == PARALLEL) ++ { ++ rtx delay = XVECEXP (PATTERN (next), 0, 1); ++ ++ if (GET_CODE (delay) == RETURN) ++ { ++ /* It's a sibling call. Do not emit the nop if we're going ++ to emit something other than the jump itself as the first ++ instruction of the sibcall sequence. */ ++ if (sparc_leaf_function_p || TARGET_FLAT) ++ return 0; ++ } ++ } ++ ++ if (NONJUMP_INSN_P (next)) ++ return 0; ++ ++ return 1; ++} ++ ++/* Return nonzero if TRIAL, an insn, can be combined with a 'restore' ++ instruction. RETURN_P is true if the v9 variant 'return' is to be ++ considered in the test too. ++ ++ TRIAL must be a SET whose destination is a REG appropriate for the ++ 'restore' instruction or, if RETURN_P is true, for the 'return' ++ instruction. */ ++ ++static int ++eligible_for_restore_insn (rtx trial, bool return_p) ++{ ++ rtx pat = PATTERN (trial); ++ rtx src = SET_SRC (pat); ++ bool src_is_freg = false; ++ rtx src_reg; ++ ++ /* Since we now can do moves between float and integer registers when ++ VIS3 is enabled, we have to catch this case. We can allow such ++ moves when doing a 'return' however. */ ++ src_reg = src; ++ if (GET_CODE (src_reg) == SUBREG) ++ src_reg = SUBREG_REG (src_reg); ++ if (GET_CODE (src_reg) == REG ++ && SPARC_FP_REG_P (REGNO (src_reg))) ++ src_is_freg = true; ++ ++ /* The 'restore src,%g0,dest' pattern for word mode and below. */ ++ if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT ++ && arith_operand (src, GET_MODE (src)) ++ && ! src_is_freg) ++ { ++ if (TARGET_ARCH64) ++ return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); ++ else ++ return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode); ++ } ++ ++ /* The 'restore src,%g0,dest' pattern for double-word mode. */ ++ else if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT ++ && arith_double_operand (src, GET_MODE (src)) ++ && ! src_is_freg) ++ return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); ++ ++ /* The 'restore src,%g0,dest' pattern for float if no FPU. */ ++ else if (! TARGET_FPU && register_operand (src, SFmode)) ++ return 1; ++ ++ /* The 'restore src,%g0,dest' pattern for double if no FPU. */ ++ else if (! TARGET_FPU && TARGET_ARCH64 && register_operand (src, DFmode)) ++ return 1; ++ ++ /* If we have the 'return' instruction, anything that does not use ++ local or output registers and can go into a delay slot wins. */ ++ else if (return_p && TARGET_V9 && !epilogue_renumber (&pat, 1)) ++ return 1; ++ ++ /* The 'restore src1,src2,dest' pattern for SImode. */ ++ else if (GET_CODE (src) == PLUS ++ && register_operand (XEXP (src, 0), SImode) ++ && arith_operand (XEXP (src, 1), SImode)) ++ return 1; ++ ++ /* The 'restore src1,src2,dest' pattern for DImode. */ ++ else if (GET_CODE (src) == PLUS ++ && register_operand (XEXP (src, 0), DImode) ++ && arith_double_operand (XEXP (src, 1), DImode)) ++ return 1; ++ ++ /* The 'restore src1,%lo(src2),dest' pattern. */ ++ else if (GET_CODE (src) == LO_SUM ++ && ! TARGET_CM_MEDMID ++ && ((register_operand (XEXP (src, 0), SImode) ++ && immediate_operand (XEXP (src, 1), SImode)) ++ || (TARGET_ARCH64 ++ && register_operand (XEXP (src, 0), DImode) ++ && immediate_operand (XEXP (src, 1), DImode)))) ++ return 1; ++ ++ /* The 'restore src,src,dest' pattern. */ ++ else if (GET_CODE (src) == ASHIFT ++ && (register_operand (XEXP (src, 0), SImode) ++ || register_operand (XEXP (src, 0), DImode)) ++ && XEXP (src, 1) == const1_rtx) ++ return 1; ++ ++ return 0; ++} ++ ++/* Return nonzero if TRIAL can go into the function return's delay slot. */ ++ ++int ++eligible_for_return_delay (rtx_insn *trial) ++{ ++ int regno; ++ rtx pat; ++ ++ /* If the function uses __builtin_eh_return, the eh_return machinery ++ occupies the delay slot. */ ++ if (crtl->calls_eh_return) ++ return 0; ++ ++ if (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_FALSE) ++ return 0; ++ ++ /* In the case of a leaf or flat function, anything can go into the slot. */ ++ if (sparc_leaf_function_p || TARGET_FLAT) ++ return 1; ++ ++ if (!NONJUMP_INSN_P (trial)) ++ return 0; ++ ++ pat = PATTERN (trial); ++ if (GET_CODE (pat) == PARALLEL) ++ { ++ int i; ++ ++ if (! TARGET_V9) ++ return 0; ++ for (i = XVECLEN (pat, 0) - 1; i >= 0; i--) ++ { ++ rtx expr = XVECEXP (pat, 0, i); ++ if (GET_CODE (expr) != SET) ++ return 0; ++ if (GET_CODE (SET_DEST (expr)) != REG) ++ return 0; ++ regno = REGNO (SET_DEST (expr)); ++ if (regno >= 8 && regno < 24) ++ return 0; ++ } ++ return !epilogue_renumber (&pat, 1); ++ } ++ ++ if (GET_CODE (pat) != SET) ++ return 0; ++ ++ if (GET_CODE (SET_DEST (pat)) != REG) ++ return 0; ++ ++ regno = REGNO (SET_DEST (pat)); ++ ++ /* Otherwise, only operations which can be done in tandem with ++ a `restore' or `return' insn can go into the delay slot. */ ++ if (regno >= 8 && regno < 24) ++ return 0; ++ ++ /* If this instruction sets up floating point register and we have a return ++ instruction, it can probably go in. But restore will not work ++ with FP_REGS. */ ++ if (! SPARC_INT_REG_P (regno)) ++ return TARGET_V9 && !epilogue_renumber (&pat, 1); ++ ++ return eligible_for_restore_insn (trial, true); ++} ++ ++/* Return nonzero if TRIAL can go into the sibling call's delay slot. */ ++ ++int ++eligible_for_sibcall_delay (rtx_insn *trial) ++{ ++ rtx pat; ++ ++ if (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_FALSE) ++ return 0; ++ ++ if (!NONJUMP_INSN_P (trial)) ++ return 0; ++ ++ pat = PATTERN (trial); ++ ++ if (sparc_leaf_function_p || TARGET_FLAT) ++ { ++ /* If the tail call is done using the call instruction, ++ we have to restore %o7 in the delay slot. */ ++ if (LEAF_SIBCALL_SLOT_RESERVED_P) ++ return 0; ++ ++ /* %g1 is used to build the function address */ ++ if (reg_mentioned_p (gen_rtx_REG (Pmode, 1), pat)) ++ return 0; ++ ++ return 1; ++ } ++ ++ if (GET_CODE (pat) != SET) ++ return 0; ++ ++ /* Otherwise, only operations which can be done in tandem with ++ a `restore' insn can go into the delay slot. */ ++ if (GET_CODE (SET_DEST (pat)) != REG ++ || (REGNO (SET_DEST (pat)) >= 8 && REGNO (SET_DEST (pat)) < 24) ++ || ! SPARC_INT_REG_P (REGNO (SET_DEST (pat)))) ++ return 0; ++ ++ /* If it mentions %o7, it can't go in, because sibcall will clobber it ++ in most cases. */ ++ if (reg_mentioned_p (gen_rtx_REG (Pmode, 15), pat)) ++ return 0; ++ ++ return eligible_for_restore_insn (trial, false); ++} ++ ++/* Determine if it's legal to put X into the constant pool. This ++ is not possible if X contains the address of a symbol that is ++ not constant (TLS) or not known at final link time (PIC). */ ++ ++static bool ++sparc_cannot_force_const_mem (machine_mode mode, rtx x) ++{ ++ switch (GET_CODE (x)) ++ { ++ case CONST_INT: ++ case CONST_WIDE_INT: ++ case CONST_DOUBLE: ++ case CONST_VECTOR: ++ /* Accept all non-symbolic constants. */ ++ return false; ++ ++ case LABEL_REF: ++ /* Labels are OK iff we are non-PIC. */ ++ return flag_pic != 0; ++ ++ case SYMBOL_REF: ++ /* 'Naked' TLS symbol references are never OK, ++ non-TLS symbols are OK iff we are non-PIC. */ ++ if (SYMBOL_REF_TLS_MODEL (x)) ++ return true; ++ else ++ return flag_pic != 0; ++ ++ case CONST: ++ return sparc_cannot_force_const_mem (mode, XEXP (x, 0)); ++ case PLUS: ++ case MINUS: ++ return sparc_cannot_force_const_mem (mode, XEXP (x, 0)) ++ || sparc_cannot_force_const_mem (mode, XEXP (x, 1)); ++ case UNSPEC: ++ return true; ++ default: ++ gcc_unreachable (); ++ } ++} ++ ++/* Global Offset Table support. */ ++static GTY(()) rtx got_symbol_rtx = NULL_RTX; ++static GTY(()) rtx got_register_rtx = NULL_RTX; ++static GTY(()) rtx got_helper_rtx = NULL_RTX; ++ ++static GTY(()) bool got_helper_needed = false; ++ ++/* Return the SYMBOL_REF for the Global Offset Table. */ ++ ++static rtx ++sparc_got (void) ++{ ++ if (!got_symbol_rtx) ++ got_symbol_rtx = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); ++ ++ return got_symbol_rtx; ++} ++ ++/* Wrapper around the load_pcrel_sym{si,di} patterns. */ ++ ++static rtx ++gen_load_pcrel_sym (rtx op0, rtx op1, rtx op2) ++{ ++ int orig_flag_pic = flag_pic; ++ rtx insn; ++ ++ /* The load_pcrel_sym{si,di} patterns require absolute addressing. */ ++ flag_pic = 0; ++ if (TARGET_ARCH64) ++ insn = gen_load_pcrel_symdi (op0, op1, op2, GEN_INT (REGNO (op0))); ++ else ++ insn = gen_load_pcrel_symsi (op0, op1, op2, GEN_INT (REGNO (op0))); ++ flag_pic = orig_flag_pic; ++ ++ return insn; ++} ++ ++/* Output the load_pcrel_sym{si,di} patterns. */ ++ ++const char * ++output_load_pcrel_sym (rtx *operands) ++{ ++ if (flag_delayed_branch) ++ { ++ output_asm_insn ("sethi\t%%hi(%a1-4), %0", operands); ++ output_asm_insn ("call\t%a2", operands); ++ output_asm_insn (" add\t%0, %%lo(%a1+4), %0", operands); ++ } ++ else ++ { ++ output_asm_insn ("sethi\t%%hi(%a1-8), %0", operands); ++ output_asm_insn ("add\t%0, %%lo(%a1-4), %0", operands); ++ output_asm_insn ("call\t%a2", operands); ++ output_asm_insn (" nop", NULL); ++ } ++ ++ if (operands[2] == got_helper_rtx) ++ got_helper_needed = true; ++ ++ return ""; ++} ++ ++#ifdef HAVE_GAS_HIDDEN ++# define USE_HIDDEN_LINKONCE 1 ++#else ++# define USE_HIDDEN_LINKONCE 0 ++#endif ++ ++/* Emit code to load the GOT register. */ ++ ++void ++load_got_register (void) ++{ ++ rtx insn; ++ ++ if (TARGET_VXWORKS_RTP) ++ { ++ if (!got_register_rtx) ++ got_register_rtx = pic_offset_table_rtx; ++ ++ insn = gen_vxworks_load_got (); ++ } ++ else ++ { ++ if (!got_register_rtx) ++ got_register_rtx = gen_rtx_REG (Pmode, GLOBAL_OFFSET_TABLE_REGNUM); ++ ++ /* The GOT symbol is subject to a PC-relative relocation so we need a ++ helper function to add the PC value and thus get the final value. */ ++ if (!got_helper_rtx) ++ { ++ char name[32]; ++ ++ /* Skip the leading '%' as that cannot be used in a symbol name. */ ++ if (USE_HIDDEN_LINKONCE) ++ sprintf (name, "__sparc_get_pc_thunk.%s", ++ reg_names[REGNO (got_register_rtx)] + 1); ++ else ++ ASM_GENERATE_INTERNAL_LABEL (name, "LADDPC", ++ REGNO (got_register_rtx)); ++ ++ got_helper_rtx = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); ++ } ++ ++ insn ++ = gen_load_pcrel_sym (got_register_rtx, sparc_got (), got_helper_rtx); ++ } ++ ++ emit_insn (insn); ++} ++ ++/* Ensure that we are not using patterns that are not OK with PIC. */ ++ ++int ++check_pic (int i) ++{ ++ rtx op; ++ ++ switch (flag_pic) ++ { ++ case 1: ++ op = recog_data.operand[i]; ++ gcc_assert (GET_CODE (op) != SYMBOL_REF ++ && (GET_CODE (op) != CONST ++ || (GET_CODE (XEXP (op, 0)) == MINUS ++ && XEXP (XEXP (op, 0), 0) == sparc_got () ++ && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST))); ++ /* fallthrough */ ++ case 2: ++ default: ++ return 1; ++ } ++} ++ ++/* Return true if X is an address which needs a temporary register when ++ reloaded while generating PIC code. */ ++ ++int ++pic_address_needs_scratch (rtx x) ++{ ++ /* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */ ++ if (GET_CODE (x) == CONST ++ && GET_CODE (XEXP (x, 0)) == PLUS ++ && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF ++ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT ++ && !SMALL_INT (XEXP (XEXP (x, 0), 1))) ++ return 1; ++ ++ return 0; ++} ++ ++/* Determine if a given RTX is a valid constant. We already know this ++ satisfies CONSTANT_P. */ ++ ++static bool ++sparc_legitimate_constant_p (machine_mode mode, rtx x) ++{ ++ switch (GET_CODE (x)) ++ { ++ case CONST: ++ case SYMBOL_REF: ++ if (sparc_tls_referenced_p (x)) ++ return false; ++ break; ++ ++ case CONST_DOUBLE: ++ /* Floating point constants are generally not ok. ++ The only exception is 0.0 and all-ones in VIS. */ ++ if (TARGET_VIS ++ && SCALAR_FLOAT_MODE_P (mode) ++ && (const_zero_operand (x, mode) ++ || const_all_ones_operand (x, mode))) ++ return true; ++ ++ return false; ++ ++ case CONST_VECTOR: ++ /* Vector constants are generally not ok. ++ The only exception is 0 or -1 in VIS. */ ++ if (TARGET_VIS ++ && (const_zero_operand (x, mode) ++ || const_all_ones_operand (x, mode))) ++ return true; ++ ++ return false; ++ ++ default: ++ break; ++ } ++ ++ return true; ++} ++ ++/* Determine if a given RTX is a valid constant address. */ ++ ++bool ++constant_address_p (rtx x) ++{ ++ switch (GET_CODE (x)) ++ { ++ case LABEL_REF: ++ case CONST_INT: ++ case HIGH: ++ return true; ++ ++ case CONST: ++ if (flag_pic && pic_address_needs_scratch (x)) ++ return false; ++ return sparc_legitimate_constant_p (Pmode, x); ++ ++ case SYMBOL_REF: ++ return !flag_pic && sparc_legitimate_constant_p (Pmode, x); ++ ++ default: ++ return false; ++ } ++} ++ ++/* Nonzero if the constant value X is a legitimate general operand ++ when generating PIC code. It is given that flag_pic is on and ++ that X satisfies CONSTANT_P. */ ++ ++bool ++legitimate_pic_operand_p (rtx x) ++{ ++ if (pic_address_needs_scratch (x)) ++ return false; ++ if (sparc_tls_referenced_p (x)) ++ return false; ++ return true; ++} ++ ++/* Return true if X is a representation of the PIC register. */ ++ ++static bool ++sparc_pic_register_p (rtx x) ++{ ++ if (!REG_P (x) || !pic_offset_table_rtx) ++ return false; ++ ++ if (x == pic_offset_table_rtx) ++ return true; ++ ++ if (!HARD_REGISTER_P (pic_offset_table_rtx) ++ && (HARD_REGISTER_P (x) || lra_in_progress || reload_in_progress) ++ && ORIGINAL_REGNO (x) == REGNO (pic_offset_table_rtx)) ++ return true; ++ ++ return false; ++} ++ ++#define RTX_OK_FOR_OFFSET_P(X, MODE) \ ++ (CONST_INT_P (X) \ ++ && INTVAL (X) >= -0x1000 \ ++ && INTVAL (X) <= (0x1000 - GET_MODE_SIZE (MODE))) ++ ++#define RTX_OK_FOR_OLO10_P(X, MODE) \ ++ (CONST_INT_P (X) \ ++ && INTVAL (X) >= -0x1000 \ ++ && INTVAL (X) <= (0xc00 - GET_MODE_SIZE (MODE))) ++ ++/* Handle the TARGET_LEGITIMATE_ADDRESS_P target hook. ++ ++ On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT ++ ordinarily. This changes a bit when generating PIC. */ ++ ++static bool ++sparc_legitimate_address_p (machine_mode mode, rtx addr, bool strict) ++{ ++ rtx rs1 = NULL, rs2 = NULL, imm1 = NULL; ++ ++ if (REG_P (addr) || GET_CODE (addr) == SUBREG) ++ rs1 = addr; ++ else if (GET_CODE (addr) == PLUS) ++ { ++ rs1 = XEXP (addr, 0); ++ rs2 = XEXP (addr, 1); ++ ++ /* Canonicalize. REG comes first, if there are no regs, ++ LO_SUM comes first. */ ++ if (!REG_P (rs1) ++ && GET_CODE (rs1) != SUBREG ++ && (REG_P (rs2) ++ || GET_CODE (rs2) == SUBREG ++ || (GET_CODE (rs2) == LO_SUM && GET_CODE (rs1) != LO_SUM))) ++ { ++ rs1 = XEXP (addr, 1); ++ rs2 = XEXP (addr, 0); ++ } ++ ++ if ((flag_pic == 1 ++ && sparc_pic_register_p (rs1) ++ && !REG_P (rs2) ++ && GET_CODE (rs2) != SUBREG ++ && GET_CODE (rs2) != LO_SUM ++ && GET_CODE (rs2) != MEM ++ && !(GET_CODE (rs2) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs2)) ++ && (! symbolic_operand (rs2, VOIDmode) || mode == Pmode) ++ && (GET_CODE (rs2) != CONST_INT || SMALL_INT (rs2))) ++ || ((REG_P (rs1) ++ || GET_CODE (rs1) == SUBREG) ++ && RTX_OK_FOR_OFFSET_P (rs2, mode))) ++ { ++ imm1 = rs2; ++ rs2 = NULL; ++ } ++ else if ((REG_P (rs1) || GET_CODE (rs1) == SUBREG) ++ && (REG_P (rs2) || GET_CODE (rs2) == SUBREG)) ++ { ++ /* We prohibit REG + REG for TFmode when there are no quad move insns ++ and we consequently need to split. We do this because REG+REG ++ is not an offsettable address. If we get the situation in reload ++ where source and destination of a movtf pattern are both MEMs with ++ REG+REG address, then only one of them gets converted to an ++ offsettable address. */ ++ if (mode == TFmode ++ && ! (TARGET_ARCH64 && TARGET_HARD_QUAD)) ++ return 0; ++ ++ /* Likewise for TImode, but in all cases. */ ++ if (mode == TImode) ++ return 0; ++ ++ /* We prohibit REG + REG on ARCH32 if not optimizing for ++ DFmode/DImode because then mem_min_alignment is likely to be zero ++ after reload and the forced split would lack a matching splitter ++ pattern. */ ++ if (TARGET_ARCH32 && !optimize ++ && (mode == DFmode || mode == DImode)) ++ return 0; ++ } ++ else if (USE_AS_OFFSETABLE_LO10 ++ && GET_CODE (rs1) == LO_SUM ++ && TARGET_ARCH64 ++ && ! TARGET_CM_MEDMID ++ && RTX_OK_FOR_OLO10_P (rs2, mode)) ++ { ++ rs2 = NULL; ++ imm1 = XEXP (rs1, 1); ++ rs1 = XEXP (rs1, 0); ++ if (!CONSTANT_P (imm1) ++ || (GET_CODE (rs1) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs1))) ++ return 0; ++ } ++ } ++ else if (GET_CODE (addr) == LO_SUM) ++ { ++ rs1 = XEXP (addr, 0); ++ imm1 = XEXP (addr, 1); ++ ++ if (!CONSTANT_P (imm1) ++ || (GET_CODE (rs1) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs1))) ++ return 0; ++ ++ /* We can't allow TFmode in 32-bit mode, because an offset greater ++ than the alignment (8) may cause the LO_SUM to overflow. */ ++ if (mode == TFmode && TARGET_ARCH32) ++ return 0; ++ ++ /* During reload, accept the HIGH+LO_SUM construct generated by ++ sparc_legitimize_reload_address. */ ++ if (reload_in_progress ++ && GET_CODE (rs1) == HIGH ++ && XEXP (rs1, 0) == imm1) ++ return 1; ++ } ++ else if (GET_CODE (addr) == CONST_INT && SMALL_INT (addr)) ++ return 1; ++ else ++ return 0; ++ ++ if (GET_CODE (rs1) == SUBREG) ++ rs1 = SUBREG_REG (rs1); ++ if (!REG_P (rs1)) ++ return 0; ++ ++ if (rs2) ++ { ++ if (GET_CODE (rs2) == SUBREG) ++ rs2 = SUBREG_REG (rs2); ++ if (!REG_P (rs2)) ++ return 0; ++ } ++ ++ if (strict) ++ { ++ if (!REGNO_OK_FOR_BASE_P (REGNO (rs1)) ++ || (rs2 && !REGNO_OK_FOR_BASE_P (REGNO (rs2)))) ++ return 0; ++ } ++ else ++ { ++ if ((! SPARC_INT_REG_P (REGNO (rs1)) ++ && REGNO (rs1) != FRAME_POINTER_REGNUM ++ && REGNO (rs1) < FIRST_PSEUDO_REGISTER) ++ || (rs2 ++ && (! SPARC_INT_REG_P (REGNO (rs2)) ++ && REGNO (rs2) != FRAME_POINTER_REGNUM ++ && REGNO (rs2) < FIRST_PSEUDO_REGISTER))) ++ return 0; ++ } ++ return 1; ++} ++ ++/* Return the SYMBOL_REF for the tls_get_addr function. */ ++ ++static GTY(()) rtx sparc_tls_symbol = NULL_RTX; ++ ++static rtx ++sparc_tls_get_addr (void) ++{ ++ if (!sparc_tls_symbol) ++ sparc_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_addr"); ++ ++ return sparc_tls_symbol; ++} ++ ++/* Return the Global Offset Table to be used in TLS mode. */ ++ ++static rtx ++sparc_tls_got (void) ++{ ++ /* In PIC mode, this is just the PIC offset table. */ ++ if (flag_pic) ++ { ++ crtl->uses_pic_offset_table = 1; ++ return pic_offset_table_rtx; ++ } ++ ++ /* In non-PIC mode, Sun as (unlike GNU as) emits PC-relative relocations for ++ the GOT symbol with the 32-bit ABI, so we reload the GOT register. */ ++ if (TARGET_SUN_TLS && TARGET_ARCH32) ++ { ++ load_got_register (); ++ return got_register_rtx; ++ } ++ ++ /* In all other cases, we load a new pseudo with the GOT symbol. */ ++ return copy_to_reg (sparc_got ()); ++} ++ ++/* Return true if X contains a thread-local symbol. */ ++ ++static bool ++sparc_tls_referenced_p (rtx x) ++{ ++ if (!TARGET_HAVE_TLS) ++ return false; ++ ++ if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS) ++ x = XEXP (XEXP (x, 0), 0); ++ ++ if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x)) ++ return true; ++ ++ /* That's all we handle in sparc_legitimize_tls_address for now. */ ++ return false; ++} ++ ++/* ADDR contains a thread-local SYMBOL_REF. Generate code to compute ++ this (thread-local) address. */ ++ ++static rtx ++sparc_legitimize_tls_address (rtx addr) ++{ ++ rtx temp1, temp2, temp3, ret, o0, got; ++ rtx_insn *insn; ++ ++ gcc_assert (can_create_pseudo_p ()); ++ ++ if (GET_CODE (addr) == SYMBOL_REF) ++ /* Although the various sethi/or sequences generate SImode values, many of ++ them can be transformed by the linker when relaxing and, if relaxing to ++ local-exec, will become a sethi/xor pair, which is signed and therefore ++ a full DImode value in 64-bit mode. Thus we must use Pmode, lest these ++ values be spilled onto the stack in 64-bit mode. */ ++ switch (SYMBOL_REF_TLS_MODEL (addr)) ++ { ++ case TLS_MODEL_GLOBAL_DYNAMIC: ++ start_sequence (); ++ temp1 = gen_reg_rtx (Pmode); ++ temp2 = gen_reg_rtx (Pmode); ++ ret = gen_reg_rtx (Pmode); ++ o0 = gen_rtx_REG (Pmode, 8); ++ got = sparc_tls_got (); ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_tgd_hi22si (temp1, addr)); ++ emit_insn (gen_tgd_lo10si (temp2, temp1, addr)); ++ emit_insn (gen_tgd_addsi (o0, got, temp2, addr)); ++ insn = emit_call_insn (gen_tgd_callsi (o0, sparc_tls_get_addr (), ++ addr, const1_rtx)); ++ } ++ else ++ { ++ emit_insn (gen_tgd_hi22di (temp1, addr)); ++ emit_insn (gen_tgd_lo10di (temp2, temp1, addr)); ++ emit_insn (gen_tgd_adddi (o0, got, temp2, addr)); ++ insn = emit_call_insn (gen_tgd_calldi (o0, sparc_tls_get_addr (), ++ addr, const1_rtx)); ++ } ++ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), o0); ++ RTL_CONST_CALL_P (insn) = 1; ++ insn = get_insns (); ++ end_sequence (); ++ emit_libcall_block (insn, ret, o0, addr); ++ break; ++ ++ case TLS_MODEL_LOCAL_DYNAMIC: ++ start_sequence (); ++ temp1 = gen_reg_rtx (Pmode); ++ temp2 = gen_reg_rtx (Pmode); ++ temp3 = gen_reg_rtx (Pmode); ++ ret = gen_reg_rtx (Pmode); ++ o0 = gen_rtx_REG (Pmode, 8); ++ got = sparc_tls_got (); ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_tldm_hi22si (temp1)); ++ emit_insn (gen_tldm_lo10si (temp2, temp1)); ++ emit_insn (gen_tldm_addsi (o0, got, temp2)); ++ insn = emit_call_insn (gen_tldm_callsi (o0, sparc_tls_get_addr (), ++ const1_rtx)); ++ } ++ else ++ { ++ emit_insn (gen_tldm_hi22di (temp1)); ++ emit_insn (gen_tldm_lo10di (temp2, temp1)); ++ emit_insn (gen_tldm_adddi (o0, got, temp2)); ++ insn = emit_call_insn (gen_tldm_calldi (o0, sparc_tls_get_addr (), ++ const1_rtx)); ++ } ++ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), o0); ++ RTL_CONST_CALL_P (insn) = 1; ++ insn = get_insns (); ++ end_sequence (); ++ /* Attach a unique REG_EQUAL, to allow the RTL optimizers to ++ share the LD_BASE result with other LD model accesses. */ ++ emit_libcall_block (insn, temp3, o0, ++ gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), ++ UNSPEC_TLSLD_BASE)); ++ temp1 = gen_reg_rtx (Pmode); ++ temp2 = gen_reg_rtx (Pmode); ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_tldo_hix22si (temp1, addr)); ++ emit_insn (gen_tldo_lox10si (temp2, temp1, addr)); ++ emit_insn (gen_tldo_addsi (ret, temp3, temp2, addr)); ++ } ++ else ++ { ++ emit_insn (gen_tldo_hix22di (temp1, addr)); ++ emit_insn (gen_tldo_lox10di (temp2, temp1, addr)); ++ emit_insn (gen_tldo_adddi (ret, temp3, temp2, addr)); ++ } ++ break; ++ ++ case TLS_MODEL_INITIAL_EXEC: ++ temp1 = gen_reg_rtx (Pmode); ++ temp2 = gen_reg_rtx (Pmode); ++ temp3 = gen_reg_rtx (Pmode); ++ got = sparc_tls_got (); ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_tie_hi22si (temp1, addr)); ++ emit_insn (gen_tie_lo10si (temp2, temp1, addr)); ++ emit_insn (gen_tie_ld32 (temp3, got, temp2, addr)); ++ } ++ else ++ { ++ emit_insn (gen_tie_hi22di (temp1, addr)); ++ emit_insn (gen_tie_lo10di (temp2, temp1, addr)); ++ emit_insn (gen_tie_ld64 (temp3, got, temp2, addr)); ++ } ++ if (TARGET_SUN_TLS) ++ { ++ ret = gen_reg_rtx (Pmode); ++ if (TARGET_ARCH32) ++ emit_insn (gen_tie_addsi (ret, gen_rtx_REG (Pmode, 7), ++ temp3, addr)); ++ else ++ emit_insn (gen_tie_adddi (ret, gen_rtx_REG (Pmode, 7), ++ temp3, addr)); ++ } ++ else ++ ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp3); ++ break; ++ ++ case TLS_MODEL_LOCAL_EXEC: ++ temp1 = gen_reg_rtx (Pmode); ++ temp2 = gen_reg_rtx (Pmode); ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_tle_hix22si (temp1, addr)); ++ emit_insn (gen_tle_lox10si (temp2, temp1, addr)); ++ } ++ else ++ { ++ emit_insn (gen_tle_hix22di (temp1, addr)); ++ emit_insn (gen_tle_lox10di (temp2, temp1, addr)); ++ } ++ ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp2); ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ ++ else if (GET_CODE (addr) == CONST) ++ { ++ rtx base, offset; ++ ++ gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS); ++ ++ base = sparc_legitimize_tls_address (XEXP (XEXP (addr, 0), 0)); ++ offset = XEXP (XEXP (addr, 0), 1); ++ ++ base = force_operand (base, NULL_RTX); ++ if (!(GET_CODE (offset) == CONST_INT && SMALL_INT (offset))) ++ offset = force_reg (Pmode, offset); ++ ret = gen_rtx_PLUS (Pmode, base, offset); ++ } ++ ++ else ++ gcc_unreachable (); /* for now ... */ ++ ++ return ret; ++} ++ ++/* Legitimize PIC addresses. If the address is already position-independent, ++ we return ORIG. Newly generated position-independent addresses go into a ++ reg. This is REG if nonzero, otherwise we allocate register(s) as ++ necessary. */ ++ ++static rtx ++sparc_legitimize_pic_address (rtx orig, rtx reg) ++{ ++ if (GET_CODE (orig) == SYMBOL_REF ++ /* See the comment in sparc_expand_move. */ ++ || (GET_CODE (orig) == LABEL_REF && !can_use_mov_pic_label_ref (orig))) ++ { ++ bool gotdata_op = false; ++ rtx pic_ref, address; ++ rtx_insn *insn; ++ ++ if (!reg) ++ { ++ gcc_assert (can_create_pseudo_p ()); ++ reg = gen_reg_rtx (Pmode); ++ } ++ ++ if (flag_pic == 2) ++ { ++ /* If not during reload, allocate another temp reg here for loading ++ in the address, so that these instructions can be optimized ++ properly. */ ++ rtx temp_reg = can_create_pseudo_p () ? gen_reg_rtx (Pmode) : reg; ++ ++ /* Must put the SYMBOL_REF inside an UNSPEC here so that cse ++ won't get confused into thinking that these two instructions ++ are loading in the true address of the symbol. If in the ++ future a PIC rtx exists, that should be used instead. */ ++ if (TARGET_ARCH64) ++ { ++ emit_insn (gen_movdi_high_pic (temp_reg, orig)); ++ emit_insn (gen_movdi_lo_sum_pic (temp_reg, temp_reg, orig)); ++ } ++ else ++ { ++ emit_insn (gen_movsi_high_pic (temp_reg, orig)); ++ emit_insn (gen_movsi_lo_sum_pic (temp_reg, temp_reg, orig)); ++ } ++ ++ address = temp_reg; ++ gotdata_op = true; ++ } ++ else ++ address = orig; ++ ++ crtl->uses_pic_offset_table = 1; ++ if (gotdata_op) ++ { ++ if (TARGET_ARCH64) ++ insn = emit_insn (gen_movdi_pic_gotdata_op (reg, ++ pic_offset_table_rtx, ++ address, orig)); ++ else ++ insn = emit_insn (gen_movsi_pic_gotdata_op (reg, ++ pic_offset_table_rtx, ++ address, orig)); ++ } ++ else ++ { ++ pic_ref ++ = gen_const_mem (Pmode, ++ gen_rtx_PLUS (Pmode, ++ pic_offset_table_rtx, address)); ++ insn = emit_move_insn (reg, pic_ref); ++ } ++ ++ /* Put a REG_EQUAL note on this insn, so that it can be optimized ++ by loop. */ ++ set_unique_reg_note (insn, REG_EQUAL, orig); ++ return reg; ++ } ++ else if (GET_CODE (orig) == CONST) ++ { ++ rtx base, offset; ++ ++ if (GET_CODE (XEXP (orig, 0)) == PLUS ++ && sparc_pic_register_p (XEXP (XEXP (orig, 0), 0))) ++ return orig; ++ ++ if (!reg) ++ { ++ gcc_assert (can_create_pseudo_p ()); ++ reg = gen_reg_rtx (Pmode); ++ } ++ ++ gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS); ++ base = sparc_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg); ++ offset = sparc_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), ++ base == reg ? NULL_RTX : reg); ++ ++ if (GET_CODE (offset) == CONST_INT) ++ { ++ if (SMALL_INT (offset)) ++ return plus_constant (Pmode, base, INTVAL (offset)); ++ else if (can_create_pseudo_p ()) ++ offset = force_reg (Pmode, offset); ++ else ++ /* If we reach here, then something is seriously wrong. */ ++ gcc_unreachable (); ++ } ++ return gen_rtx_PLUS (Pmode, base, offset); ++ } ++ else if (GET_CODE (orig) == LABEL_REF) ++ /* ??? We ought to be checking that the register is live instead, in case ++ it is eliminated. */ ++ crtl->uses_pic_offset_table = 1; ++ ++ return orig; ++} ++ ++/* Try machine-dependent ways of modifying an illegitimate address X ++ to be legitimate. If we find one, return the new, valid address. ++ ++ OLDX is the address as it was before break_out_memory_refs was called. ++ In some cases it is useful to look at this to decide what needs to be done. ++ ++ MODE is the mode of the operand pointed to by X. ++ ++ On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */ ++ ++static rtx ++sparc_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, ++ machine_mode mode) ++{ ++ rtx orig_x = x; ++ ++ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT) ++ x = gen_rtx_PLUS (Pmode, XEXP (x, 1), ++ force_operand (XEXP (x, 0), NULL_RTX)); ++ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == MULT) ++ x = gen_rtx_PLUS (Pmode, XEXP (x, 0), ++ force_operand (XEXP (x, 1), NULL_RTX)); ++ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS) ++ x = gen_rtx_PLUS (Pmode, force_operand (XEXP (x, 0), NULL_RTX), ++ XEXP (x, 1)); ++ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == PLUS) ++ x = gen_rtx_PLUS (Pmode, XEXP (x, 0), ++ force_operand (XEXP (x, 1), NULL_RTX)); ++ ++ if (x != orig_x && sparc_legitimate_address_p (mode, x, FALSE)) ++ return x; ++ ++ if (sparc_tls_referenced_p (x)) ++ x = sparc_legitimize_tls_address (x); ++ else if (flag_pic) ++ x = sparc_legitimize_pic_address (x, NULL_RTX); ++ else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 1))) ++ x = gen_rtx_PLUS (Pmode, XEXP (x, 0), ++ copy_to_mode_reg (Pmode, XEXP (x, 1))); ++ else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 0))) ++ x = gen_rtx_PLUS (Pmode, XEXP (x, 1), ++ copy_to_mode_reg (Pmode, XEXP (x, 0))); ++ else if (GET_CODE (x) == SYMBOL_REF ++ || GET_CODE (x) == CONST ++ || GET_CODE (x) == LABEL_REF) ++ x = copy_to_suggested_reg (x, NULL_RTX, Pmode); ++ ++ return x; ++} ++ ++/* Delegitimize an address that was legitimized by the above function. */ ++ ++static rtx ++sparc_delegitimize_address (rtx x) ++{ ++ x = delegitimize_mem_from_attrs (x); ++ ++ if (GET_CODE (x) == LO_SUM) ++ x = XEXP (x, 1); ++ ++ if (GET_CODE (x) == UNSPEC) ++ switch (XINT (x, 1)) ++ { ++ case UNSPEC_MOVE_PIC: ++ case UNSPEC_TLSLE: ++ x = XVECEXP (x, 0, 0); ++ gcc_assert (GET_CODE (x) == SYMBOL_REF); ++ break; ++ case UNSPEC_MOVE_GOTDATA: ++ x = XVECEXP (x, 0, 2); ++ gcc_assert (GET_CODE (x) == SYMBOL_REF); ++ break; ++ default: ++ break; ++ } ++ ++ /* This is generated by mov{si,di}_pic_label_ref in PIC mode. */ ++ if (GET_CODE (x) == MINUS ++ && (XEXP (x, 0) == got_register_rtx ++ || sparc_pic_register_p (XEXP (x, 0)))) ++ { ++ rtx y = XEXP (x, 1); ++ ++ if (GET_CODE (y) == LO_SUM) ++ y = XEXP (y, 1); ++ ++ if (GET_CODE (y) == UNSPEC && XINT (y, 1) == UNSPEC_MOVE_PIC_LABEL) ++ { ++ x = XVECEXP (y, 0, 0); ++ gcc_assert (GET_CODE (x) == LABEL_REF ++ || (GET_CODE (x) == CONST ++ && GET_CODE (XEXP (x, 0)) == PLUS ++ && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF ++ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)); ++ } ++ } ++ ++ return x; ++} ++ ++/* SPARC implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to ++ replace the input X, or the original X if no replacement is called for. ++ The output parameter *WIN is 1 if the calling macro should goto WIN, ++ 0 if it should not. ++ ++ For SPARC, we wish to handle addresses by splitting them into ++ HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference. ++ This cuts the number of extra insns by one. ++ ++ Do nothing when generating PIC code and the address is a symbolic ++ operand or requires a scratch register. */ ++ ++rtx ++sparc_legitimize_reload_address (rtx x, machine_mode mode, ++ int opnum, int type, ++ int ind_levels ATTRIBUTE_UNUSED, int *win) ++{ ++ /* Decompose SImode constants into HIGH+LO_SUM. */ ++ if (CONSTANT_P (x) ++ && (mode != TFmode || TARGET_ARCH64) ++ && GET_MODE (x) == SImode ++ && GET_CODE (x) != LO_SUM ++ && GET_CODE (x) != HIGH ++ && sparc_code_model <= CM_MEDLOW ++ && !(flag_pic ++ && (symbolic_operand (x, Pmode) || pic_address_needs_scratch (x)))) ++ { ++ x = gen_rtx_LO_SUM (GET_MODE (x), gen_rtx_HIGH (GET_MODE (x), x), x); ++ push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, ++ BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, ++ opnum, (enum reload_type)type); ++ *win = 1; ++ return x; ++ } ++ ++ /* We have to recognize what we have already generated above. */ ++ if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == HIGH) ++ { ++ push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, ++ BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, ++ opnum, (enum reload_type)type); ++ *win = 1; ++ return x; ++ } ++ ++ *win = 0; ++ return x; ++} ++ ++/* Return true if ADDR (a legitimate address expression) ++ has an effect that depends on the machine mode it is used for. ++ ++ In PIC mode, ++ ++ (mem:HI [%l7+a]) ++ ++ is not equivalent to ++ ++ (mem:QI [%l7+a]) (mem:QI [%l7+a+1]) ++ ++ because [%l7+a+1] is interpreted as the address of (a+1). */ ++ ++ ++static bool ++sparc_mode_dependent_address_p (const_rtx addr, ++ addr_space_t as ATTRIBUTE_UNUSED) ++{ ++ if (GET_CODE (addr) == PLUS ++ && sparc_pic_register_p (XEXP (addr, 0)) ++ && symbolic_operand (XEXP (addr, 1), VOIDmode)) ++ return true; ++ ++ return false; ++} ++ ++/* Emit a call instruction with the pattern given by PAT. ADDR is the ++ address of the call target. */ ++ ++void ++sparc_emit_call_insn (rtx pat, rtx addr) ++{ ++ rtx_insn *insn; ++ ++ insn = emit_call_insn (pat); ++ ++ /* The PIC register is live on entry to VxWorks PIC PLT entries. */ ++ if (TARGET_VXWORKS_RTP ++ && flag_pic ++ && GET_CODE (addr) == SYMBOL_REF ++ && (SYMBOL_REF_DECL (addr) ++ ? !targetm.binds_local_p (SYMBOL_REF_DECL (addr)) ++ : !SYMBOL_REF_LOCAL_P (addr))) ++ { ++ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx); ++ crtl->uses_pic_offset_table = 1; ++ } ++} ++ ++/* Return 1 if RTX is a MEM which is known to be aligned to at ++ least a DESIRED byte boundary. */ ++ ++int ++mem_min_alignment (rtx mem, int desired) ++{ ++ rtx addr, base, offset; ++ ++ /* If it's not a MEM we can't accept it. */ ++ if (GET_CODE (mem) != MEM) ++ return 0; ++ ++ /* Obviously... */ ++ if (!TARGET_UNALIGNED_DOUBLES ++ && MEM_ALIGN (mem) / BITS_PER_UNIT >= (unsigned)desired) ++ return 1; ++ ++ /* ??? The rest of the function predates MEM_ALIGN so ++ there is probably a bit of redundancy. */ ++ addr = XEXP (mem, 0); ++ base = offset = NULL_RTX; ++ if (GET_CODE (addr) == PLUS) ++ { ++ if (GET_CODE (XEXP (addr, 0)) == REG) ++ { ++ base = XEXP (addr, 0); ++ ++ /* What we are saying here is that if the base ++ REG is aligned properly, the compiler will make ++ sure any REG based index upon it will be so ++ as well. */ ++ if (GET_CODE (XEXP (addr, 1)) == CONST_INT) ++ offset = XEXP (addr, 1); ++ else ++ offset = const0_rtx; ++ } ++ } ++ else if (GET_CODE (addr) == REG) ++ { ++ base = addr; ++ offset = const0_rtx; ++ } ++ ++ if (base != NULL_RTX) ++ { ++ int regno = REGNO (base); ++ ++ if (regno != HARD_FRAME_POINTER_REGNUM && regno != STACK_POINTER_REGNUM) ++ { ++ /* Check if the compiler has recorded some information ++ about the alignment of the base REG. If reload has ++ completed, we already matched with proper alignments. ++ If not running global_alloc, reload might give us ++ unaligned pointer to local stack though. */ ++ if (((cfun != 0 ++ && REGNO_POINTER_ALIGN (regno) >= desired * BITS_PER_UNIT) ++ || (optimize && reload_completed)) ++ && (INTVAL (offset) & (desired - 1)) == 0) ++ return 1; ++ } ++ else ++ { ++ if (((INTVAL (offset) - SPARC_STACK_BIAS) & (desired - 1)) == 0) ++ return 1; ++ } ++ } ++ else if (! TARGET_UNALIGNED_DOUBLES ++ || CONSTANT_P (addr) ++ || GET_CODE (addr) == LO_SUM) ++ { ++ /* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES ++ is true, in which case we can only assume that an access is aligned if ++ it is to a constant address, or the address involves a LO_SUM. */ ++ return 1; ++ } ++ ++ /* An obviously unaligned address. */ ++ return 0; ++} ++ ++ ++/* Vectors to keep interesting information about registers where it can easily ++ be got. We used to use the actual mode value as the bit number, but there ++ are more than 32 modes now. Instead we use two tables: one indexed by ++ hard register number, and one indexed by mode. */ ++ ++/* The purpose of sparc_mode_class is to shrink the range of modes so that ++ they all fit (as bit numbers) in a 32-bit word (again). Each real mode is ++ mapped into one sparc_mode_class mode. */ ++ ++enum sparc_mode_class { ++ H_MODE, S_MODE, D_MODE, T_MODE, O_MODE, ++ SF_MODE, DF_MODE, TF_MODE, OF_MODE, ++ CC_MODE, CCFP_MODE ++}; ++ ++/* Modes for single-word and smaller quantities. */ ++#define S_MODES \ ++ ((1 << (int) H_MODE) | (1 << (int) S_MODE) | (1 << (int) SF_MODE)) ++ ++/* Modes for double-word and smaller quantities. */ ++#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << (int) DF_MODE)) ++ ++/* Modes for quad-word and smaller quantities. */ ++#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE)) ++ ++/* Modes for 8-word and smaller quantities. */ ++#define O_MODES (T_MODES | (1 << (int) O_MODE) | (1 << (int) OF_MODE)) ++ ++/* Modes for single-float quantities. */ ++#define SF_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE)) ++ ++/* Modes for double-float and smaller quantities. */ ++#define DF_MODES (SF_MODES | (1 << (int) D_MODE) | (1 << (int) DF_MODE)) ++ ++/* Modes for quad-float and smaller quantities. */ ++#define TF_MODES (DF_MODES | (1 << (int) TF_MODE)) ++ ++/* Modes for quad-float pairs and smaller quantities. */ ++#define OF_MODES (TF_MODES | (1 << (int) OF_MODE)) ++ ++/* Modes for double-float only quantities. */ ++#define DF_MODES_NO_S ((1 << (int) D_MODE) | (1 << (int) DF_MODE)) ++ ++/* Modes for quad-float and double-float only quantities. */ ++#define TF_MODES_NO_S (DF_MODES_NO_S | (1 << (int) TF_MODE)) ++ ++/* Modes for quad-float pairs and double-float only quantities. */ ++#define OF_MODES_NO_S (TF_MODES_NO_S | (1 << (int) OF_MODE)) ++ ++/* Modes for condition codes. */ ++#define CC_MODES (1 << (int) CC_MODE) ++#define CCFP_MODES (1 << (int) CCFP_MODE) ++ ++/* Value is 1 if register/mode pair is acceptable on sparc. ++ ++ The funny mixture of D and T modes is because integer operations ++ do not specially operate on tetra quantities, so non-quad-aligned ++ registers can hold quadword quantities (except %o4 and %i4 because ++ they cross fixed registers). ++ ++ ??? Note that, despite the settings, non-double-aligned parameter ++ registers can hold double-word quantities in 32-bit mode. */ ++ ++/* This points to either the 32-bit or the 64-bit version. */ ++static const int *hard_regno_mode_classes; ++ ++static const int hard_32bit_mode_classes[] = { ++ S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, ++ T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, ++ T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, ++ T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, ++ ++ OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, ++ OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, ++ OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, ++ OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, ++ ++ /* FP regs f32 to f63. Only the even numbered registers actually exist, ++ and none can hold SFmode/SImode values. */ ++ OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, ++ OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, ++ OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, ++ OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0, ++ ++ /* %fcc[0123] */ ++ CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, ++ ++ /* %icc, %sfp, %gsr */ ++ CC_MODES, 0, D_MODES ++}; ++ ++static const int hard_64bit_mode_classes[] = { ++ D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, ++ O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, ++ T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, ++ O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, ++ ++ OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, ++ OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, ++ OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, ++ OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, ++ ++ /* FP regs f32 to f63. Only the even numbered registers actually exist, ++ and none can hold SFmode/SImode values. */ ++ OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, ++ OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, ++ OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, ++ OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0, ++ ++ /* %fcc[0123] */ ++ CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, ++ ++ /* %icc, %sfp, %gsr */ ++ CC_MODES, 0, D_MODES ++}; ++ ++static int sparc_mode_class [NUM_MACHINE_MODES]; ++ ++enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER]; ++ ++static void ++sparc_init_modes (void) ++{ ++ int i; ++ ++ for (i = 0; i < NUM_MACHINE_MODES; i++) ++ { ++ machine_mode m = (machine_mode) i; ++ unsigned int size = GET_MODE_SIZE (m); ++ ++ switch (GET_MODE_CLASS (m)) ++ { ++ case MODE_INT: ++ case MODE_PARTIAL_INT: ++ case MODE_COMPLEX_INT: ++ if (size < 4) ++ sparc_mode_class[i] = 1 << (int) H_MODE; ++ else if (size == 4) ++ sparc_mode_class[i] = 1 << (int) S_MODE; ++ else if (size == 8) ++ sparc_mode_class[i] = 1 << (int) D_MODE; ++ else if (size == 16) ++ sparc_mode_class[i] = 1 << (int) T_MODE; ++ else if (size == 32) ++ sparc_mode_class[i] = 1 << (int) O_MODE; ++ else ++ sparc_mode_class[i] = 0; ++ break; ++ case MODE_VECTOR_INT: ++ if (size == 4) ++ sparc_mode_class[i] = 1 << (int) SF_MODE; ++ else if (size == 8) ++ sparc_mode_class[i] = 1 << (int) DF_MODE; ++ else ++ sparc_mode_class[i] = 0; ++ break; ++ case MODE_FLOAT: ++ case MODE_COMPLEX_FLOAT: ++ if (size == 4) ++ sparc_mode_class[i] = 1 << (int) SF_MODE; ++ else if (size == 8) ++ sparc_mode_class[i] = 1 << (int) DF_MODE; ++ else if (size == 16) ++ sparc_mode_class[i] = 1 << (int) TF_MODE; ++ else if (size == 32) ++ sparc_mode_class[i] = 1 << (int) OF_MODE; ++ else ++ sparc_mode_class[i] = 0; ++ break; ++ case MODE_CC: ++ if (m == CCFPmode || m == CCFPEmode) ++ sparc_mode_class[i] = 1 << (int) CCFP_MODE; ++ else ++ sparc_mode_class[i] = 1 << (int) CC_MODE; ++ break; ++ default: ++ sparc_mode_class[i] = 0; ++ break; ++ } ++ } ++ ++ if (TARGET_ARCH64) ++ hard_regno_mode_classes = hard_64bit_mode_classes; ++ else ++ hard_regno_mode_classes = hard_32bit_mode_classes; ++ ++ /* Initialize the array used by REGNO_REG_CLASS. */ ++ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) ++ { ++ if (i < 16 && TARGET_V8PLUS) ++ sparc_regno_reg_class[i] = I64_REGS; ++ else if (i < 32 || i == FRAME_POINTER_REGNUM) ++ sparc_regno_reg_class[i] = GENERAL_REGS; ++ else if (i < 64) ++ sparc_regno_reg_class[i] = FP_REGS; ++ else if (i < 96) ++ sparc_regno_reg_class[i] = EXTRA_FP_REGS; ++ else if (i < 100) ++ sparc_regno_reg_class[i] = FPCC_REGS; ++ else ++ sparc_regno_reg_class[i] = NO_REGS; ++ } ++} ++ ++/* Return whether REGNO, a global or FP register, must be saved/restored. */ ++ ++static inline bool ++save_global_or_fp_reg_p (unsigned int regno, ++ int leaf_function ATTRIBUTE_UNUSED) ++{ ++ return !call_used_or_fixed_reg_p (regno) && df_regs_ever_live_p (regno); ++} ++ ++/* Return whether the return address register (%i7) is needed. */ ++ ++static inline bool ++return_addr_reg_needed_p (int leaf_function) ++{ ++ /* If it is live, for example because of __builtin_return_address (0). */ ++ if (df_regs_ever_live_p (RETURN_ADDR_REGNUM)) ++ return true; ++ ++ /* Otherwise, it is needed as save register if %o7 is clobbered. */ ++ if (!leaf_function ++ /* Loading the GOT register clobbers %o7. */ ++ || crtl->uses_pic_offset_table ++ || df_regs_ever_live_p (INCOMING_RETURN_ADDR_REGNUM)) ++ return true; ++ ++ return false; ++} ++ ++/* Return whether REGNO, a local or in register, must be saved/restored. */ ++ ++static bool ++save_local_or_in_reg_p (unsigned int regno, int leaf_function) ++{ ++ /* General case: call-saved registers live at some point. */ ++ if (!call_used_or_fixed_reg_p (regno) && df_regs_ever_live_p (regno)) ++ return true; ++ ++ /* Frame pointer register (%fp) if needed. */ ++ if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) ++ return true; ++ ++ /* Return address register (%i7) if needed. */ ++ if (regno == RETURN_ADDR_REGNUM && return_addr_reg_needed_p (leaf_function)) ++ return true; ++ ++ /* GOT register (%l7) if needed. */ ++ if (got_register_rtx && regno == REGNO (got_register_rtx)) ++ return true; ++ ++ /* If the function accesses prior frames, the frame pointer and the return ++ address of the previous frame must be saved on the stack. */ ++ if (crtl->accesses_prior_frames ++ && (regno == HARD_FRAME_POINTER_REGNUM || regno == RETURN_ADDR_REGNUM)) ++ return true; ++ ++ return false; ++} ++ ++/* Compute the frame size required by the function. This function is called ++ during the reload pass and also by sparc_expand_prologue. */ ++ ++static HOST_WIDE_INT ++sparc_compute_frame_size (HOST_WIDE_INT size, int leaf_function) ++{ ++ HOST_WIDE_INT frame_size, apparent_frame_size; ++ int args_size, n_global_fp_regs = 0; ++ bool save_local_in_regs_p = false; ++ unsigned int i; ++ ++ /* If the function allocates dynamic stack space, the dynamic offset is ++ computed early and contains REG_PARM_STACK_SPACE, so we need to cope. */ ++ if (leaf_function && !cfun->calls_alloca) ++ args_size = 0; ++ else ++ args_size = crtl->outgoing_args_size + REG_PARM_STACK_SPACE (cfun->decl); ++ ++ /* Calculate space needed for global registers. */ ++ if (TARGET_ARCH64) ++ { ++ for (i = 0; i < 8; i++) ++ if (save_global_or_fp_reg_p (i, 0)) ++ n_global_fp_regs += 2; ++ } ++ else ++ { ++ for (i = 0; i < 8; i += 2) ++ if (save_global_or_fp_reg_p (i, 0) ++ || save_global_or_fp_reg_p (i + 1, 0)) ++ n_global_fp_regs += 2; ++ } ++ ++ /* In the flat window model, find out which local and in registers need to ++ be saved. We don't reserve space in the current frame for them as they ++ will be spilled into the register window save area of the caller's frame. ++ However, as soon as we use this register window save area, we must create ++ that of the current frame to make it the live one. */ ++ if (TARGET_FLAT) ++ for (i = 16; i < 32; i++) ++ if (save_local_or_in_reg_p (i, leaf_function)) ++ { ++ save_local_in_regs_p = true; ++ break; ++ } ++ ++ /* Calculate space needed for FP registers. */ ++ for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2) ++ if (save_global_or_fp_reg_p (i, 0) || save_global_or_fp_reg_p (i + 1, 0)) ++ n_global_fp_regs += 2; ++ ++ if (size == 0 ++ && n_global_fp_regs == 0 ++ && args_size == 0 ++ && !save_local_in_regs_p) ++ frame_size = apparent_frame_size = 0; ++ else ++ { ++ /* Start from the apparent frame size. */ ++ apparent_frame_size = ROUND_UP (size, 8) + n_global_fp_regs * 4; ++ ++ /* We need to add the size of the outgoing argument area. */ ++ frame_size = apparent_frame_size + ROUND_UP (args_size, 8); ++ ++ /* And that of the register window save area. */ ++ frame_size += FIRST_PARM_OFFSET (cfun->decl); ++ ++ /* Finally, bump to the appropriate alignment. */ ++ frame_size = SPARC_STACK_ALIGN (frame_size); ++ } ++ ++ /* Set up values for use in prologue and epilogue. */ ++ sparc_frame_size = frame_size; ++ sparc_apparent_frame_size = apparent_frame_size; ++ sparc_n_global_fp_regs = n_global_fp_regs; ++ sparc_save_local_in_regs_p = save_local_in_regs_p; ++ ++ return frame_size; ++} ++ ++/* Implement the macro INITIAL_ELIMINATION_OFFSET, return the OFFSET. */ ++ ++int ++sparc_initial_elimination_offset (int to) ++{ ++ int offset; ++ ++ if (to == STACK_POINTER_REGNUM) ++ offset = sparc_compute_frame_size (get_frame_size (), crtl->is_leaf); ++ else ++ offset = 0; ++ ++ offset += SPARC_STACK_BIAS; ++ return offset; ++} ++ ++/* Output any necessary .register pseudo-ops. */ ++ ++void ++sparc_output_scratch_registers (FILE *file ATTRIBUTE_UNUSED) ++{ ++ int i; ++ ++ if (TARGET_ARCH32) ++ return; ++ ++ /* Check if %g[2367] were used without ++ .register being printed for them already. */ ++ for (i = 2; i < 8; i++) ++ { ++ if (df_regs_ever_live_p (i) ++ && ! sparc_hard_reg_printed [i]) ++ { ++ sparc_hard_reg_printed [i] = 1; ++ /* %g7 is used as TLS base register, use #ignore ++ for it instead of #scratch. */ ++ fprintf (file, "\t.register\t%%g%d, #%s\n", i, ++ i == 7 ? "ignore" : "scratch"); ++ } ++ if (i == 3) i = 5; ++ } ++} ++ ++#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP) ++ ++#if PROBE_INTERVAL > 4096 ++#error Cannot use indexed addressing mode for stack probing ++#endif ++ ++/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE, ++ inclusive. These are offsets from the current stack pointer. ++ ++ Note that we don't use the REG+REG addressing mode for the probes because ++ of the stack bias in 64-bit mode. And it doesn't really buy us anything ++ so the advantages of having a single code win here. */ ++ ++static void ++sparc_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size) ++{ ++ rtx g1 = gen_rtx_REG (Pmode, 1); ++ ++ /* See if we have a constant small number of probes to generate. If so, ++ that's the easy case. */ ++ if (size <= PROBE_INTERVAL) ++ { ++ emit_move_insn (g1, GEN_INT (first)); ++ emit_insn (gen_rtx_SET (g1, ++ gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1))); ++ emit_stack_probe (plus_constant (Pmode, g1, -size)); ++ } ++ ++ /* The run-time loop is made up of 9 insns in the generic case while the ++ compile-time loop is made up of 4+2*(n-2) insns for n # of intervals. */ ++ else if (size <= 4 * PROBE_INTERVAL) ++ { ++ HOST_WIDE_INT i; ++ ++ emit_move_insn (g1, GEN_INT (first + PROBE_INTERVAL)); ++ emit_insn (gen_rtx_SET (g1, ++ gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1))); ++ emit_stack_probe (g1); ++ ++ /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 2 until ++ it exceeds SIZE. If only two probes are needed, this will not ++ generate any code. Then probe at FIRST + SIZE. */ ++ for (i = 2 * PROBE_INTERVAL; i < size; i += PROBE_INTERVAL) ++ { ++ emit_insn (gen_rtx_SET (g1, ++ plus_constant (Pmode, g1, -PROBE_INTERVAL))); ++ emit_stack_probe (g1); ++ } ++ ++ emit_stack_probe (plus_constant (Pmode, g1, ++ (i - PROBE_INTERVAL) - size)); ++ } ++ ++ /* Otherwise, do the same as above, but in a loop. Note that we must be ++ extra careful with variables wrapping around because we might be at ++ the very top (or the very bottom) of the address space and we have ++ to be able to handle this case properly; in particular, we use an ++ equality test for the loop condition. */ ++ else ++ { ++ HOST_WIDE_INT rounded_size; ++ rtx g4 = gen_rtx_REG (Pmode, 4); ++ ++ emit_move_insn (g1, GEN_INT (first)); ++ ++ ++ /* Step 1: round SIZE to the previous multiple of the interval. */ ++ ++ rounded_size = ROUND_DOWN (size, PROBE_INTERVAL); ++ emit_move_insn (g4, GEN_INT (rounded_size)); ++ ++ ++ /* Step 2: compute initial and final value of the loop counter. */ ++ ++ /* TEST_ADDR = SP + FIRST. */ ++ emit_insn (gen_rtx_SET (g1, ++ gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1))); ++ ++ /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */ ++ emit_insn (gen_rtx_SET (g4, gen_rtx_MINUS (Pmode, g1, g4))); ++ ++ ++ /* Step 3: the loop ++ ++ while (TEST_ADDR != LAST_ADDR) ++ { ++ TEST_ADDR = TEST_ADDR + PROBE_INTERVAL ++ probe at TEST_ADDR ++ } ++ ++ probes at FIRST + N * PROBE_INTERVAL for values of N from 1 ++ until it is equal to ROUNDED_SIZE. */ ++ ++ if (TARGET_ARCH64) ++ emit_insn (gen_probe_stack_rangedi (g1, g1, g4)); ++ else ++ emit_insn (gen_probe_stack_rangesi (g1, g1, g4)); ++ ++ ++ /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time ++ that SIZE is equal to ROUNDED_SIZE. */ ++ ++ if (size != rounded_size) ++ emit_stack_probe (plus_constant (Pmode, g4, rounded_size - size)); ++ } ++ ++ /* Make sure nothing is scheduled before we are done. */ ++ emit_insn (gen_blockage ()); ++} ++ ++/* Probe a range of stack addresses from REG1 to REG2 inclusive. These are ++ absolute addresses. */ ++ ++const char * ++output_probe_stack_range (rtx reg1, rtx reg2) ++{ ++ static int labelno = 0; ++ char loop_lab[32]; ++ rtx xops[2]; ++ ++ ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++); ++ ++ /* Loop. */ ++ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); ++ ++ /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ ++ xops[0] = reg1; ++ xops[1] = GEN_INT (-PROBE_INTERVAL); ++ output_asm_insn ("add\t%0, %1, %0", xops); ++ ++ /* Test if TEST_ADDR == LAST_ADDR. */ ++ xops[1] = reg2; ++ output_asm_insn ("cmp\t%0, %1", xops); ++ ++ /* Probe at TEST_ADDR and branch. */ ++ if (TARGET_ARCH64) ++ fputs ("\tbne,pt\t%xcc,", asm_out_file); ++ else ++ fputs ("\tbne\t", asm_out_file); ++ assemble_name_raw (asm_out_file, loop_lab); ++ fputc ('\n', asm_out_file); ++ xops[1] = GEN_INT (SPARC_STACK_BIAS); ++ output_asm_insn (" st\t%%g0, [%0+%1]", xops); ++ ++ return ""; ++} ++ ++/* Emit code to save/restore registers from LOW to HIGH at BASE+OFFSET as ++ needed. LOW is supposed to be double-word aligned for 32-bit registers. ++ SAVE_P decides whether a register must be saved/restored. ACTION_TRUE ++ is the action to be performed if SAVE_P returns true and ACTION_FALSE ++ the action to be performed if it returns false. Return the new offset. */ ++ ++typedef bool (*sorr_pred_t) (unsigned int, int); ++typedef enum { SORR_NONE, SORR_ADVANCE, SORR_SAVE, SORR_RESTORE } sorr_act_t; ++ ++static int ++emit_save_or_restore_regs (unsigned int low, unsigned int high, rtx base, ++ int offset, int leaf_function, sorr_pred_t save_p, ++ sorr_act_t action_true, sorr_act_t action_false) ++{ ++ unsigned int i; ++ rtx mem; ++ rtx_insn *insn; ++ ++ if (TARGET_ARCH64 && high <= 32) ++ { ++ int fp_offset = -1; ++ ++ for (i = low; i < high; i++) ++ { ++ if (save_p (i, leaf_function)) ++ { ++ mem = gen_frame_mem (DImode, plus_constant (Pmode, ++ base, offset)); ++ if (action_true == SORR_SAVE) ++ { ++ insn = emit_move_insn (mem, gen_rtx_REG (DImode, i)); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ } ++ else /* action_true == SORR_RESTORE */ ++ { ++ /* The frame pointer must be restored last since its old ++ value may be used as base address for the frame. This ++ is problematic in 64-bit mode only because of the lack ++ of double-word load instruction. */ ++ if (i == HARD_FRAME_POINTER_REGNUM) ++ fp_offset = offset; ++ else ++ emit_move_insn (gen_rtx_REG (DImode, i), mem); ++ } ++ offset += 8; ++ } ++ else if (action_false == SORR_ADVANCE) ++ offset += 8; ++ } ++ ++ if (fp_offset >= 0) ++ { ++ mem = gen_frame_mem (DImode, plus_constant (Pmode, base, fp_offset)); ++ emit_move_insn (hard_frame_pointer_rtx, mem); ++ } ++ } ++ else ++ { ++ for (i = low; i < high; i += 2) ++ { ++ bool reg0 = save_p (i, leaf_function); ++ bool reg1 = save_p (i + 1, leaf_function); ++ machine_mode mode; ++ int regno; ++ ++ if (reg0 && reg1) ++ { ++ mode = SPARC_INT_REG_P (i) ? E_DImode : E_DFmode; ++ regno = i; ++ } ++ else if (reg0) ++ { ++ mode = SPARC_INT_REG_P (i) ? E_SImode : E_SFmode; ++ regno = i; ++ } ++ else if (reg1) ++ { ++ mode = SPARC_INT_REG_P (i) ? E_SImode : E_SFmode; ++ regno = i + 1; ++ offset += 4; ++ } ++ else ++ { ++ if (action_false == SORR_ADVANCE) ++ offset += 8; ++ continue; ++ } ++ ++ mem = gen_frame_mem (mode, plus_constant (Pmode, base, offset)); ++ if (action_true == SORR_SAVE) ++ { ++ insn = emit_move_insn (mem, gen_rtx_REG (mode, regno)); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ if (mode == DImode) ++ { ++ rtx set1, set2; ++ mem = gen_frame_mem (SImode, plus_constant (Pmode, base, ++ offset)); ++ set1 = gen_rtx_SET (mem, gen_rtx_REG (SImode, regno)); ++ RTX_FRAME_RELATED_P (set1) = 1; ++ mem ++ = gen_frame_mem (SImode, plus_constant (Pmode, base, ++ offset + 4)); ++ set2 = gen_rtx_SET (mem, gen_rtx_REG (SImode, regno + 1)); ++ RTX_FRAME_RELATED_P (set2) = 1; ++ add_reg_note (insn, REG_FRAME_RELATED_EXPR, ++ gen_rtx_PARALLEL (VOIDmode, ++ gen_rtvec (2, set1, set2))); ++ } ++ } ++ else /* action_true == SORR_RESTORE */ ++ emit_move_insn (gen_rtx_REG (mode, regno), mem); ++ ++ /* Bump and round down to double word ++ in case we already bumped by 4. */ ++ offset = ROUND_DOWN (offset + 8, 8); ++ } ++ } ++ ++ return offset; ++} ++ ++/* Emit code to adjust BASE to OFFSET. Return the new base. */ ++ ++static rtx ++emit_adjust_base_to_offset (rtx base, int offset) ++{ ++ /* ??? This might be optimized a little as %g1 might already have a ++ value close enough that a single add insn will do. */ ++ /* ??? Although, all of this is probably only a temporary fix because ++ if %g1 can hold a function result, then sparc_expand_epilogue will ++ lose (the result will be clobbered). */ ++ rtx new_base = gen_rtx_REG (Pmode, 1); ++ emit_move_insn (new_base, GEN_INT (offset)); ++ emit_insn (gen_rtx_SET (new_base, gen_rtx_PLUS (Pmode, base, new_base))); ++ return new_base; ++} ++ ++/* Emit code to save/restore call-saved global and FP registers. */ ++ ++static void ++emit_save_or_restore_global_fp_regs (rtx base, int offset, sorr_act_t action) ++{ ++ if (offset < -4096 || offset + sparc_n_global_fp_regs * 4 > 4095) ++ { ++ base = emit_adjust_base_to_offset (base, offset); ++ offset = 0; ++ } ++ ++ offset ++ = emit_save_or_restore_regs (0, 8, base, offset, 0, ++ save_global_or_fp_reg_p, action, SORR_NONE); ++ emit_save_or_restore_regs (32, TARGET_V9 ? 96 : 64, base, offset, 0, ++ save_global_or_fp_reg_p, action, SORR_NONE); ++} ++ ++/* Emit code to save/restore call-saved local and in registers. */ ++ ++static void ++emit_save_or_restore_local_in_regs (rtx base, int offset, sorr_act_t action) ++{ ++ if (offset < -4096 || offset + 16 * UNITS_PER_WORD > 4095) ++ { ++ base = emit_adjust_base_to_offset (base, offset); ++ offset = 0; ++ } ++ ++ emit_save_or_restore_regs (16, 32, base, offset, sparc_leaf_function_p, ++ save_local_or_in_reg_p, action, SORR_ADVANCE); ++} ++ ++/* Emit a window_save insn. */ ++ ++static rtx_insn * ++emit_window_save (rtx increment) ++{ ++ rtx_insn *insn = emit_insn (gen_window_save (increment)); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ /* The incoming return address (%o7) is saved in %i7. */ ++ add_reg_note (insn, REG_CFA_REGISTER, ++ gen_rtx_SET (gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM), ++ gen_rtx_REG (Pmode, ++ INCOMING_RETURN_ADDR_REGNUM))); ++ ++ /* The window save event. */ ++ add_reg_note (insn, REG_CFA_WINDOW_SAVE, const0_rtx); ++ ++ /* The CFA is %fp, the hard frame pointer. */ ++ add_reg_note (insn, REG_CFA_DEF_CFA, ++ plus_constant (Pmode, hard_frame_pointer_rtx, ++ INCOMING_FRAME_SP_OFFSET)); ++ ++ return insn; ++} ++ ++/* Generate an increment for the stack pointer. */ ++ ++static rtx ++gen_stack_pointer_inc (rtx increment) ++{ ++ return gen_rtx_SET (stack_pointer_rtx, ++ gen_rtx_PLUS (Pmode, ++ stack_pointer_rtx, ++ increment)); ++} ++ ++/* Expand the function prologue. The prologue is responsible for reserving ++ storage for the frame, saving the call-saved registers and loading the ++ GOT register if needed. */ ++ ++void ++sparc_expand_prologue (void) ++{ ++ HOST_WIDE_INT size; ++ rtx_insn *insn; ++ ++ /* Compute a snapshot of crtl->uses_only_leaf_regs. Relying ++ on the final value of the flag means deferring the prologue/epilogue ++ expansion until just before the second scheduling pass, which is too ++ late to emit multiple epilogues or return insns. ++ ++ Of course we are making the assumption that the value of the flag ++ will not change between now and its final value. Of the three parts ++ of the formula, only the last one can reasonably vary. Let's take a ++ closer look, after assuming that the first two ones are set to true ++ (otherwise the last value is effectively silenced). ++ ++ If only_leaf_regs_used returns false, the global predicate will also ++ be false so the actual frame size calculated below will be positive. ++ As a consequence, the save_register_window insn will be emitted in ++ the instruction stream; now this insn explicitly references %fp ++ which is not a leaf register so only_leaf_regs_used will always ++ return false subsequently. ++ ++ If only_leaf_regs_used returns true, we hope that the subsequent ++ optimization passes won't cause non-leaf registers to pop up. For ++ example, the regrename pass has special provisions to not rename to ++ non-leaf registers in a leaf function. */ ++ sparc_leaf_function_p ++ = optimize > 0 && crtl->is_leaf && only_leaf_regs_used (); ++ ++ size = sparc_compute_frame_size (get_frame_size(), sparc_leaf_function_p); ++ ++ if (flag_stack_usage_info) ++ current_function_static_stack_size = size; ++ ++ if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK ++ || flag_stack_clash_protection) ++ { ++ if (crtl->is_leaf && !cfun->calls_alloca) ++ { ++ if (size > PROBE_INTERVAL && size > get_stack_check_protect ()) ++ sparc_emit_probe_stack_range (get_stack_check_protect (), ++ size - get_stack_check_protect ()); ++ } ++ else if (size > 0) ++ sparc_emit_probe_stack_range (get_stack_check_protect (), size); ++ } ++ ++ if (size == 0) ++ ; /* do nothing. */ ++ else if (sparc_leaf_function_p) ++ { ++ rtx size_int_rtx = GEN_INT (-size); ++ ++ if (size <= 4096) ++ insn = emit_insn (gen_stack_pointer_inc (size_int_rtx)); ++ else if (size <= 8192) ++ { ++ insn = emit_insn (gen_stack_pointer_inc (GEN_INT (-4096))); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ /* %sp is still the CFA register. */ ++ insn = emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size))); ++ } ++ else ++ { ++ rtx size_rtx = gen_rtx_REG (Pmode, 1); ++ emit_move_insn (size_rtx, size_int_rtx); ++ insn = emit_insn (gen_stack_pointer_inc (size_rtx)); ++ add_reg_note (insn, REG_FRAME_RELATED_EXPR, ++ gen_stack_pointer_inc (size_int_rtx)); ++ } ++ ++ RTX_FRAME_RELATED_P (insn) = 1; ++ } ++ else ++ { ++ rtx size_int_rtx = GEN_INT (-size); ++ ++ if (size <= 4096) ++ emit_window_save (size_int_rtx); ++ else if (size <= 8192) ++ { ++ emit_window_save (GEN_INT (-4096)); ++ ++ /* %sp is not the CFA register anymore. */ ++ emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size))); ++ ++ /* Make sure no %fp-based store is issued until after the frame is ++ established. The offset between the frame pointer and the stack ++ pointer is calculated relative to the value of the stack pointer ++ at the end of the function prologue, and moving instructions that ++ access the stack via the frame pointer between the instructions ++ that decrement the stack pointer could result in accessing the ++ register window save area, which is volatile. */ ++ emit_insn (gen_frame_blockage ()); ++ } ++ else ++ { ++ rtx size_rtx = gen_rtx_REG (Pmode, 1); ++ emit_move_insn (size_rtx, size_int_rtx); ++ emit_window_save (size_rtx); ++ } ++ } ++ ++ if (sparc_leaf_function_p) ++ { ++ sparc_frame_base_reg = stack_pointer_rtx; ++ sparc_frame_base_offset = size + SPARC_STACK_BIAS; ++ } ++ else ++ { ++ sparc_frame_base_reg = hard_frame_pointer_rtx; ++ sparc_frame_base_offset = SPARC_STACK_BIAS; ++ } ++ ++ if (sparc_n_global_fp_regs > 0) ++ emit_save_or_restore_global_fp_regs (sparc_frame_base_reg, ++ sparc_frame_base_offset ++ - sparc_apparent_frame_size, ++ SORR_SAVE); ++ ++ /* Advertise that the data calculated just above are now valid. */ ++ sparc_prologue_data_valid_p = true; ++} ++ ++/* Expand the function prologue. The prologue is responsible for reserving ++ storage for the frame, saving the call-saved registers and loading the ++ GOT register if needed. */ ++ ++void ++sparc_flat_expand_prologue (void) ++{ ++ HOST_WIDE_INT size; ++ rtx_insn *insn; ++ ++ sparc_leaf_function_p = optimize > 0 && crtl->is_leaf; ++ ++ size = sparc_compute_frame_size (get_frame_size(), sparc_leaf_function_p); ++ ++ if (flag_stack_usage_info) ++ current_function_static_stack_size = size; ++ ++ if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK ++ || flag_stack_clash_protection) ++ { ++ if (crtl->is_leaf && !cfun->calls_alloca) ++ { ++ if (size > PROBE_INTERVAL && size > get_stack_check_protect ()) ++ sparc_emit_probe_stack_range (get_stack_check_protect (), ++ size - get_stack_check_protect ()); ++ } ++ else if (size > 0) ++ sparc_emit_probe_stack_range (get_stack_check_protect (), size); ++ } ++ ++ if (sparc_save_local_in_regs_p) ++ emit_save_or_restore_local_in_regs (stack_pointer_rtx, SPARC_STACK_BIAS, ++ SORR_SAVE); ++ ++ if (size == 0) ++ ; /* do nothing. */ ++ else ++ { ++ rtx size_int_rtx, size_rtx; ++ ++ size_rtx = size_int_rtx = GEN_INT (-size); ++ ++ /* We establish the frame (i.e. decrement the stack pointer) first, even ++ if we use a frame pointer, because we cannot clobber any call-saved ++ registers, including the frame pointer, if we haven't created a new ++ register save area, for the sake of compatibility with the ABI. */ ++ if (size <= 4096) ++ insn = emit_insn (gen_stack_pointer_inc (size_int_rtx)); ++ else if (size <= 8192 && !frame_pointer_needed) ++ { ++ insn = emit_insn (gen_stack_pointer_inc (GEN_INT (-4096))); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ insn = emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size))); ++ } ++ else ++ { ++ size_rtx = gen_rtx_REG (Pmode, 1); ++ emit_move_insn (size_rtx, size_int_rtx); ++ insn = emit_insn (gen_stack_pointer_inc (size_rtx)); ++ add_reg_note (insn, REG_CFA_ADJUST_CFA, ++ gen_stack_pointer_inc (size_int_rtx)); ++ } ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ /* Ensure nothing is scheduled until after the frame is established. */ ++ emit_insn (gen_blockage ()); ++ ++ if (frame_pointer_needed) ++ { ++ insn = emit_insn (gen_rtx_SET (hard_frame_pointer_rtx, ++ gen_rtx_MINUS (Pmode, ++ stack_pointer_rtx, ++ size_rtx))); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ add_reg_note (insn, REG_CFA_ADJUST_CFA, ++ gen_rtx_SET (hard_frame_pointer_rtx, ++ plus_constant (Pmode, stack_pointer_rtx, ++ size))); ++ } ++ ++ if (return_addr_reg_needed_p (sparc_leaf_function_p)) ++ { ++ rtx o7 = gen_rtx_REG (Pmode, INCOMING_RETURN_ADDR_REGNUM); ++ rtx i7 = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); ++ ++ insn = emit_move_insn (i7, o7); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (i7, o7)); ++ ++ /* Prevent this instruction from ever being considered dead, ++ even if this function has no epilogue. */ ++ emit_use (i7); ++ } ++ } ++ ++ if (frame_pointer_needed) ++ { ++ sparc_frame_base_reg = hard_frame_pointer_rtx; ++ sparc_frame_base_offset = SPARC_STACK_BIAS; ++ } ++ else ++ { ++ sparc_frame_base_reg = stack_pointer_rtx; ++ sparc_frame_base_offset = size + SPARC_STACK_BIAS; ++ } ++ ++ if (sparc_n_global_fp_regs > 0) ++ emit_save_or_restore_global_fp_regs (sparc_frame_base_reg, ++ sparc_frame_base_offset ++ - sparc_apparent_frame_size, ++ SORR_SAVE); ++ ++ /* Advertise that the data calculated just above are now valid. */ ++ sparc_prologue_data_valid_p = true; ++} ++ ++/* This function generates the assembly code for function entry, which boils ++ down to emitting the necessary .register directives. */ ++ ++static void ++sparc_asm_function_prologue (FILE *file) ++{ ++ /* Check that the assumption we made in sparc_expand_prologue is valid. */ ++ if (!TARGET_FLAT) ++ gcc_assert (sparc_leaf_function_p == crtl->uses_only_leaf_regs); ++ ++ sparc_output_scratch_registers (file); ++} ++ ++/* Expand the function epilogue, either normal or part of a sibcall. ++ We emit all the instructions except the return or the call. */ ++ ++void ++sparc_expand_epilogue (bool for_eh) ++{ ++ HOST_WIDE_INT size = sparc_frame_size; ++ ++ if (cfun->calls_alloca) ++ emit_insn (gen_frame_blockage ()); ++ ++ if (sparc_n_global_fp_regs > 0) ++ emit_save_or_restore_global_fp_regs (sparc_frame_base_reg, ++ sparc_frame_base_offset ++ - sparc_apparent_frame_size, ++ SORR_RESTORE); ++ ++ if (size == 0 || for_eh) ++ ; /* do nothing. */ ++ else if (sparc_leaf_function_p) ++ { ++ if (size <= 4096) ++ emit_insn (gen_stack_pointer_inc (GEN_INT (size))); ++ else if (size <= 8192) ++ { ++ emit_insn (gen_stack_pointer_inc (GEN_INT (4096))); ++ emit_insn (gen_stack_pointer_inc (GEN_INT (size - 4096))); ++ } ++ else ++ { ++ rtx reg = gen_rtx_REG (Pmode, 1); ++ emit_move_insn (reg, GEN_INT (size)); ++ emit_insn (gen_stack_pointer_inc (reg)); ++ } ++ } ++} ++ ++/* Expand the function epilogue, either normal or part of a sibcall. ++ We emit all the instructions except the return or the call. */ ++ ++void ++sparc_flat_expand_epilogue (bool for_eh) ++{ ++ HOST_WIDE_INT size = sparc_frame_size; ++ ++ if (sparc_n_global_fp_regs > 0) ++ emit_save_or_restore_global_fp_regs (sparc_frame_base_reg, ++ sparc_frame_base_offset ++ - sparc_apparent_frame_size, ++ SORR_RESTORE); ++ ++ /* If we have a frame pointer, we'll need both to restore it before the ++ frame is destroyed and use its current value in destroying the frame. ++ Since we don't have an atomic way to do that in the flat window model, ++ we save the current value into a temporary register (%g1). */ ++ if (frame_pointer_needed && !for_eh) ++ emit_move_insn (gen_rtx_REG (Pmode, 1), hard_frame_pointer_rtx); ++ ++ if (return_addr_reg_needed_p (sparc_leaf_function_p)) ++ emit_move_insn (gen_rtx_REG (Pmode, INCOMING_RETURN_ADDR_REGNUM), ++ gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)); ++ ++ if (sparc_save_local_in_regs_p) ++ emit_save_or_restore_local_in_regs (sparc_frame_base_reg, ++ sparc_frame_base_offset, ++ SORR_RESTORE); ++ ++ if (size == 0 || for_eh) ++ ; /* do nothing. */ ++ else if (frame_pointer_needed) ++ { ++ /* Make sure the frame is destroyed after everything else is done. */ ++ emit_insn (gen_blockage ()); ++ ++ emit_move_insn (stack_pointer_rtx, gen_rtx_REG (Pmode, 1)); ++ } ++ else ++ { ++ /* Likewise. */ ++ emit_insn (gen_blockage ()); ++ ++ if (size <= 4096) ++ emit_insn (gen_stack_pointer_inc (GEN_INT (size))); ++ else if (size <= 8192) ++ { ++ emit_insn (gen_stack_pointer_inc (GEN_INT (4096))); ++ emit_insn (gen_stack_pointer_inc (GEN_INT (size - 4096))); ++ } ++ else ++ { ++ rtx reg = gen_rtx_REG (Pmode, 1); ++ emit_move_insn (reg, GEN_INT (size)); ++ emit_insn (gen_stack_pointer_inc (reg)); ++ } ++ } ++} ++ ++/* Return true if it is appropriate to emit `return' instructions in the ++ body of a function. */ ++ ++bool ++sparc_can_use_return_insn_p (void) ++{ ++ return sparc_prologue_data_valid_p ++ && sparc_n_global_fp_regs == 0 ++ && TARGET_FLAT ++ ? (sparc_frame_size == 0 && !sparc_save_local_in_regs_p) ++ : (sparc_frame_size == 0 || !sparc_leaf_function_p); ++} ++ ++/* This function generates the assembly code for function exit. */ ++ ++static void ++sparc_asm_function_epilogue (FILE *file) ++{ ++ /* If the last two instructions of a function are "call foo; dslot;" ++ the return address might point to the first instruction in the next ++ function and we have to output a dummy nop for the sake of sane ++ backtraces in such cases. This is pointless for sibling calls since ++ the return address is explicitly adjusted. */ ++ ++ rtx_insn *insn = get_last_insn (); ++ ++ rtx last_real_insn = prev_real_insn (insn); ++ if (last_real_insn ++ && NONJUMP_INSN_P (last_real_insn) ++ && GET_CODE (PATTERN (last_real_insn)) == SEQUENCE) ++ last_real_insn = XVECEXP (PATTERN (last_real_insn), 0, 0); ++ ++ if (last_real_insn ++ && CALL_P (last_real_insn) ++ && !SIBLING_CALL_P (last_real_insn)) ++ fputs("\tnop\n", file); ++ ++ sparc_output_deferred_case_vectors (); ++} ++ ++/* Output a 'restore' instruction. */ ++ ++static void ++output_restore (rtx pat) ++{ ++ rtx operands[3]; ++ ++ if (! pat) ++ { ++ fputs ("\t restore\n", asm_out_file); ++ return; ++ } ++ ++ gcc_assert (GET_CODE (pat) == SET); ++ ++ operands[0] = SET_DEST (pat); ++ pat = SET_SRC (pat); ++ ++ switch (GET_CODE (pat)) ++ { ++ case PLUS: ++ operands[1] = XEXP (pat, 0); ++ operands[2] = XEXP (pat, 1); ++ output_asm_insn (" restore %r1, %2, %Y0", operands); ++ break; ++ case LO_SUM: ++ operands[1] = XEXP (pat, 0); ++ operands[2] = XEXP (pat, 1); ++ output_asm_insn (" restore %r1, %%lo(%a2), %Y0", operands); ++ break; ++ case ASHIFT: ++ operands[1] = XEXP (pat, 0); ++ gcc_assert (XEXP (pat, 1) == const1_rtx); ++ output_asm_insn (" restore %r1, %r1, %Y0", operands); ++ break; ++ default: ++ operands[1] = pat; ++ output_asm_insn (" restore %%g0, %1, %Y0", operands); ++ break; ++ } ++} ++ ++/* Output a return. */ ++ ++const char * ++output_return (rtx_insn *insn) ++{ ++ if (crtl->calls_eh_return) ++ { ++ /* If the function uses __builtin_eh_return, the eh_return ++ machinery occupies the delay slot. */ ++ gcc_assert (!final_sequence); ++ ++ if (flag_delayed_branch) ++ { ++ if (!TARGET_FLAT && TARGET_V9) ++ fputs ("\treturn\t%i7+8\n", asm_out_file); ++ else ++ { ++ if (!TARGET_FLAT) ++ fputs ("\trestore\n", asm_out_file); ++ ++ fputs ("\tjmp\t%o7+8\n", asm_out_file); ++ } ++ ++ fputs ("\t add\t%sp, %g1, %sp\n", asm_out_file); ++ } ++ else ++ { ++ if (!TARGET_FLAT) ++ fputs ("\trestore\n", asm_out_file); ++ ++ fputs ("\tadd\t%sp, %g1, %sp\n", asm_out_file); ++ fputs ("\tjmp\t%o7+8\n\t nop\n", asm_out_file); ++ } ++ } ++ else if (sparc_leaf_function_p || TARGET_FLAT) ++ { ++ /* This is a leaf or flat function so we don't have to bother restoring ++ the register window, which frees us from dealing with the convoluted ++ semantics of restore/return. We simply output the jump to the ++ return address and the insn in the delay slot (if any). */ ++ ++ return "jmp\t%%o7+%)%#"; ++ } ++ else ++ { ++ /* This is a regular function so we have to restore the register window. ++ We may have a pending insn for the delay slot, which will be either ++ combined with the 'restore' instruction or put in the delay slot of ++ the 'return' instruction. */ ++ ++ if (final_sequence) ++ { ++ rtx_insn *delay; ++ rtx pat; ++ ++ delay = NEXT_INSN (insn); ++ gcc_assert (delay); ++ ++ pat = PATTERN (delay); ++ ++ if (TARGET_V9 && ! epilogue_renumber (&pat, 1)) ++ { ++ epilogue_renumber (&pat, 0); ++ return "return\t%%i7+%)%#"; ++ } ++ else ++ { ++ output_asm_insn ("jmp\t%%i7+%)", NULL); ++ ++ /* We're going to output the insn in the delay slot manually. ++ Make sure to output its source location first. */ ++ PATTERN (delay) = gen_blockage (); ++ INSN_CODE (delay) = -1; ++ final_scan_insn (delay, asm_out_file, optimize, 0, NULL); ++ INSN_LOCATION (delay) = UNKNOWN_LOCATION; ++ ++ output_restore (pat); ++ } ++ } ++ else ++ { ++ /* The delay slot is empty. */ ++ if (TARGET_V9) ++ return "return\t%%i7+%)\n\t nop"; ++ else if (flag_delayed_branch) ++ return "jmp\t%%i7+%)\n\t restore"; ++ else ++ return "restore\n\tjmp\t%%o7+%)\n\t nop"; ++ } ++ } ++ ++ return ""; ++} ++ ++/* Output a sibling call. */ ++ ++const char * ++output_sibcall (rtx_insn *insn, rtx call_operand) ++{ ++ rtx operands[1]; ++ ++ gcc_assert (flag_delayed_branch); ++ ++ operands[0] = call_operand; ++ ++ if (sparc_leaf_function_p || TARGET_FLAT) ++ { ++ /* This is a leaf or flat function so we don't have to bother restoring ++ the register window. We simply output the jump to the function and ++ the insn in the delay slot (if any). */ ++ ++ gcc_assert (!(LEAF_SIBCALL_SLOT_RESERVED_P && final_sequence)); ++ ++ if (final_sequence) ++ output_asm_insn ("sethi\t%%hi(%a0), %%g1\n\tjmp\t%%g1 + %%lo(%a0)%#", ++ operands); ++ else ++ /* Use or with rs2 %%g0 instead of mov, so that as/ld can optimize ++ it into branch if possible. */ ++ output_asm_insn ("or\t%%o7, %%g0, %%g1\n\tcall\t%a0, 0\n\t or\t%%g1, %%g0, %%o7", ++ operands); ++ } ++ else ++ { ++ /* This is a regular function so we have to restore the register window. ++ We may have a pending insn for the delay slot, which will be combined ++ with the 'restore' instruction. */ ++ ++ output_asm_insn ("call\t%a0, 0", operands); ++ ++ if (final_sequence) ++ { ++ rtx_insn *delay; ++ rtx pat; ++ ++ delay = NEXT_INSN (insn); ++ gcc_assert (delay); ++ ++ pat = PATTERN (delay); ++ ++ /* We're going to output the insn in the delay slot manually. ++ Make sure to output its source location first. */ ++ PATTERN (delay) = gen_blockage (); ++ INSN_CODE (delay) = -1; ++ final_scan_insn (delay, asm_out_file, optimize, 0, NULL); ++ INSN_LOCATION (delay) = UNKNOWN_LOCATION; ++ ++ output_restore (pat); ++ } ++ else ++ output_restore (NULL_RTX); ++ } ++ ++ return ""; ++} ++ ++/* Functions for handling argument passing. ++ ++ For 32-bit, the first 6 args are normally in registers and the rest are ++ pushed. Any arg that starts within the first 6 words is at least ++ partially passed in a register unless its data type forbids. ++ ++ For 64-bit, the argument registers are laid out as an array of 16 elements ++ and arguments are added sequentially. The first 6 int args and up to the ++ first 16 fp args (depending on size) are passed in regs. ++ ++ Slot Stack Integral Float Float in structure Double Long Double ++ ---- ----- -------- ----- ------------------ ------ ----------- ++ 15 [SP+248] %f31 %f30,%f31 %d30 ++ 14 [SP+240] %f29 %f28,%f29 %d28 %q28 ++ 13 [SP+232] %f27 %f26,%f27 %d26 ++ 12 [SP+224] %f25 %f24,%f25 %d24 %q24 ++ 11 [SP+216] %f23 %f22,%f23 %d22 ++ 10 [SP+208] %f21 %f20,%f21 %d20 %q20 ++ 9 [SP+200] %f19 %f18,%f19 %d18 ++ 8 [SP+192] %f17 %f16,%f17 %d16 %q16 ++ 7 [SP+184] %f15 %f14,%f15 %d14 ++ 6 [SP+176] %f13 %f12,%f13 %d12 %q12 ++ 5 [SP+168] %o5 %f11 %f10,%f11 %d10 ++ 4 [SP+160] %o4 %f9 %f8,%f9 %d8 %q8 ++ 3 [SP+152] %o3 %f7 %f6,%f7 %d6 ++ 2 [SP+144] %o2 %f5 %f4,%f5 %d4 %q4 ++ 1 [SP+136] %o1 %f3 %f2,%f3 %d2 ++ 0 [SP+128] %o0 %f1 %f0,%f1 %d0 %q0 ++ ++ Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise. ++ ++ Integral arguments are always passed as 64-bit quantities appropriately ++ extended. ++ ++ Passing of floating point values is handled as follows. ++ If a prototype is in scope: ++ If the value is in a named argument (i.e. not a stdarg function or a ++ value not part of the `...') then the value is passed in the appropriate ++ fp reg. ++ If the value is part of the `...' and is passed in one of the first 6 ++ slots then the value is passed in the appropriate int reg. ++ If the value is part of the `...' and is not passed in one of the first 6 ++ slots then the value is passed in memory. ++ If a prototype is not in scope: ++ If the value is one of the first 6 arguments the value is passed in the ++ appropriate integer reg and the appropriate fp reg. ++ If the value is not one of the first 6 arguments the value is passed in ++ the appropriate fp reg and in memory. ++ ++ ++ Summary of the calling conventions implemented by GCC on the SPARC: ++ ++ 32-bit ABI: ++ size argument return value ++ ++ small integer <4 int. reg. int. reg. ++ word 4 int. reg. int. reg. ++ double word 8 int. reg. int. reg. ++ ++ _Complex small integer <8 int. reg. int. reg. ++ _Complex word 8 int. reg. int. reg. ++ _Complex double word 16 memory int. reg. ++ ++ vector integer <=8 int. reg. FP reg. ++ vector integer >8 memory memory ++ ++ float 4 int. reg. FP reg. ++ double 8 int. reg. FP reg. ++ long double 16 memory memory ++ ++ _Complex float 8 memory FP reg. ++ _Complex double 16 memory FP reg. ++ _Complex long double 32 memory FP reg. ++ ++ vector float any memory memory ++ ++ aggregate any memory memory ++ ++ ++ ++ 64-bit ABI: ++ size argument return value ++ ++ small integer <8 int. reg. int. reg. ++ word 8 int. reg. int. reg. ++ double word 16 int. reg. int. reg. ++ ++ _Complex small integer <16 int. reg. int. reg. ++ _Complex word 16 int. reg. int. reg. ++ _Complex double word 32 memory int. reg. ++ ++ vector integer <=16 FP reg. FP reg. ++ vector integer 1632 memory memory ++ ++ float 4 FP reg. FP reg. ++ double 8 FP reg. FP reg. ++ long double 16 FP reg. FP reg. ++ ++ _Complex float 8 FP reg. FP reg. ++ _Complex double 16 FP reg. FP reg. ++ _Complex long double 32 memory FP reg. ++ ++ vector float <=16 FP reg. FP reg. ++ vector float 1632 memory memory ++ ++ aggregate <=16 reg. reg. ++ aggregate 1632 memory memory ++ ++ ++ ++Note #1: complex floating-point types follow the extended SPARC ABIs as ++implemented by the Sun compiler. ++ ++Note #2: integer vector types follow the scalar floating-point types ++conventions to match what is implemented by the Sun VIS SDK. ++ ++Note #3: floating-point vector types follow the aggregate types ++conventions. */ ++ ++ ++/* Maximum number of int regs for args. */ ++#define SPARC_INT_ARG_MAX 6 ++/* Maximum number of fp regs for args. */ ++#define SPARC_FP_ARG_MAX 16 ++/* Number of words (partially) occupied for a given size in units. */ ++#define CEIL_NWORDS(SIZE) CEIL((SIZE), UNITS_PER_WORD) ++ ++/* Handle the INIT_CUMULATIVE_ARGS macro. ++ Initialize a variable CUM of type CUMULATIVE_ARGS ++ for a call to a function whose data type is FNTYPE. ++ For a library call, FNTYPE is 0. */ ++ ++void ++init_cumulative_args (struct sparc_args *cum, tree fntype, rtx, tree) ++{ ++ cum->words = 0; ++ cum->prototype_p = fntype && prototype_p (fntype); ++ cum->libcall_p = !fntype; ++} ++ ++/* Handle promotion of pointer and integer arguments. */ ++ ++static machine_mode ++sparc_promote_function_mode (const_tree type, machine_mode mode, ++ int *punsignedp, const_tree, int) ++{ ++ if (type && POINTER_TYPE_P (type)) ++ { ++ *punsignedp = POINTERS_EXTEND_UNSIGNED; ++ return Pmode; ++ } ++ ++ /* Integral arguments are passed as full words, as per the ABI. */ ++ if (GET_MODE_CLASS (mode) == MODE_INT ++ && GET_MODE_SIZE (mode) < UNITS_PER_WORD) ++ return word_mode; ++ ++ return mode; ++} ++ ++/* Handle the TARGET_STRICT_ARGUMENT_NAMING target hook. */ ++ ++static bool ++sparc_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED) ++{ ++ return TARGET_ARCH64 ? true : false; ++} ++ ++/* Handle the TARGET_PASS_BY_REFERENCE target hook. ++ Specify whether to pass the argument by reference. */ ++ ++static bool ++sparc_pass_by_reference (cumulative_args_t, const function_arg_info &arg) ++{ ++ tree type = arg.type; ++ machine_mode mode = arg.mode; ++ if (TARGET_ARCH32) ++ /* Original SPARC 32-bit ABI says that structures and unions, ++ and quad-precision floats are passed by reference. ++ All other base types are passed in registers. ++ ++ Extended ABI (as implemented by the Sun compiler) says that all ++ complex floats are passed by reference. Pass complex integers ++ in registers up to 8 bytes. More generally, enforce the 2-word ++ cap for passing arguments in registers. ++ ++ Vector ABI (as implemented by the Sun VIS SDK) says that integer ++ vectors are passed like floats of the same size, that is in ++ registers up to 8 bytes. Pass all vector floats by reference ++ like structure and unions. */ ++ return ((type && (AGGREGATE_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type))) ++ || mode == SCmode ++ /* Catch CDImode, TFmode, DCmode and TCmode. */ ++ || GET_MODE_SIZE (mode) > 8 ++ || (type ++ && VECTOR_TYPE_P (type) ++ && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8)); ++ else ++ /* Original SPARC 64-bit ABI says that structures and unions ++ smaller than 16 bytes are passed in registers, as well as ++ all other base types. ++ ++ Extended ABI (as implemented by the Sun compiler) says that ++ complex floats are passed in registers up to 16 bytes. Pass ++ all complex integers in registers up to 16 bytes. More generally, ++ enforce the 2-word cap for passing arguments in registers. ++ ++ Vector ABI (as implemented by the Sun VIS SDK) says that integer ++ vectors are passed like floats of the same size, that is in ++ registers (up to 16 bytes). Pass all vector floats like structure ++ and unions. */ ++ return ((type ++ && (AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)) ++ && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 16) ++ /* Catch CTImode and TCmode. */ ++ || GET_MODE_SIZE (mode) > 16); ++} ++ ++/* Traverse the record TYPE recursively and call FUNC on its fields. ++ NAMED is true if this is for a named parameter. DATA is passed ++ to FUNC for each field. OFFSET is the starting position and ++ PACKED is true if we are inside a packed record. */ ++ ++template ++static void ++traverse_record_type (const_tree type, bool named, T *data, ++ int offset = 0, bool packed = false) ++{ ++ /* The ABI obviously doesn't specify how packed structures are passed. ++ These are passed in integer regs if possible, otherwise memory. */ ++ if (!packed) ++ for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) ++ if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)) ++ { ++ packed = true; ++ break; ++ } ++ ++ /* Walk the real fields, but skip those with no size or a zero size. ++ ??? Fields with variable offset are handled as having zero offset. */ ++ for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) ++ if (TREE_CODE (field) == FIELD_DECL) ++ { ++ if (!DECL_SIZE (field) || integer_zerop (DECL_SIZE (field))) ++ continue; ++ ++ int bitpos = offset; ++ if (TREE_CODE (DECL_FIELD_OFFSET (field)) == INTEGER_CST) ++ bitpos += int_bit_position (field); ++ ++ tree field_type = TREE_TYPE (field); ++ if (TREE_CODE (field_type) == RECORD_TYPE) ++ traverse_record_type (field_type, named, data, bitpos, ++ packed); ++ else ++ { ++ const bool fp_type ++ = FLOAT_TYPE_P (field_type) || VECTOR_TYPE_P (field_type); ++ Func (field, bitpos, fp_type && named && !packed && TARGET_FPU, ++ data); ++ } ++ } ++} ++ ++/* Handle recursive register classifying for structure layout. */ ++ ++typedef struct ++{ ++ bool fp_regs; /* true if field eligible to FP registers. */ ++ bool fp_regs_in_first_word; /* true if such field in first word. */ ++} classify_data_t; ++ ++/* A subroutine of function_arg_slotno. Classify the field. */ ++ ++inline void ++classify_registers (const_tree, int bitpos, bool fp, classify_data_t *data) ++{ ++ if (fp) ++ { ++ data->fp_regs = true; ++ if (bitpos < BITS_PER_WORD) ++ data->fp_regs_in_first_word = true; ++ } ++} ++ ++/* Compute the slot number to pass an argument in. ++ Return the slot number or -1 if passing on the stack. ++ ++ CUM is a variable of type CUMULATIVE_ARGS which gives info about ++ the preceding args and about the function being called. ++ MODE is the argument's machine mode. ++ TYPE is the data type of the argument (as a tree). ++ This is null for libcalls where that information may ++ not be available. ++ NAMED is nonzero if this argument is a named parameter ++ (otherwise it is an extra parameter matching an ellipsis). ++ INCOMING is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. ++ *PREGNO records the register number to use if scalar type. ++ *PPADDING records the amount of padding needed in words. */ ++ ++static int ++function_arg_slotno (const struct sparc_args *cum, machine_mode mode, ++ const_tree type, bool named, bool incoming, ++ int *pregno, int *ppadding) ++{ ++ const int regbase ++ = incoming ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST; ++ int slotno = cum->words, regno; ++ enum mode_class mclass = GET_MODE_CLASS (mode); ++ ++ /* Silence warnings in the callers. */ ++ *pregno = -1; ++ *ppadding = -1; ++ ++ if (type && TREE_ADDRESSABLE (type)) ++ return -1; ++ ++ /* In 64-bit mode, objects requiring 16-byte alignment get it. */ ++ if (TARGET_ARCH64 ++ && (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode)) >= 128 ++ && (slotno & 1) != 0) ++ { ++ slotno++; ++ *ppadding = 1; ++ } ++ else ++ *ppadding = 0; ++ ++ /* Vector types deserve special treatment because they are polymorphic wrt ++ their mode, depending upon whether VIS instructions are enabled. */ ++ if (type && VECTOR_TYPE_P (type)) ++ { ++ if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE) ++ { ++ /* The SPARC port defines no floating-point vector modes. */ ++ gcc_assert (mode == BLKmode); ++ } ++ else ++ { ++ /* Integer vector types should either have a vector ++ mode or an integral mode, because we are guaranteed ++ by pass_by_reference that their size is not greater ++ than 16 bytes and TImode is 16-byte wide. */ ++ gcc_assert (mode != BLKmode); ++ ++ /* Integer vectors are handled like floats as per ++ the Sun VIS SDK. */ ++ mclass = MODE_FLOAT; ++ } ++ } ++ ++ switch (mclass) ++ { ++ case MODE_FLOAT: ++ case MODE_COMPLEX_FLOAT: ++ case MODE_VECTOR_INT: ++ if (TARGET_ARCH64 && TARGET_FPU && named) ++ { ++ /* If all arg slots are filled, then must pass on stack. */ ++ if (slotno >= SPARC_FP_ARG_MAX) ++ return -1; ++ ++ regno = SPARC_FP_ARG_FIRST + slotno * 2; ++ /* Arguments filling only one single FP register are ++ right-justified in the outer double FP register. */ ++ if (GET_MODE_SIZE (mode) <= 4) ++ regno++; ++ break; ++ } ++ /* fallthrough */ ++ ++ case MODE_INT: ++ case MODE_COMPLEX_INT: ++ /* If all arg slots are filled, then must pass on stack. */ ++ if (slotno >= SPARC_INT_ARG_MAX) ++ return -1; ++ ++ regno = regbase + slotno; ++ break; ++ ++ case MODE_RANDOM: ++ /* MODE is VOIDmode when generating the actual call. */ ++ if (mode == VOIDmode) ++ return -1; ++ ++ if (TARGET_64BIT && TARGET_FPU && named ++ && type ++ && (TREE_CODE (type) == RECORD_TYPE || VECTOR_TYPE_P (type))) ++ { ++ /* If all arg slots are filled, then must pass on stack. */ ++ if (slotno >= SPARC_FP_ARG_MAX) ++ return -1; ++ ++ if (TREE_CODE (type) == RECORD_TYPE) ++ { ++ classify_data_t data = { false, false }; ++ traverse_record_type ++ (type, named, &data); ++ ++ if (data.fp_regs) ++ { ++ /* If all FP slots are filled except for the last one and ++ there is no FP field in the first word, then must pass ++ on stack. */ ++ if (slotno >= SPARC_FP_ARG_MAX - 1 ++ && !data.fp_regs_in_first_word) ++ return -1; ++ } ++ else ++ { ++ /* If all int slots are filled, then must pass on stack. */ ++ if (slotno >= SPARC_INT_ARG_MAX) ++ return -1; ++ } ++ ++ /* PREGNO isn't set since both int and FP regs can be used. */ ++ return slotno; ++ } ++ ++ regno = SPARC_FP_ARG_FIRST + slotno * 2; ++ } ++ else ++ { ++ /* If all arg slots are filled, then must pass on stack. */ ++ if (slotno >= SPARC_INT_ARG_MAX) ++ return -1; ++ ++ regno = regbase + slotno; ++ } ++ break; ++ ++ default : ++ gcc_unreachable (); ++ } ++ ++ *pregno = regno; ++ return slotno; ++} ++ ++/* Handle recursive register counting/assigning for structure layout. */ ++ ++typedef struct ++{ ++ int slotno; /* slot number of the argument. */ ++ int regbase; /* regno of the base register. */ ++ int intoffset; /* offset of the first pending integer field. */ ++ int nregs; /* number of words passed in registers. */ ++ bool stack; /* true if part of the argument is on the stack. */ ++ rtx ret; /* return expression being built. */ ++} assign_data_t; ++ ++/* A subroutine of function_arg_record_value. Compute the number of integer ++ registers to be assigned between PARMS->intoffset and BITPOS. Return ++ true if at least one integer register is assigned or false otherwise. */ ++ ++static bool ++compute_int_layout (int bitpos, assign_data_t *data, int *pnregs) ++{ ++ if (data->intoffset < 0) ++ return false; ++ ++ const int intoffset = data->intoffset; ++ data->intoffset = -1; ++ ++ const int this_slotno = data->slotno + intoffset / BITS_PER_WORD; ++ const unsigned int startbit = ROUND_DOWN (intoffset, BITS_PER_WORD); ++ const unsigned int endbit = ROUND_UP (bitpos, BITS_PER_WORD); ++ int nregs = (endbit - startbit) / BITS_PER_WORD; ++ ++ if (nregs > 0 && nregs > SPARC_INT_ARG_MAX - this_slotno) ++ { ++ nregs = SPARC_INT_ARG_MAX - this_slotno; ++ ++ /* We need to pass this field (partly) on the stack. */ ++ data->stack = 1; ++ } ++ ++ if (nregs <= 0) ++ return false; ++ ++ *pnregs = nregs; ++ return true; ++} ++ ++/* A subroutine of function_arg_record_value. Compute the number and the mode ++ of the FP registers to be assigned for FIELD. Return true if at least one ++ FP register is assigned or false otherwise. */ ++ ++static bool ++compute_fp_layout (const_tree field, int bitpos, assign_data_t *data, ++ int *pnregs, machine_mode *pmode) ++{ ++ const int this_slotno = data->slotno + bitpos / BITS_PER_WORD; ++ machine_mode mode = DECL_MODE (field); ++ int nregs, nslots; ++ ++ /* Slots are counted as words while regs are counted as having the size of ++ the (inner) mode. */ ++ if (VECTOR_TYPE_P (TREE_TYPE (field)) && mode == BLKmode) ++ { ++ mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (field))); ++ nregs = TYPE_VECTOR_SUBPARTS (TREE_TYPE (field)); ++ } ++ else if (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE) ++ { ++ mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (field))); ++ nregs = 2; ++ } ++ else ++ nregs = 1; ++ ++ nslots = CEIL_NWORDS (nregs * GET_MODE_SIZE (mode)); ++ ++ if (nslots > SPARC_FP_ARG_MAX - this_slotno) ++ { ++ nslots = SPARC_FP_ARG_MAX - this_slotno; ++ nregs = (nslots * UNITS_PER_WORD) / GET_MODE_SIZE (mode); ++ ++ /* We need to pass this field (partly) on the stack. */ ++ data->stack = 1; ++ ++ if (nregs <= 0) ++ return false; ++ } ++ ++ *pnregs = nregs; ++ *pmode = mode; ++ return true; ++} ++ ++/* A subroutine of function_arg_record_value. Count the number of registers ++ to be assigned for FIELD and between PARMS->intoffset and BITPOS. */ ++ ++inline void ++count_registers (const_tree field, int bitpos, bool fp, assign_data_t *data) ++{ ++ if (fp) ++ { ++ int nregs; ++ machine_mode mode; ++ ++ if (compute_int_layout (bitpos, data, &nregs)) ++ data->nregs += nregs; ++ ++ if (compute_fp_layout (field, bitpos, data, &nregs, &mode)) ++ data->nregs += nregs; ++ } ++ else ++ { ++ if (data->intoffset < 0) ++ data->intoffset = bitpos; ++ } ++} ++ ++/* A subroutine of function_arg_record_value. Assign the bits of the ++ structure between PARMS->intoffset and BITPOS to integer registers. */ ++ ++static void ++assign_int_registers (int bitpos, assign_data_t *data) ++{ ++ int intoffset = data->intoffset; ++ machine_mode mode; ++ int nregs; ++ ++ if (!compute_int_layout (bitpos, data, &nregs)) ++ return; ++ ++ /* If this is the trailing part of a word, only load that much into ++ the register. Otherwise load the whole register. Note that in ++ the latter case we may pick up unwanted bits. It's not a problem ++ at the moment but may wish to revisit. */ ++ if (intoffset % BITS_PER_WORD != 0) ++ mode = smallest_int_mode_for_size (BITS_PER_WORD ++ - intoffset % BITS_PER_WORD); ++ else ++ mode = word_mode; ++ ++ const int this_slotno = data->slotno + intoffset / BITS_PER_WORD; ++ unsigned int regno = data->regbase + this_slotno; ++ intoffset /= BITS_PER_UNIT; ++ ++ do ++ { ++ rtx reg = gen_rtx_REG (mode, regno); ++ XVECEXP (data->ret, 0, data->stack + data->nregs) ++ = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset)); ++ data->nregs += 1; ++ mode = word_mode; ++ regno += 1; ++ intoffset = (intoffset | (UNITS_PER_WORD - 1)) + 1; ++ } ++ while (--nregs > 0); ++} ++ ++/* A subroutine of function_arg_record_value. Assign FIELD at position ++ BITPOS to FP registers. */ ++ ++static void ++assign_fp_registers (const_tree field, int bitpos, assign_data_t *data) ++{ ++ int nregs; ++ machine_mode mode; ++ ++ if (!compute_fp_layout (field, bitpos, data, &nregs, &mode)) ++ return; ++ ++ const int this_slotno = data->slotno + bitpos / BITS_PER_WORD; ++ int regno = SPARC_FP_ARG_FIRST + this_slotno * 2; ++ if (GET_MODE_SIZE (mode) <= 4 && (bitpos & 32) != 0) ++ regno++; ++ int pos = bitpos / BITS_PER_UNIT; ++ ++ do ++ { ++ rtx reg = gen_rtx_REG (mode, regno); ++ XVECEXP (data->ret, 0, data->stack + data->nregs) ++ = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (pos)); ++ data->nregs += 1; ++ regno += GET_MODE_SIZE (mode) / 4; ++ pos += GET_MODE_SIZE (mode); ++ } ++ while (--nregs > 0); ++} ++ ++/* A subroutine of function_arg_record_value. Assign FIELD and the bits of ++ the structure between PARMS->intoffset and BITPOS to registers. */ ++ ++inline void ++assign_registers (const_tree field, int bitpos, bool fp, assign_data_t *data) ++{ ++ if (fp) ++ { ++ assign_int_registers (bitpos, data); ++ ++ assign_fp_registers (field, bitpos, data); ++ } ++ else ++ { ++ if (data->intoffset < 0) ++ data->intoffset = bitpos; ++ } ++} ++ ++/* Used by function_arg and function_value to implement the complex ++ conventions of the 64-bit ABI for passing and returning structures. ++ Return an expression valid as a return value for the FUNCTION_ARG ++ and TARGET_FUNCTION_VALUE. ++ ++ TYPE is the data type of the argument (as a tree). ++ This is null for libcalls where that information may ++ not be available. ++ MODE is the argument's machine mode. ++ SLOTNO is the index number of the argument's slot in the parameter array. ++ NAMED is true if this argument is a named parameter ++ (otherwise it is an extra parameter matching an ellipsis). ++ REGBASE is the regno of the base register for the parameter array. */ ++ ++static rtx ++function_arg_record_value (const_tree type, machine_mode mode, ++ int slotno, bool named, int regbase) ++{ ++ const int size = int_size_in_bytes (type); ++ assign_data_t data; ++ int nregs; ++ ++ data.slotno = slotno; ++ data.regbase = regbase; ++ ++ /* Count how many registers we need. */ ++ data.nregs = 0; ++ data.intoffset = 0; ++ data.stack = false; ++ traverse_record_type (type, named, &data); ++ ++ /* Take into account pending integer fields. */ ++ if (compute_int_layout (size * BITS_PER_UNIT, &data, &nregs)) ++ data.nregs += nregs; ++ ++ /* Allocate the vector and handle some annoying special cases. */ ++ nregs = data.nregs; ++ ++ if (nregs == 0) ++ { ++ /* ??? Empty structure has no value? Duh? */ ++ if (size <= 0) ++ { ++ /* Though there's nothing really to store, return a word register ++ anyway so the rest of gcc doesn't go nuts. Returning a PARALLEL ++ leads to breakage due to the fact that there are zero bytes to ++ load. */ ++ return gen_rtx_REG (mode, regbase); ++ } ++ ++ /* ??? C++ has structures with no fields, and yet a size. Give up ++ for now and pass everything back in integer registers. */ ++ nregs = CEIL_NWORDS (size); ++ if (nregs + slotno > SPARC_INT_ARG_MAX) ++ nregs = SPARC_INT_ARG_MAX - slotno; ++ } ++ ++ gcc_assert (nregs > 0); ++ ++ data.ret = gen_rtx_PARALLEL (mode, rtvec_alloc (data.stack + nregs)); ++ ++ /* If at least one field must be passed on the stack, generate ++ (parallel [(expr_list (nil) ...) ...]) so that all fields will ++ also be passed on the stack. We can't do much better because the ++ semantics of TARGET_ARG_PARTIAL_BYTES doesn't handle the case ++ of structures for which the fields passed exclusively in registers ++ are not at the beginning of the structure. */ ++ if (data.stack) ++ XVECEXP (data.ret, 0, 0) ++ = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx); ++ ++ /* Assign the registers. */ ++ data.nregs = 0; ++ data.intoffset = 0; ++ traverse_record_type (type, named, &data); ++ ++ /* Assign pending integer fields. */ ++ assign_int_registers (size * BITS_PER_UNIT, &data); ++ ++ gcc_assert (data.nregs == nregs); ++ ++ return data.ret; ++} ++ ++/* Used by function_arg and function_value to implement the conventions ++ of the 64-bit ABI for passing and returning unions. ++ Return an expression valid as a return value for the FUNCTION_ARG ++ and TARGET_FUNCTION_VALUE. ++ ++ SIZE is the size in bytes of the union. ++ MODE is the argument's machine mode. ++ SLOTNO is the index number of the argument's slot in the parameter array. ++ REGNO is the hard register the union will be passed in. */ ++ ++static rtx ++function_arg_union_value (int size, machine_mode mode, int slotno, int regno) ++{ ++ unsigned int nwords; ++ ++ /* See comment in function_arg_record_value for empty structures. */ ++ if (size <= 0) ++ return gen_rtx_REG (mode, regno); ++ ++ if (slotno == SPARC_INT_ARG_MAX - 1) ++ nwords = 1; ++ else ++ nwords = CEIL_NWORDS (size); ++ ++ rtx regs = gen_rtx_PARALLEL (mode, rtvec_alloc (nwords)); ++ ++ /* Unions are passed left-justified. */ ++ for (unsigned int i = 0; i < nwords; i++) ++ XVECEXP (regs, 0, i) ++ = gen_rtx_EXPR_LIST (VOIDmode, ++ gen_rtx_REG (word_mode, regno + i), ++ GEN_INT (UNITS_PER_WORD * i)); ++ ++ return regs; ++} ++ ++/* Used by function_arg and function_value to implement the conventions ++ of the 64-bit ABI for passing and returning BLKmode vectors. ++ Return an expression valid as a return value for the FUNCTION_ARG ++ and TARGET_FUNCTION_VALUE. ++ ++ SIZE is the size in bytes of the vector. ++ SLOTNO is the index number of the argument's slot in the parameter array. ++ NAMED is true if this argument is a named parameter ++ (otherwise it is an extra parameter matching an ellipsis). ++ REGNO is the hard register the vector will be passed in. */ ++ ++static rtx ++function_arg_vector_value (int size, int slotno, bool named, int regno) ++{ ++ const int mult = (named ? 2 : 1); ++ unsigned int nwords; ++ ++ if (slotno == (named ? SPARC_FP_ARG_MAX : SPARC_INT_ARG_MAX) - 1) ++ nwords = 1; ++ else ++ nwords = CEIL_NWORDS (size); ++ ++ rtx regs = gen_rtx_PARALLEL (BLKmode, rtvec_alloc (nwords)); ++ ++ if (size < UNITS_PER_WORD) ++ XVECEXP (regs, 0, 0) ++ = gen_rtx_EXPR_LIST (VOIDmode, ++ gen_rtx_REG (SImode, regno), ++ const0_rtx); ++ else ++ for (unsigned int i = 0; i < nwords; i++) ++ XVECEXP (regs, 0, i) ++ = gen_rtx_EXPR_LIST (VOIDmode, ++ gen_rtx_REG (word_mode, regno + i * mult), ++ GEN_INT (i * UNITS_PER_WORD)); ++ ++ return regs; ++} ++ ++/* Determine where to put an argument to a function. ++ Value is zero to push the argument on the stack, ++ or a hard register in which to store the argument. ++ ++ CUM is a variable of type CUMULATIVE_ARGS which gives info about ++ the preceding args and about the function being called. ++ ARG is a description of the argument. ++ INCOMING_P is false for TARGET_FUNCTION_ARG, true for ++ TARGET_FUNCTION_INCOMING_ARG. */ ++ ++static rtx ++sparc_function_arg_1 (cumulative_args_t cum_v, const function_arg_info &arg, ++ bool incoming) ++{ ++ const CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); ++ const int regbase ++ = incoming ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST; ++ int slotno, regno, padding; ++ tree type = arg.type; ++ machine_mode mode = arg.mode; ++ enum mode_class mclass = GET_MODE_CLASS (mode); ++ bool named = arg.named; ++ ++ slotno ++ = function_arg_slotno (cum, mode, type, named, incoming, ®no, &padding); ++ if (slotno == -1) ++ return 0; ++ ++ /* Integer vectors are handled like floats as per the Sun VIS SDK. */ ++ if (type && VECTOR_INTEGER_TYPE_P (type)) ++ mclass = MODE_FLOAT; ++ ++ if (TARGET_ARCH32) ++ return gen_rtx_REG (mode, regno); ++ ++ /* Structures up to 16 bytes in size are passed in arg slots on the stack ++ and are promoted to registers if possible. */ ++ if (type && TREE_CODE (type) == RECORD_TYPE) ++ { ++ const int size = int_size_in_bytes (type); ++ gcc_assert (size <= 16); ++ ++ return function_arg_record_value (type, mode, slotno, named, regbase); ++ } ++ ++ /* Unions up to 16 bytes in size are passed in integer registers. */ ++ else if (type && TREE_CODE (type) == UNION_TYPE) ++ { ++ const int size = int_size_in_bytes (type); ++ gcc_assert (size <= 16); ++ ++ return function_arg_union_value (size, mode, slotno, regno); ++ } ++ ++ /* Floating-point vectors up to 16 bytes are passed in registers. */ ++ else if (type && VECTOR_TYPE_P (type) && mode == BLKmode) ++ { ++ const int size = int_size_in_bytes (type); ++ gcc_assert (size <= 16); ++ ++ return function_arg_vector_value (size, slotno, named, regno); ++ } ++ ++ /* v9 fp args in reg slots beyond the int reg slots get passed in regs ++ but also have the slot allocated for them. ++ If no prototype is in scope fp values in register slots get passed ++ in two places, either fp regs and int regs or fp regs and memory. */ ++ else if ((mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) ++ && SPARC_FP_REG_P (regno)) ++ { ++ rtx reg = gen_rtx_REG (mode, regno); ++ if (cum->prototype_p || cum->libcall_p) ++ return reg; ++ else ++ { ++ rtx v0, v1; ++ ++ if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2) ++ { ++ int intreg; ++ ++ /* On incoming, we don't need to know that the value ++ is passed in %f0 and %i0, and it confuses other parts ++ causing needless spillage even on the simplest cases. */ ++ if (incoming) ++ return reg; ++ ++ intreg = (SPARC_OUTGOING_INT_ARG_FIRST ++ + (regno - SPARC_FP_ARG_FIRST) / 2); ++ ++ v0 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx); ++ v1 = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, intreg), ++ const0_rtx); ++ return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1)); ++ } ++ else ++ { ++ v0 = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx); ++ v1 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx); ++ return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1)); ++ } ++ } ++ } ++ ++ /* All other aggregate types are passed in an integer register in a mode ++ corresponding to the size of the type. */ ++ else if (type && AGGREGATE_TYPE_P (type)) ++ { ++ const int size = int_size_in_bytes (type); ++ gcc_assert (size <= 16); ++ ++ mode = int_mode_for_size (size * BITS_PER_UNIT, 0).else_blk (); ++ } ++ ++ return gen_rtx_REG (mode, regno); ++} ++ ++/* Handle the TARGET_FUNCTION_ARG target hook. */ ++ ++static rtx ++sparc_function_arg (cumulative_args_t cum, const function_arg_info &arg) ++{ ++ return sparc_function_arg_1 (cum, arg, false); ++} ++ ++/* Handle the TARGET_FUNCTION_INCOMING_ARG target hook. */ ++ ++static rtx ++sparc_function_incoming_arg (cumulative_args_t cum, ++ const function_arg_info &arg) ++{ ++ return sparc_function_arg_1 (cum, arg, true); ++} ++ ++/* For sparc64, objects requiring 16 byte alignment are passed that way. */ ++ ++static unsigned int ++sparc_function_arg_boundary (machine_mode mode, const_tree type) ++{ ++ return ((TARGET_ARCH64 ++ && (GET_MODE_ALIGNMENT (mode) == 128 ++ || (type && TYPE_ALIGN (type) == 128))) ++ ? 128 ++ : PARM_BOUNDARY); ++} ++ ++/* For an arg passed partly in registers and partly in memory, ++ this is the number of bytes of registers used. ++ For args passed entirely in registers or entirely in memory, zero. ++ ++ Any arg that starts in the first 6 regs but won't entirely fit in them ++ needs partial registers on v8. On v9, structures with integer ++ values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp ++ values that begin in the last fp reg [where "last fp reg" varies with the ++ mode] will be split between that reg and memory. */ ++ ++static int ++sparc_arg_partial_bytes (cumulative_args_t cum, const function_arg_info &arg) ++{ ++ int slotno, regno, padding; ++ ++ /* We pass false for incoming here, it doesn't matter. */ ++ slotno = function_arg_slotno (get_cumulative_args (cum), arg.mode, arg.type, ++ arg.named, false, ®no, &padding); ++ ++ if (slotno == -1) ++ return 0; ++ ++ if (TARGET_ARCH32) ++ { ++ /* We are guaranteed by pass_by_reference that the size of the ++ argument is not greater than 8 bytes, so we only need to return ++ one word if the argument is partially passed in registers. */ ++ const int size = GET_MODE_SIZE (arg.mode); ++ ++ if (size > UNITS_PER_WORD && slotno == SPARC_INT_ARG_MAX - 1) ++ return UNITS_PER_WORD; ++ } ++ else ++ { ++ /* We are guaranteed by pass_by_reference that the size of the ++ argument is not greater than 16 bytes, so we only need to return ++ one word if the argument is partially passed in registers. */ ++ if (arg.aggregate_type_p ()) ++ { ++ const int size = int_size_in_bytes (arg.type); ++ ++ if (size > UNITS_PER_WORD ++ && (slotno == SPARC_INT_ARG_MAX - 1 ++ || slotno == SPARC_FP_ARG_MAX - 1)) ++ return UNITS_PER_WORD; ++ } ++ else if (GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_INT ++ || ((GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_FLOAT ++ || (arg.type && VECTOR_TYPE_P (arg.type))) ++ && !(TARGET_FPU && arg.named))) ++ { ++ const int size = (arg.type && VECTOR_FLOAT_TYPE_P (arg.type)) ++ ? int_size_in_bytes (arg.type) ++ : GET_MODE_SIZE (arg.mode); ++ ++ if (size > UNITS_PER_WORD && slotno == SPARC_INT_ARG_MAX - 1) ++ return UNITS_PER_WORD; ++ } ++ else if (GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_FLOAT ++ || (arg.type && VECTOR_TYPE_P (arg.type))) ++ { ++ const int size = (arg.type && VECTOR_FLOAT_TYPE_P (arg.type)) ++ ? int_size_in_bytes (arg.type) ++ : GET_MODE_SIZE (arg.mode); ++ ++ if (size > UNITS_PER_WORD && slotno == SPARC_FP_ARG_MAX - 1) ++ return UNITS_PER_WORD; ++ } ++ } ++ ++ return 0; ++} ++ ++/* Handle the TARGET_FUNCTION_ARG_ADVANCE hook. ++ Update the data in CUM to advance over argument ARG. */ ++ ++static void ++sparc_function_arg_advance (cumulative_args_t cum_v, ++ const function_arg_info &arg) ++{ ++ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); ++ tree type = arg.type; ++ machine_mode mode = arg.mode; ++ int regno, padding; ++ ++ /* We pass false for incoming here, it doesn't matter. */ ++ function_arg_slotno (cum, mode, type, arg.named, false, ®no, &padding); ++ ++ /* If argument requires leading padding, add it. */ ++ cum->words += padding; ++ ++ if (TARGET_ARCH32) ++ cum->words += CEIL_NWORDS (GET_MODE_SIZE (mode)); ++ else ++ { ++ /* For types that can have BLKmode, get the size from the type. */ ++ if (type && (AGGREGATE_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type))) ++ { ++ const int size = int_size_in_bytes (type); ++ ++ /* See comment in function_arg_record_value for empty structures. */ ++ if (size <= 0) ++ cum->words++; ++ else ++ cum->words += CEIL_NWORDS (size); ++ } ++ else ++ cum->words += CEIL_NWORDS (GET_MODE_SIZE (mode)); ++ } ++} ++ ++/* Implement TARGET_FUNCTION_ARG_PADDING. For the 64-bit ABI structs ++ are always stored left shifted in their argument slot. */ ++ ++static pad_direction ++sparc_function_arg_padding (machine_mode mode, const_tree type) ++{ ++ if (TARGET_ARCH64 && type && AGGREGATE_TYPE_P (type)) ++ return PAD_UPWARD; ++ ++ /* Fall back to the default. */ ++ return default_function_arg_padding (mode, type); ++} ++ ++/* Handle the TARGET_RETURN_IN_MEMORY target hook. ++ Specify whether to return the return value in memory. */ ++ ++static bool ++sparc_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) ++{ ++ if (TARGET_ARCH32) ++ /* Original SPARC 32-bit ABI says that structures and unions, and ++ quad-precision floats are returned in memory. But note that the ++ first part is implemented through -fpcc-struct-return being the ++ default, so here we only implement -freg-struct-return instead. ++ All other base types are returned in registers. ++ ++ Extended ABI (as implemented by the Sun compiler) says that ++ all complex floats are returned in registers (8 FP registers ++ at most for '_Complex long double'). Return all complex integers ++ in registers (4 at most for '_Complex long long'). ++ ++ Vector ABI (as implemented by the Sun VIS SDK) says that vector ++ integers are returned like floats of the same size, that is in ++ registers up to 8 bytes and in memory otherwise. Return all ++ vector floats in memory like structure and unions; note that ++ they always have BLKmode like the latter. */ ++ return (TYPE_MODE (type) == BLKmode ++ || TYPE_MODE (type) == TFmode ++ || (TREE_CODE (type) == VECTOR_TYPE ++ && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8)); ++ else ++ /* Original SPARC 64-bit ABI says that structures and unions ++ smaller than 32 bytes are returned in registers, as well as ++ all other base types. ++ ++ Extended ABI (as implemented by the Sun compiler) says that all ++ complex floats are returned in registers (8 FP registers at most ++ for '_Complex long double'). Return all complex integers in ++ registers (4 at most for '_Complex TItype'). ++ ++ Vector ABI (as implemented by the Sun VIS SDK) says that vector ++ integers are returned like floats of the same size, that is in ++ registers. Return all vector floats like structure and unions; ++ note that they always have BLKmode like the latter. */ ++ return (TYPE_MODE (type) == BLKmode ++ && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 32); ++} ++ ++/* Handle the TARGET_STRUCT_VALUE target hook. ++ Return where to find the structure return value address. */ ++ ++static rtx ++sparc_struct_value_rtx (tree fndecl, int incoming) ++{ ++ if (TARGET_ARCH64) ++ return NULL_RTX; ++ else ++ { ++ rtx mem; ++ ++ if (incoming) ++ mem = gen_frame_mem (Pmode, plus_constant (Pmode, frame_pointer_rtx, ++ STRUCT_VALUE_OFFSET)); ++ else ++ mem = gen_frame_mem (Pmode, plus_constant (Pmode, stack_pointer_rtx, ++ STRUCT_VALUE_OFFSET)); ++ ++ /* Only follow the SPARC ABI for fixed-size structure returns. ++ Variable size structure returns are handled per the normal ++ procedures in GCC. This is enabled by -mstd-struct-return */ ++ if (incoming == 2 ++ && sparc_std_struct_return ++ && TYPE_SIZE_UNIT (TREE_TYPE (fndecl)) ++ && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (fndecl))) == INTEGER_CST) ++ { ++ /* We must check and adjust the return address, as it is optional ++ as to whether the return object is really provided. */ ++ rtx ret_reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); ++ rtx scratch = gen_reg_rtx (SImode); ++ rtx_code_label *endlab = gen_label_rtx (); ++ ++ /* Calculate the return object size. */ ++ tree size = TYPE_SIZE_UNIT (TREE_TYPE (fndecl)); ++ rtx size_rtx = GEN_INT (TREE_INT_CST_LOW (size) & 0xfff); ++ /* Construct a temporary return value. */ ++ rtx temp_val ++ = assign_stack_local (Pmode, TREE_INT_CST_LOW (size), 0); ++ ++ /* Implement SPARC 32-bit psABI callee return struct checking: ++ ++ Fetch the instruction where we will return to and see if ++ it's an unimp instruction (the most significant 10 bits ++ will be zero). */ ++ emit_move_insn (scratch, gen_rtx_MEM (SImode, ++ plus_constant (Pmode, ++ ret_reg, 8))); ++ /* Assume the size is valid and pre-adjust. */ ++ emit_insn (gen_add3_insn (ret_reg, ret_reg, GEN_INT (4))); ++ emit_cmp_and_jump_insns (scratch, size_rtx, EQ, const0_rtx, SImode, ++ 0, endlab); ++ emit_insn (gen_sub3_insn (ret_reg, ret_reg, GEN_INT (4))); ++ /* Write the address of the memory pointed to by temp_val into ++ the memory pointed to by mem. */ ++ emit_move_insn (mem, XEXP (temp_val, 0)); ++ emit_label (endlab); ++ } ++ ++ return mem; ++ } ++} ++ ++/* Handle TARGET_FUNCTION_VALUE, and TARGET_LIBCALL_VALUE target hook. ++ For v9, function return values are subject to the same rules as arguments, ++ except that up to 32 bytes may be returned in registers. */ ++ ++static rtx ++sparc_function_value_1 (const_tree type, machine_mode mode, bool outgoing) ++{ ++ /* Beware that the two values are swapped here wrt function_arg. */ ++ const int regbase ++ = outgoing ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST; ++ enum mode_class mclass = GET_MODE_CLASS (mode); ++ int regno; ++ ++ /* Integer vectors are handled like floats as per the Sun VIS SDK. ++ Note that integer vectors larger than 16 bytes have BLKmode so ++ they need to be handled like floating-point vectors below. */ ++ if (type && VECTOR_INTEGER_TYPE_P (type) && mode != BLKmode) ++ mclass = MODE_FLOAT; ++ ++ if (TARGET_ARCH64 && type) ++ { ++ /* Structures up to 32 bytes in size are returned in registers. */ ++ if (TREE_CODE (type) == RECORD_TYPE) ++ { ++ const int size = int_size_in_bytes (type); ++ gcc_assert (size <= 32); ++ ++ return function_arg_record_value (type, mode, 0, true, regbase); ++ } ++ ++ /* Unions up to 32 bytes in size are returned in integer registers. */ ++ else if (TREE_CODE (type) == UNION_TYPE) ++ { ++ const int size = int_size_in_bytes (type); ++ gcc_assert (size <= 32); ++ ++ return function_arg_union_value (size, mode, 0, regbase); ++ } ++ ++ /* Vectors up to 32 bytes are returned in FP registers. */ ++ else if (VECTOR_TYPE_P (type) && mode == BLKmode) ++ { ++ const int size = int_size_in_bytes (type); ++ gcc_assert (size <= 32); ++ ++ return function_arg_vector_value (size, 0, true, SPARC_FP_ARG_FIRST); ++ } ++ ++ /* Objects that require it are returned in FP registers. */ ++ else if (mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) ++ ; ++ ++ /* All other aggregate types are returned in an integer register in a ++ mode corresponding to the size of the type. */ ++ else if (AGGREGATE_TYPE_P (type)) ++ { ++ /* All other aggregate types are passed in an integer register ++ in a mode corresponding to the size of the type. */ ++ const int size = int_size_in_bytes (type); ++ gcc_assert (size <= 32); ++ ++ mode = int_mode_for_size (size * BITS_PER_UNIT, 0).else_blk (); ++ ++ /* ??? We probably should have made the same ABI change in ++ 3.4.0 as the one we made for unions. The latter was ++ required by the SCD though, while the former is not ++ specified, so we favored compatibility and efficiency. ++ ++ Now we're stuck for aggregates larger than 16 bytes, ++ because OImode vanished in the meantime. Let's not ++ try to be unduly clever, and simply follow the ABI ++ for unions in that case. */ ++ if (mode == BLKmode) ++ return function_arg_union_value (size, mode, 0, regbase); ++ else ++ mclass = MODE_INT; ++ } ++ ++ /* We should only have pointer and integer types at this point. This ++ must match sparc_promote_function_mode. */ ++ else if (mclass == MODE_INT && GET_MODE_SIZE (mode) < UNITS_PER_WORD) ++ mode = word_mode; ++ } ++ ++ /* We should only have pointer and integer types at this point, except with ++ -freg-struct-return. This must match sparc_promote_function_mode. */ ++ else if (TARGET_ARCH32 ++ && !(type && AGGREGATE_TYPE_P (type)) ++ && mclass == MODE_INT ++ && GET_MODE_SIZE (mode) < UNITS_PER_WORD) ++ mode = word_mode; ++ ++ if ((mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) && TARGET_FPU) ++ regno = SPARC_FP_ARG_FIRST; ++ else ++ regno = regbase; ++ ++ return gen_rtx_REG (mode, regno); ++} ++ ++/* Handle TARGET_FUNCTION_VALUE. ++ On the SPARC, the value is found in the first "output" register, but the ++ called function leaves it in the first "input" register. */ ++ ++static rtx ++sparc_function_value (const_tree valtype, ++ const_tree fn_decl_or_type ATTRIBUTE_UNUSED, ++ bool outgoing) ++{ ++ return sparc_function_value_1 (valtype, TYPE_MODE (valtype), outgoing); ++} ++ ++/* Handle TARGET_LIBCALL_VALUE. */ ++ ++static rtx ++sparc_libcall_value (machine_mode mode, ++ const_rtx fun ATTRIBUTE_UNUSED) ++{ ++ return sparc_function_value_1 (NULL_TREE, mode, false); ++} ++ ++/* Handle FUNCTION_VALUE_REGNO_P. ++ On the SPARC, the first "output" reg is used for integer values, and the ++ first floating point register is used for floating point values. */ ++ ++static bool ++sparc_function_value_regno_p (const unsigned int regno) ++{ ++ return (regno == 8 || (TARGET_FPU && regno == 32)); ++} ++ ++/* Do what is necessary for `va_start'. We look at the current function ++ to determine if stdarg or varargs is used and return the address of ++ the first unnamed parameter. */ ++ ++static rtx ++sparc_builtin_saveregs (void) ++{ ++ int first_reg = crtl->args.info.words; ++ rtx address; ++ int regno; ++ ++ for (regno = first_reg; regno < SPARC_INT_ARG_MAX; regno++) ++ emit_move_insn (gen_rtx_MEM (word_mode, ++ gen_rtx_PLUS (Pmode, ++ frame_pointer_rtx, ++ GEN_INT (FIRST_PARM_OFFSET (0) ++ + (UNITS_PER_WORD ++ * regno)))), ++ gen_rtx_REG (word_mode, ++ SPARC_INCOMING_INT_ARG_FIRST + regno)); ++ ++ address = gen_rtx_PLUS (Pmode, ++ frame_pointer_rtx, ++ GEN_INT (FIRST_PARM_OFFSET (0) ++ + UNITS_PER_WORD * first_reg)); ++ ++ return address; ++} ++ ++/* Implement `va_start' for stdarg. */ ++ ++static void ++sparc_va_start (tree valist, rtx nextarg) ++{ ++ nextarg = expand_builtin_saveregs (); ++ std_expand_builtin_va_start (valist, nextarg); ++} ++ ++/* Implement `va_arg' for stdarg. */ ++ ++static tree ++sparc_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p, ++ gimple_seq *post_p) ++{ ++ HOST_WIDE_INT size, rsize, align; ++ tree addr, incr; ++ bool indirect; ++ tree ptrtype = build_pointer_type (type); ++ ++ if (pass_va_arg_by_reference (type)) ++ { ++ indirect = true; ++ size = rsize = UNITS_PER_WORD; ++ align = 0; ++ } ++ else ++ { ++ indirect = false; ++ size = int_size_in_bytes (type); ++ rsize = ROUND_UP (size, UNITS_PER_WORD); ++ align = 0; ++ ++ if (TARGET_ARCH64) ++ { ++ /* For SPARC64, objects requiring 16-byte alignment get it. */ ++ if (TYPE_ALIGN (type) >= 2 * (unsigned) BITS_PER_WORD) ++ align = 2 * UNITS_PER_WORD; ++ ++ /* SPARC-V9 ABI states that structures up to 16 bytes in size ++ are left-justified in their slots. */ ++ if (AGGREGATE_TYPE_P (type)) ++ { ++ if (size == 0) ++ size = rsize = UNITS_PER_WORD; ++ else ++ size = rsize; ++ } ++ } ++ } ++ ++ incr = valist; ++ if (align) ++ { ++ incr = fold_build_pointer_plus_hwi (incr, align - 1); ++ incr = fold_convert (sizetype, incr); ++ incr = fold_build2 (BIT_AND_EXPR, sizetype, incr, ++ size_int (-align)); ++ incr = fold_convert (ptr_type_node, incr); ++ } ++ ++ gimplify_expr (&incr, pre_p, post_p, is_gimple_val, fb_rvalue); ++ addr = incr; ++ ++ if (BYTES_BIG_ENDIAN && size < rsize) ++ addr = fold_build_pointer_plus_hwi (incr, rsize - size); ++ ++ if (indirect) ++ { ++ addr = fold_convert (build_pointer_type (ptrtype), addr); ++ addr = build_va_arg_indirect_ref (addr); ++ } ++ ++ /* If the address isn't aligned properly for the type, we need a temporary. ++ FIXME: This is inefficient, usually we can do this in registers. */ ++ else if (align == 0 && TYPE_ALIGN (type) > BITS_PER_WORD) ++ { ++ tree tmp = create_tmp_var (type, "va_arg_tmp"); ++ tree dest_addr = build_fold_addr_expr (tmp); ++ tree copy = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY), ++ 3, dest_addr, addr, size_int (rsize)); ++ TREE_ADDRESSABLE (tmp) = 1; ++ gimplify_and_add (copy, pre_p); ++ addr = dest_addr; ++ } ++ ++ else ++ addr = fold_convert (ptrtype, addr); ++ ++ incr = fold_build_pointer_plus_hwi (incr, rsize); ++ gimplify_assign (valist, incr, post_p); ++ ++ return build_va_arg_indirect_ref (addr); ++} ++ ++/* Implement the TARGET_VECTOR_MODE_SUPPORTED_P target hook. ++ Specify whether the vector mode is supported by the hardware. */ ++ ++static bool ++sparc_vector_mode_supported_p (machine_mode mode) ++{ ++ return TARGET_VIS && VECTOR_MODE_P (mode) ? true : false; ++} ++ ++/* Implement the TARGET_VECTORIZE_PREFERRED_SIMD_MODE target hook. */ ++ ++static machine_mode ++sparc_preferred_simd_mode (scalar_mode mode) ++{ ++ if (TARGET_VIS) ++ switch (mode) ++ { ++ case E_SImode: ++ return V2SImode; ++ case E_HImode: ++ return V4HImode; ++ case E_QImode: ++ return V8QImode; ++ ++ default:; ++ } ++ ++ return word_mode; ++} ++ ++ /* Implement TARGET_CAN_FOLLOW_JUMP. */ ++ ++static bool ++sparc_can_follow_jump (const rtx_insn *follower, const rtx_insn *followee) ++{ ++ /* Do not fold unconditional jumps that have been created for crossing ++ partition boundaries. */ ++ if (CROSSING_JUMP_P (followee) && !CROSSING_JUMP_P (follower)) ++ return false; ++ ++ return true; ++} ++ ++/* Return the string to output an unconditional branch to LABEL, which is ++ the operand number of the label. ++ ++ DEST is the destination insn (i.e. the label), INSN is the source. */ ++ ++const char * ++output_ubranch (rtx dest, rtx_insn *insn) ++{ ++ static char string[64]; ++ bool v9_form = false; ++ int delta; ++ char *p; ++ ++ /* Even if we are trying to use cbcond for this, evaluate ++ whether we can use V9 branches as our backup plan. */ ++ delta = 5000000; ++ if (!CROSSING_JUMP_P (insn) && INSN_ADDRESSES_SET_P ()) ++ delta = (INSN_ADDRESSES (INSN_UID (dest)) ++ - INSN_ADDRESSES (INSN_UID (insn))); ++ ++ /* Leave some instructions for "slop". */ ++ if (TARGET_V9 && delta >= -260000 && delta < 260000) ++ v9_form = true; ++ ++ if (TARGET_CBCOND) ++ { ++ bool emit_nop = emit_cbcond_nop (insn); ++ bool far = false; ++ const char *rval; ++ ++ if (delta < -500 || delta > 500) ++ far = true; ++ ++ if (far) ++ { ++ if (v9_form) ++ rval = "ba,a,pt\t%%xcc, %l0"; ++ else ++ rval = "b,a\t%l0"; ++ } ++ else ++ { ++ if (emit_nop) ++ rval = "cwbe\t%%g0, %%g0, %l0\n\tnop"; ++ else ++ rval = "cwbe\t%%g0, %%g0, %l0"; ++ } ++ return rval; ++ } ++ ++ if (v9_form) ++ strcpy (string, "ba%*,pt\t%%xcc, "); ++ else ++ strcpy (string, "b%*\t"); ++ ++ p = strchr (string, '\0'); ++ *p++ = '%'; ++ *p++ = 'l'; ++ *p++ = '0'; ++ *p++ = '%'; ++ *p++ = '('; ++ *p = '\0'; ++ ++ return string; ++} ++ ++/* Return the string to output a conditional branch to LABEL, which is ++ the operand number of the label. OP is the conditional expression. ++ XEXP (OP, 0) is assumed to be a condition code register (integer or ++ floating point) and its mode specifies what kind of comparison we made. ++ ++ DEST is the destination insn (i.e. the label), INSN is the source. ++ ++ REVERSED is nonzero if we should reverse the sense of the comparison. ++ ++ ANNUL is nonzero if we should generate an annulling branch. */ ++ ++const char * ++output_cbranch (rtx op, rtx dest, int label, int reversed, int annul, ++ rtx_insn *insn) ++{ ++ static char string[64]; ++ enum rtx_code code = GET_CODE (op); ++ rtx cc_reg = XEXP (op, 0); ++ machine_mode mode = GET_MODE (cc_reg); ++ const char *labelno, *branch; ++ int spaces = 8, far; ++ char *p; ++ ++ /* v9 branches are limited to +-1MB. If it is too far away, ++ change ++ ++ bne,pt %xcc, .LC30 ++ ++ to ++ ++ be,pn %xcc, .+12 ++ nop ++ ba .LC30 ++ ++ and ++ ++ fbne,a,pn %fcc2, .LC29 ++ ++ to ++ ++ fbe,pt %fcc2, .+16 ++ nop ++ ba .LC29 */ ++ ++ far = TARGET_V9 && (get_attr_length (insn) >= 3); ++ if (reversed ^ far) ++ { ++ /* Reversal of FP compares takes care -- an ordered compare ++ becomes an unordered compare and vice versa. */ ++ if (mode == CCFPmode || mode == CCFPEmode) ++ code = reverse_condition_maybe_unordered (code); ++ else ++ code = reverse_condition (code); ++ } ++ ++ /* Start by writing the branch condition. */ ++ if (mode == CCFPmode || mode == CCFPEmode) ++ { ++ switch (code) ++ { ++ case NE: ++ branch = "fbne"; ++ break; ++ case EQ: ++ branch = "fbe"; ++ break; ++ case GE: ++ branch = "fbge"; ++ break; ++ case GT: ++ branch = "fbg"; ++ break; ++ case LE: ++ branch = "fble"; ++ break; ++ case LT: ++ branch = "fbl"; ++ break; ++ case UNORDERED: ++ branch = "fbu"; ++ break; ++ case ORDERED: ++ branch = "fbo"; ++ break; ++ case UNGT: ++ branch = "fbug"; ++ break; ++ case UNLT: ++ branch = "fbul"; ++ break; ++ case UNEQ: ++ branch = "fbue"; ++ break; ++ case UNGE: ++ branch = "fbuge"; ++ break; ++ case UNLE: ++ branch = "fbule"; ++ break; ++ case LTGT: ++ branch = "fblg"; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ ++ /* ??? !v9: FP branches cannot be preceded by another floating point ++ insn. Because there is currently no concept of pre-delay slots, ++ we can fix this only by always emitting a nop before a floating ++ point branch. */ ++ ++ string[0] = '\0'; ++ if (! TARGET_V9) ++ strcpy (string, "nop\n\t"); ++ strcat (string, branch); ++ } ++ else ++ { ++ switch (code) ++ { ++ case NE: ++ if (mode == CCVmode || mode == CCXVmode) ++ branch = "bvs"; ++ else ++ branch = "bne"; ++ break; ++ case EQ: ++ if (mode == CCVmode || mode == CCXVmode) ++ branch = "bvc"; ++ else ++ branch = "be"; ++ break; ++ case GE: ++ if (mode == CCNZmode || mode == CCXNZmode) ++ branch = "bpos"; ++ else ++ branch = "bge"; ++ break; ++ case GT: ++ branch = "bg"; ++ break; ++ case LE: ++ branch = "ble"; ++ break; ++ case LT: ++ if (mode == CCNZmode || mode == CCXNZmode) ++ branch = "bneg"; ++ else ++ branch = "bl"; ++ break; ++ case GEU: ++ branch = "bgeu"; ++ break; ++ case GTU: ++ branch = "bgu"; ++ break; ++ case LEU: ++ branch = "bleu"; ++ break; ++ case LTU: ++ branch = "blu"; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ strcpy (string, branch); ++ } ++ spaces -= strlen (branch); ++ p = strchr (string, '\0'); ++ ++ /* Now add the annulling, the label, and a possible noop. */ ++ if (annul && ! far) ++ { ++ strcpy (p, ",a"); ++ p += 2; ++ spaces -= 2; ++ } ++ ++ if (TARGET_V9) ++ { ++ rtx note; ++ int v8 = 0; ++ ++ if (! far && insn && INSN_ADDRESSES_SET_P ()) ++ { ++ int delta = (INSN_ADDRESSES (INSN_UID (dest)) ++ - INSN_ADDRESSES (INSN_UID (insn))); ++ /* Leave some instructions for "slop". */ ++ if (delta < -260000 || delta >= 260000) ++ v8 = 1; ++ } ++ ++ switch (mode) ++ { ++ case E_CCmode: ++ case E_CCNZmode: ++ case E_CCCmode: ++ case E_CCVmode: ++ labelno = "%%icc, "; ++ if (v8) ++ labelno = ""; ++ break; ++ case E_CCXmode: ++ case E_CCXNZmode: ++ case E_CCXCmode: ++ case E_CCXVmode: ++ labelno = "%%xcc, "; ++ gcc_assert (!v8); ++ break; ++ case E_CCFPmode: ++ case E_CCFPEmode: ++ { ++ static char v9_fcc_labelno[] = "%%fccX, "; ++ /* Set the char indicating the number of the fcc reg to use. */ ++ v9_fcc_labelno[5] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0'; ++ labelno = v9_fcc_labelno; ++ if (v8) ++ { ++ gcc_assert (REGNO (cc_reg) == SPARC_FCC_REG); ++ labelno = ""; ++ } ++ } ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ ++ if (*labelno && insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX))) ++ { ++ strcpy (p, ++ ((profile_probability::from_reg_br_prob_note (XINT (note, 0)) ++ >= profile_probability::even ()) ^ far) ++ ? ",pt" : ",pn"); ++ p += 3; ++ spaces -= 3; ++ } ++ } ++ else ++ labelno = ""; ++ ++ if (spaces > 0) ++ *p++ = '\t'; ++ else ++ *p++ = ' '; ++ strcpy (p, labelno); ++ p = strchr (p, '\0'); ++ if (far) ++ { ++ strcpy (p, ".+12\n\t nop\n\tb\t"); ++ /* Skip the next insn if requested or ++ if we know that it will be a nop. */ ++ if (annul || ! final_sequence) ++ p[3] = '6'; ++ p += 14; ++ } ++ *p++ = '%'; ++ *p++ = 'l'; ++ *p++ = label + '0'; ++ *p++ = '%'; ++ *p++ = '#'; ++ *p = '\0'; ++ ++ return string; ++} ++ ++/* Emit a library call comparison between floating point X and Y. ++ COMPARISON is the operator to compare with (EQ, NE, GT, etc). ++ Return the new operator to be used in the comparison sequence. ++ ++ TARGET_ARCH64 uses _Qp_* functions, which use pointers to TFmode ++ values as arguments instead of the TFmode registers themselves, ++ that's why we cannot call emit_float_lib_cmp. */ ++ ++rtx ++sparc_emit_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison) ++{ ++ const char *qpfunc; ++ rtx slot0, slot1, result, tem, tem2, libfunc; ++ machine_mode mode; ++ enum rtx_code new_comparison; ++ ++ switch (comparison) ++ { ++ case EQ: ++ qpfunc = (TARGET_ARCH64 ? "_Qp_feq" : "_Q_feq"); ++ break; ++ ++ case NE: ++ qpfunc = (TARGET_ARCH64 ? "_Qp_fne" : "_Q_fne"); ++ break; ++ ++ case GT: ++ qpfunc = (TARGET_ARCH64 ? "_Qp_fgt" : "_Q_fgt"); ++ break; ++ ++ case GE: ++ qpfunc = (TARGET_ARCH64 ? "_Qp_fge" : "_Q_fge"); ++ break; ++ ++ case LT: ++ qpfunc = (TARGET_ARCH64 ? "_Qp_flt" : "_Q_flt"); ++ break; ++ ++ case LE: ++ qpfunc = (TARGET_ARCH64 ? "_Qp_fle" : "_Q_fle"); ++ break; ++ ++ case ORDERED: ++ case UNORDERED: ++ case UNGT: ++ case UNLT: ++ case UNEQ: ++ case UNGE: ++ case UNLE: ++ case LTGT: ++ qpfunc = (TARGET_ARCH64 ? "_Qp_cmp" : "_Q_cmp"); ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ ++ if (TARGET_ARCH64) ++ { ++ if (MEM_P (x)) ++ { ++ tree expr = MEM_EXPR (x); ++ if (expr) ++ mark_addressable (expr); ++ slot0 = x; ++ } ++ else ++ { ++ slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode)); ++ emit_move_insn (slot0, x); ++ } ++ ++ if (MEM_P (y)) ++ { ++ tree expr = MEM_EXPR (y); ++ if (expr) ++ mark_addressable (expr); ++ slot1 = y; ++ } ++ else ++ { ++ slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode)); ++ emit_move_insn (slot1, y); ++ } ++ ++ libfunc = gen_rtx_SYMBOL_REF (Pmode, qpfunc); ++ emit_library_call (libfunc, LCT_NORMAL, ++ DImode, ++ XEXP (slot0, 0), Pmode, ++ XEXP (slot1, 0), Pmode); ++ mode = DImode; ++ } ++ else ++ { ++ libfunc = gen_rtx_SYMBOL_REF (Pmode, qpfunc); ++ emit_library_call (libfunc, LCT_NORMAL, ++ SImode, ++ x, TFmode, y, TFmode); ++ mode = SImode; ++ } ++ ++ ++ /* Immediately move the result of the libcall into a pseudo ++ register so reload doesn't clobber the value if it needs ++ the return register for a spill reg. */ ++ result = gen_reg_rtx (mode); ++ emit_move_insn (result, hard_libcall_value (mode, libfunc)); ++ ++ switch (comparison) ++ { ++ default: ++ return gen_rtx_NE (VOIDmode, result, const0_rtx); ++ case ORDERED: ++ case UNORDERED: ++ new_comparison = (comparison == UNORDERED ? EQ : NE); ++ return gen_rtx_fmt_ee (new_comparison, VOIDmode, result, GEN_INT(3)); ++ case UNGT: ++ case UNGE: ++ new_comparison = (comparison == UNGT ? GT : NE); ++ return gen_rtx_fmt_ee (new_comparison, VOIDmode, result, const1_rtx); ++ case UNLE: ++ return gen_rtx_NE (VOIDmode, result, const2_rtx); ++ case UNLT: ++ tem = gen_reg_rtx (mode); ++ if (TARGET_ARCH32) ++ emit_insn (gen_andsi3 (tem, result, const1_rtx)); ++ else ++ emit_insn (gen_anddi3 (tem, result, const1_rtx)); ++ return gen_rtx_NE (VOIDmode, tem, const0_rtx); ++ case UNEQ: ++ case LTGT: ++ tem = gen_reg_rtx (mode); ++ if (TARGET_ARCH32) ++ emit_insn (gen_addsi3 (tem, result, const1_rtx)); ++ else ++ emit_insn (gen_adddi3 (tem, result, const1_rtx)); ++ tem2 = gen_reg_rtx (mode); ++ if (TARGET_ARCH32) ++ emit_insn (gen_andsi3 (tem2, tem, const2_rtx)); ++ else ++ emit_insn (gen_anddi3 (tem2, tem, const2_rtx)); ++ new_comparison = (comparison == UNEQ ? EQ : NE); ++ return gen_rtx_fmt_ee (new_comparison, VOIDmode, tem2, const0_rtx); ++ } ++ ++ gcc_unreachable (); ++} ++ ++/* Generate an unsigned DImode to FP conversion. This is the same code ++ optabs would emit if we didn't have TFmode patterns. */ ++ ++void ++sparc_emit_floatunsdi (rtx *operands, machine_mode mode) ++{ ++ rtx i0, i1, f0, in, out; ++ ++ out = operands[0]; ++ in = force_reg (DImode, operands[1]); ++ rtx_code_label *neglab = gen_label_rtx (); ++ rtx_code_label *donelab = gen_label_rtx (); ++ i0 = gen_reg_rtx (DImode); ++ i1 = gen_reg_rtx (DImode); ++ f0 = gen_reg_rtx (mode); ++ ++ emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab); ++ ++ emit_insn (gen_rtx_SET (out, gen_rtx_FLOAT (mode, in))); ++ emit_jump_insn (gen_jump (donelab)); ++ emit_barrier (); ++ ++ emit_label (neglab); ++ ++ emit_insn (gen_lshrdi3 (i0, in, const1_rtx)); ++ emit_insn (gen_anddi3 (i1, in, const1_rtx)); ++ emit_insn (gen_iordi3 (i0, i0, i1)); ++ emit_insn (gen_rtx_SET (f0, gen_rtx_FLOAT (mode, i0))); ++ emit_insn (gen_rtx_SET (out, gen_rtx_PLUS (mode, f0, f0))); ++ ++ emit_label (donelab); ++} ++ ++/* Generate an FP to unsigned DImode conversion. This is the same code ++ optabs would emit if we didn't have TFmode patterns. */ ++ ++void ++sparc_emit_fixunsdi (rtx *operands, machine_mode mode) ++{ ++ rtx i0, i1, f0, in, out, limit; ++ ++ out = operands[0]; ++ in = force_reg (mode, operands[1]); ++ rtx_code_label *neglab = gen_label_rtx (); ++ rtx_code_label *donelab = gen_label_rtx (); ++ i0 = gen_reg_rtx (DImode); ++ i1 = gen_reg_rtx (DImode); ++ limit = gen_reg_rtx (mode); ++ f0 = gen_reg_rtx (mode); ++ ++ emit_move_insn (limit, ++ const_double_from_real_value ( ++ REAL_VALUE_ATOF ("9223372036854775808.0", mode), mode)); ++ emit_cmp_and_jump_insns (in, limit, GE, NULL_RTX, mode, 0, neglab); ++ ++ emit_insn (gen_rtx_SET (out, ++ gen_rtx_FIX (DImode, gen_rtx_FIX (mode, in)))); ++ emit_jump_insn (gen_jump (donelab)); ++ emit_barrier (); ++ ++ emit_label (neglab); ++ ++ emit_insn (gen_rtx_SET (f0, gen_rtx_MINUS (mode, in, limit))); ++ emit_insn (gen_rtx_SET (i0, ++ gen_rtx_FIX (DImode, gen_rtx_FIX (mode, f0)))); ++ emit_insn (gen_movdi (i1, const1_rtx)); ++ emit_insn (gen_ashldi3 (i1, i1, GEN_INT (63))); ++ emit_insn (gen_xordi3 (out, i0, i1)); ++ ++ emit_label (donelab); ++} ++ ++/* Return the string to output a compare and branch instruction to DEST. ++ DEST is the destination insn (i.e. the label), INSN is the source, ++ and OP is the conditional expression. */ ++ ++const char * ++output_cbcond (rtx op, rtx dest, rtx_insn *insn) ++{ ++ machine_mode mode = GET_MODE (XEXP (op, 0)); ++ enum rtx_code code = GET_CODE (op); ++ const char *cond_str, *tmpl; ++ int far, emit_nop, len; ++ static char string[64]; ++ char size_char; ++ ++ /* Compare and Branch is limited to +-2KB. If it is too far away, ++ change ++ ++ cxbne X, Y, .LC30 ++ ++ to ++ ++ cxbe X, Y, .+16 ++ nop ++ ba,pt xcc, .LC30 ++ nop */ ++ ++ len = get_attr_length (insn); ++ ++ far = len == 4; ++ emit_nop = len == 2; ++ ++ if (far) ++ code = reverse_condition (code); ++ ++ size_char = ((mode == SImode) ? 'w' : 'x'); ++ ++ switch (code) ++ { ++ case NE: ++ cond_str = "ne"; ++ break; ++ ++ case EQ: ++ cond_str = "e"; ++ break; ++ ++ case GE: ++ cond_str = "ge"; ++ break; ++ ++ case GT: ++ cond_str = "g"; ++ break; ++ ++ case LE: ++ cond_str = "le"; ++ break; ++ ++ case LT: ++ cond_str = "l"; ++ break; ++ ++ case GEU: ++ cond_str = "cc"; ++ break; ++ ++ case GTU: ++ cond_str = "gu"; ++ break; ++ ++ case LEU: ++ cond_str = "leu"; ++ break; ++ ++ case LTU: ++ cond_str = "cs"; ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ ++ if (far) ++ { ++ int veryfar = 1, delta; ++ ++ if (INSN_ADDRESSES_SET_P ()) ++ { ++ delta = (INSN_ADDRESSES (INSN_UID (dest)) ++ - INSN_ADDRESSES (INSN_UID (insn))); ++ /* Leave some instructions for "slop". */ ++ if (delta >= -260000 && delta < 260000) ++ veryfar = 0; ++ } ++ ++ if (veryfar) ++ tmpl = "c%cb%s\t%%1, %%2, .+16\n\tnop\n\tb\t%%3\n\tnop"; ++ else ++ tmpl = "c%cb%s\t%%1, %%2, .+16\n\tnop\n\tba,pt\t%%%%xcc, %%3\n\tnop"; ++ } ++ else ++ { ++ if (emit_nop) ++ tmpl = "c%cb%s\t%%1, %%2, %%3\n\tnop"; ++ else ++ tmpl = "c%cb%s\t%%1, %%2, %%3"; ++ } ++ ++ snprintf (string, sizeof(string), tmpl, size_char, cond_str); ++ ++ return string; ++} ++ ++/* Return the string to output a conditional branch to LABEL, testing ++ register REG. LABEL is the operand number of the label; REG is the ++ operand number of the reg. OP is the conditional expression. The mode ++ of REG says what kind of comparison we made. ++ ++ DEST is the destination insn (i.e. the label), INSN is the source. ++ ++ REVERSED is nonzero if we should reverse the sense of the comparison. ++ ++ ANNUL is nonzero if we should generate an annulling branch. */ ++ ++const char * ++output_v9branch (rtx op, rtx dest, int reg, int label, int reversed, ++ int annul, rtx_insn *insn) ++{ ++ static char string[64]; ++ enum rtx_code code = GET_CODE (op); ++ machine_mode mode = GET_MODE (XEXP (op, 0)); ++ rtx note; ++ int far; ++ char *p; ++ ++ /* branch on register are limited to +-128KB. If it is too far away, ++ change ++ ++ brnz,pt %g1, .LC30 ++ ++ to ++ ++ brz,pn %g1, .+12 ++ nop ++ ba,pt %xcc, .LC30 ++ ++ and ++ ++ brgez,a,pn %o1, .LC29 ++ ++ to ++ ++ brlz,pt %o1, .+16 ++ nop ++ ba,pt %xcc, .LC29 */ ++ ++ far = get_attr_length (insn) >= 3; ++ ++ /* If not floating-point or if EQ or NE, we can just reverse the code. */ ++ if (reversed ^ far) ++ code = reverse_condition (code); ++ ++ /* Only 64-bit versions of these instructions exist. */ ++ gcc_assert (mode == DImode); ++ ++ /* Start by writing the branch condition. */ ++ ++ switch (code) ++ { ++ case NE: ++ strcpy (string, "brnz"); ++ break; ++ ++ case EQ: ++ strcpy (string, "brz"); ++ break; ++ ++ case GE: ++ strcpy (string, "brgez"); ++ break; ++ ++ case LT: ++ strcpy (string, "brlz"); ++ break; ++ ++ case LE: ++ strcpy (string, "brlez"); ++ break; ++ ++ case GT: ++ strcpy (string, "brgz"); ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ ++ p = strchr (string, '\0'); ++ ++ /* Now add the annulling, reg, label, and nop. */ ++ if (annul && ! far) ++ { ++ strcpy (p, ",a"); ++ p += 2; ++ } ++ ++ if (insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX))) ++ { ++ strcpy (p, ++ ((profile_probability::from_reg_br_prob_note (XINT (note, 0)) ++ >= profile_probability::even ()) ^ far) ++ ? ",pt" : ",pn"); ++ p += 3; ++ } ++ ++ *p = p < string + 8 ? '\t' : ' '; ++ p++; ++ *p++ = '%'; ++ *p++ = '0' + reg; ++ *p++ = ','; ++ *p++ = ' '; ++ if (far) ++ { ++ int veryfar = 1, delta; ++ ++ if (INSN_ADDRESSES_SET_P ()) ++ { ++ delta = (INSN_ADDRESSES (INSN_UID (dest)) ++ - INSN_ADDRESSES (INSN_UID (insn))); ++ /* Leave some instructions for "slop". */ ++ if (delta >= -260000 && delta < 260000) ++ veryfar = 0; ++ } ++ ++ strcpy (p, ".+12\n\t nop\n\t"); ++ /* Skip the next insn if requested or ++ if we know that it will be a nop. */ ++ if (annul || ! final_sequence) ++ p[3] = '6'; ++ p += 12; ++ if (veryfar) ++ { ++ strcpy (p, "b\t"); ++ p += 2; ++ } ++ else ++ { ++ strcpy (p, "ba,pt\t%%xcc, "); ++ p += 13; ++ } ++ } ++ *p++ = '%'; ++ *p++ = 'l'; ++ *p++ = '0' + label; ++ *p++ = '%'; ++ *p++ = '#'; ++ *p = '\0'; ++ ++ return string; ++} ++ ++/* Return 1, if any of the registers of the instruction are %l[0-7] or %o[0-7]. ++ Such instructions cannot be used in the delay slot of return insn on v9. ++ If TEST is 0, also rename all %i[0-7] registers to their %o[0-7] counterparts. ++ */ ++ ++static int ++epilogue_renumber (register rtx *where, int test) ++{ ++ register const char *fmt; ++ register int i; ++ register enum rtx_code code; ++ ++ if (*where == 0) ++ return 0; ++ ++ code = GET_CODE (*where); ++ ++ switch (code) ++ { ++ case REG: ++ if (REGNO (*where) >= 8 && REGNO (*where) < 24) /* oX or lX */ ++ return 1; ++ if (! test && REGNO (*where) >= 24 && REGNO (*where) < 32) ++ *where = gen_rtx_REG (GET_MODE (*where), OUTGOING_REGNO (REGNO(*where))); ++ /* fallthrough */ ++ case SCRATCH: ++ case CC0: ++ case PC: ++ case CONST_INT: ++ case CONST_WIDE_INT: ++ case CONST_DOUBLE: ++ return 0; ++ ++ /* Do not replace the frame pointer with the stack pointer because ++ it can cause the delayed instruction to load below the stack. ++ This occurs when instructions like: ++ ++ (set (reg/i:SI 24 %i0) ++ (mem/f:SI (plus:SI (reg/f:SI 30 %fp) ++ (const_int -20 [0xffffffec])) 0)) ++ ++ are in the return delayed slot. */ ++ case PLUS: ++ if (GET_CODE (XEXP (*where, 0)) == REG ++ && REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM ++ && (GET_CODE (XEXP (*where, 1)) != CONST_INT ++ || INTVAL (XEXP (*where, 1)) < SPARC_STACK_BIAS)) ++ return 1; ++ break; ++ ++ case MEM: ++ if (SPARC_STACK_BIAS ++ && GET_CODE (XEXP (*where, 0)) == REG ++ && REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM) ++ return 1; ++ break; ++ ++ default: ++ break; ++ } ++ ++ fmt = GET_RTX_FORMAT (code); ++ ++ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'E') ++ { ++ register int j; ++ for (j = XVECLEN (*where, i) - 1; j >= 0; j--) ++ if (epilogue_renumber (&(XVECEXP (*where, i, j)), test)) ++ return 1; ++ } ++ else if (fmt[i] == 'e' ++ && epilogue_renumber (&(XEXP (*where, i)), test)) ++ return 1; ++ } ++ return 0; ++} ++ ++/* Leaf functions and non-leaf functions have different needs. */ ++ ++static const int ++reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER; ++ ++static const int ++reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER; ++ ++static const int *const reg_alloc_orders[] = { ++ reg_leaf_alloc_order, ++ reg_nonleaf_alloc_order}; ++ ++void ++order_regs_for_local_alloc (void) ++{ ++ static int last_order_nonleaf = 1; ++ ++ if (df_regs_ever_live_p (15) != last_order_nonleaf) ++ { ++ last_order_nonleaf = !last_order_nonleaf; ++ memcpy ((char *) reg_alloc_order, ++ (const char *) reg_alloc_orders[last_order_nonleaf], ++ FIRST_PSEUDO_REGISTER * sizeof (int)); ++ } ++} ++ ++/* Return 1 if REG and MEM are legitimate enough to allow the various ++ MEM<-->REG splits to be run. */ ++ ++int ++sparc_split_reg_mem_legitimate (rtx reg, rtx mem) ++{ ++ /* Punt if we are here by mistake. */ ++ gcc_assert (reload_completed); ++ ++ /* We must have an offsettable memory reference. */ ++ if (!offsettable_memref_p (mem)) ++ return 0; ++ ++ /* If we have legitimate args for ldd/std, we do not want ++ the split to happen. */ ++ if ((REGNO (reg) % 2) == 0 && mem_min_alignment (mem, 8)) ++ return 0; ++ ++ /* Success. */ ++ return 1; ++} ++ ++/* Split a REG <-- MEM move into a pair of moves in MODE. */ ++ ++void ++sparc_split_reg_mem (rtx dest, rtx src, machine_mode mode) ++{ ++ rtx high_part = gen_highpart (mode, dest); ++ rtx low_part = gen_lowpart (mode, dest); ++ rtx word0 = adjust_address (src, mode, 0); ++ rtx word1 = adjust_address (src, mode, 4); ++ ++ if (reg_overlap_mentioned_p (high_part, word1)) ++ { ++ emit_move_insn_1 (low_part, word1); ++ emit_move_insn_1 (high_part, word0); ++ } ++ else ++ { ++ emit_move_insn_1 (high_part, word0); ++ emit_move_insn_1 (low_part, word1); ++ } ++} ++ ++/* Split a MEM <-- REG move into a pair of moves in MODE. */ ++ ++void ++sparc_split_mem_reg (rtx dest, rtx src, machine_mode mode) ++{ ++ rtx word0 = adjust_address (dest, mode, 0); ++ rtx word1 = adjust_address (dest, mode, 4); ++ rtx high_part = gen_highpart (mode, src); ++ rtx low_part = gen_lowpart (mode, src); ++ ++ emit_move_insn_1 (word0, high_part); ++ emit_move_insn_1 (word1, low_part); ++} ++ ++/* Like sparc_split_reg_mem_legitimate but for REG <--> REG moves. */ ++ ++int ++sparc_split_reg_reg_legitimate (rtx reg1, rtx reg2) ++{ ++ /* Punt if we are here by mistake. */ ++ gcc_assert (reload_completed); ++ ++ if (GET_CODE (reg1) == SUBREG) ++ reg1 = SUBREG_REG (reg1); ++ if (GET_CODE (reg1) != REG) ++ return 0; ++ const int regno1 = REGNO (reg1); ++ ++ if (GET_CODE (reg2) == SUBREG) ++ reg2 = SUBREG_REG (reg2); ++ if (GET_CODE (reg2) != REG) ++ return 0; ++ const int regno2 = REGNO (reg2); ++ ++ if (SPARC_INT_REG_P (regno1) && SPARC_INT_REG_P (regno2)) ++ return 1; ++ ++ if (TARGET_VIS3) ++ { ++ if ((SPARC_INT_REG_P (regno1) && SPARC_FP_REG_P (regno2)) ++ || (SPARC_FP_REG_P (regno1) && SPARC_INT_REG_P (regno2))) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++/* Split a REG <--> REG move into a pair of moves in MODE. */ ++ ++void ++sparc_split_reg_reg (rtx dest, rtx src, machine_mode mode) ++{ ++ rtx dest1 = gen_highpart (mode, dest); ++ rtx dest2 = gen_lowpart (mode, dest); ++ rtx src1 = gen_highpart (mode, src); ++ rtx src2 = gen_lowpart (mode, src); ++ ++ /* Now emit using the real source and destination we found, swapping ++ the order if we detect overlap. */ ++ if (reg_overlap_mentioned_p (dest1, src2)) ++ { ++ emit_move_insn_1 (dest2, src2); ++ emit_move_insn_1 (dest1, src1); ++ } ++ else ++ { ++ emit_move_insn_1 (dest1, src1); ++ emit_move_insn_1 (dest2, src2); ++ } ++} ++ ++/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1. ++ This makes them candidates for using ldd and std insns. ++ ++ Note reg1 and reg2 *must* be hard registers. */ ++ ++int ++registers_ok_for_ldd_peep (rtx reg1, rtx reg2) ++{ ++ /* We might have been passed a SUBREG. */ ++ if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) ++ return 0; ++ ++ if (REGNO (reg1) % 2 != 0) ++ return 0; ++ ++ /* Integer ldd is deprecated in SPARC V9 */ ++ if (TARGET_V9 && SPARC_INT_REG_P (REGNO (reg1))) ++ return 0; ++ ++ return (REGNO (reg1) == REGNO (reg2) - 1); ++} ++ ++/* Return 1 if the addresses in mem1 and mem2 are suitable for use in ++ an ldd or std insn. ++ ++ This can only happen when addr1 and addr2, the addresses in mem1 ++ and mem2, are consecutive memory locations (addr1 + 4 == addr2). ++ addr1 must also be aligned on a 64-bit boundary. ++ ++ Also iff dependent_reg_rtx is not null it should not be used to ++ compute the address for mem1, i.e. we cannot optimize a sequence ++ like: ++ ld [%o0], %o0 ++ ld [%o0 + 4], %o1 ++ to ++ ldd [%o0], %o0 ++ nor: ++ ld [%g3 + 4], %g3 ++ ld [%g3], %g2 ++ to ++ ldd [%g3], %g2 ++ ++ But, note that the transformation from: ++ ld [%g2 + 4], %g3 ++ ld [%g2], %g2 ++ to ++ ldd [%g2], %g2 ++ is perfectly fine. Thus, the peephole2 patterns always pass us ++ the destination register of the first load, never the second one. ++ ++ For stores we don't have a similar problem, so dependent_reg_rtx is ++ NULL_RTX. */ ++ ++int ++mems_ok_for_ldd_peep (rtx mem1, rtx mem2, rtx dependent_reg_rtx) ++{ ++ rtx addr1, addr2; ++ unsigned int reg1; ++ HOST_WIDE_INT offset1; ++ ++ /* The mems cannot be volatile. */ ++ if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2)) ++ return 0; ++ ++ /* MEM1 should be aligned on a 64-bit boundary. */ ++ if (MEM_ALIGN (mem1) < 64) ++ return 0; ++ ++ addr1 = XEXP (mem1, 0); ++ addr2 = XEXP (mem2, 0); ++ ++ /* Extract a register number and offset (if used) from the first addr. */ ++ if (GET_CODE (addr1) == PLUS) ++ { ++ /* If not a REG, return zero. */ ++ if (GET_CODE (XEXP (addr1, 0)) != REG) ++ return 0; ++ else ++ { ++ reg1 = REGNO (XEXP (addr1, 0)); ++ /* The offset must be constant! */ ++ if (GET_CODE (XEXP (addr1, 1)) != CONST_INT) ++ return 0; ++ offset1 = INTVAL (XEXP (addr1, 1)); ++ } ++ } ++ else if (GET_CODE (addr1) != REG) ++ return 0; ++ else ++ { ++ reg1 = REGNO (addr1); ++ /* This was a simple (mem (reg)) expression. Offset is 0. */ ++ offset1 = 0; ++ } ++ ++ /* Make sure the second address is a (mem (plus (reg) (const_int). */ ++ if (GET_CODE (addr2) != PLUS) ++ return 0; ++ ++ if (GET_CODE (XEXP (addr2, 0)) != REG ++ || GET_CODE (XEXP (addr2, 1)) != CONST_INT) ++ return 0; ++ ++ if (reg1 != REGNO (XEXP (addr2, 0))) ++ return 0; ++ ++ if (dependent_reg_rtx != NULL_RTX && reg1 == REGNO (dependent_reg_rtx)) ++ return 0; ++ ++ /* The first offset must be evenly divisible by 8 to ensure the ++ address is 64-bit aligned. */ ++ if (offset1 % 8 != 0) ++ return 0; ++ ++ /* The offset for the second addr must be 4 more than the first addr. */ ++ if (INTVAL (XEXP (addr2, 1)) != offset1 + 4) ++ return 0; ++ ++ /* All the tests passed. addr1 and addr2 are valid for ldd and std ++ instructions. */ ++ return 1; ++} ++ ++/* Return the widened memory access made of MEM1 and MEM2 in MODE. */ ++ ++rtx ++widen_mem_for_ldd_peep (rtx mem1, rtx mem2, machine_mode mode) ++{ ++ rtx x = widen_memory_access (mem1, mode, 0); ++ MEM_NOTRAP_P (x) = MEM_NOTRAP_P (mem1) && MEM_NOTRAP_P (mem2); ++ return x; ++} ++ ++/* Return 1 if reg is a pseudo, or is the first register in ++ a hard register pair. This makes it suitable for use in ++ ldd and std insns. */ ++ ++int ++register_ok_for_ldd (rtx reg) ++{ ++ /* We might have been passed a SUBREG. */ ++ if (!REG_P (reg)) ++ return 0; ++ ++ if (REGNO (reg) < FIRST_PSEUDO_REGISTER) ++ return (REGNO (reg) % 2 == 0); ++ ++ return 1; ++} ++ ++/* Return 1 if OP, a MEM, has an address which is known to be ++ aligned to an 8-byte boundary. */ ++ ++int ++memory_ok_for_ldd (rtx op) ++{ ++ /* In 64-bit mode, we assume that the address is word-aligned. */ ++ if (TARGET_ARCH32 && !mem_min_alignment (op, 8)) ++ return 0; ++ ++ if (! can_create_pseudo_p () ++ && !strict_memory_address_p (Pmode, XEXP (op, 0))) ++ return 0; ++ ++ return 1; ++} ++ ++/* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P. */ ++ ++static bool ++sparc_print_operand_punct_valid_p (unsigned char code) ++{ ++ if (code == '#' ++ || code == '*' ++ || code == '(' ++ || code == ')' ++ || code == '_' ++ || code == '&') ++ return true; ++ ++ return false; ++} ++ ++/* Implement TARGET_PRINT_OPERAND. ++ Print operand X (an rtx) in assembler syntax to file FILE. ++ CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. ++ For `%' followed by punctuation, CODE is the punctuation and X is null. */ ++ ++static void ++sparc_print_operand (FILE *file, rtx x, int code) ++{ ++ const char *s; ++ ++ switch (code) ++ { ++ case '#': ++ /* Output an insn in a delay slot. */ ++ if (final_sequence) ++ sparc_indent_opcode = 1; ++ else ++ fputs ("\n\t nop", file); ++ return; ++ case '*': ++ /* Output an annul flag if there's nothing for the delay slot and we ++ are optimizing. This is always used with '(' below. ++ Sun OS 4.1.1 dbx can't handle an annulled unconditional branch; ++ this is a dbx bug. So, we only do this when optimizing. ++ On UltraSPARC, a branch in a delay slot causes a pipeline flush. ++ Always emit a nop in case the next instruction is a branch. */ ++ if (! final_sequence && (optimize && (int)sparc_cpu < PROCESSOR_V9)) ++ fputs (",a", file); ++ return; ++ case '(': ++ /* Output a 'nop' if there's nothing for the delay slot and we are ++ not optimizing. This is always used with '*' above. */ ++ if (! final_sequence && ! (optimize && (int)sparc_cpu < PROCESSOR_V9)) ++ fputs ("\n\t nop", file); ++ else if (final_sequence) ++ sparc_indent_opcode = 1; ++ return; ++ case ')': ++ /* Output the right displacement from the saved PC on function return. ++ The caller may have placed an "unimp" insn immediately after the call ++ so we have to account for it. This insn is used in the 32-bit ABI ++ when calling a function that returns a non zero-sized structure. The ++ 64-bit ABI doesn't have it. Be careful to have this test be the same ++ as that for the call. The exception is when sparc_std_struct_return ++ is enabled, the psABI is followed exactly and the adjustment is made ++ by the code in sparc_struct_value_rtx. The call emitted is the same ++ when sparc_std_struct_return is enabled. */ ++ if (!TARGET_ARCH64 ++ && cfun->returns_struct ++ && !sparc_std_struct_return ++ && DECL_SIZE (DECL_RESULT (current_function_decl)) ++ && TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl))) ++ == INTEGER_CST ++ && !integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl)))) ++ fputs ("12", file); ++ else ++ fputc ('8', file); ++ return; ++ case '_': ++ /* Output the Embedded Medium/Anywhere code model base register. */ ++ fputs (EMBMEDANY_BASE_REG, file); ++ return; ++ case '&': ++ /* Print some local dynamic TLS name. */ ++ if (const char *name = get_some_local_dynamic_name ()) ++ assemble_name (file, name); ++ else ++ output_operand_lossage ("'%%&' used without any " ++ "local dynamic TLS references"); ++ return; ++ ++ case 'Y': ++ /* Adjust the operand to take into account a RESTORE operation. */ ++ if (GET_CODE (x) == CONST_INT) ++ break; ++ else if (GET_CODE (x) != REG) ++ output_operand_lossage ("invalid %%Y operand"); ++ else if (REGNO (x) < 8) ++ fputs (reg_names[REGNO (x)], file); ++ else if (REGNO (x) >= 24 && REGNO (x) < 32) ++ fputs (reg_names[REGNO (x)-16], file); ++ else ++ output_operand_lossage ("invalid %%Y operand"); ++ return; ++ case 'L': ++ /* Print out the low order register name of a register pair. */ ++ if (WORDS_BIG_ENDIAN) ++ fputs (reg_names[REGNO (x)+1], file); ++ else ++ fputs (reg_names[REGNO (x)], file); ++ return; ++ case 'H': ++ /* Print out the high order register name of a register pair. */ ++ if (WORDS_BIG_ENDIAN) ++ fputs (reg_names[REGNO (x)], file); ++ else ++ fputs (reg_names[REGNO (x)+1], file); ++ return; ++ case 'R': ++ /* Print out the second register name of a register pair or quad. ++ I.e., R (%o0) => %o1. */ ++ fputs (reg_names[REGNO (x)+1], file); ++ return; ++ case 'S': ++ /* Print out the third register name of a register quad. ++ I.e., S (%o0) => %o2. */ ++ fputs (reg_names[REGNO (x)+2], file); ++ return; ++ case 'T': ++ /* Print out the fourth register name of a register quad. ++ I.e., T (%o0) => %o3. */ ++ fputs (reg_names[REGNO (x)+3], file); ++ return; ++ case 'x': ++ /* Print a condition code register. */ ++ if (REGNO (x) == SPARC_ICC_REG) ++ { ++ switch (GET_MODE (x)) ++ { ++ case E_CCmode: ++ case E_CCNZmode: ++ case E_CCCmode: ++ case E_CCVmode: ++ s = "%icc"; ++ break; ++ case E_CCXmode: ++ case E_CCXNZmode: ++ case E_CCXCmode: ++ case E_CCXVmode: ++ s = "%xcc"; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ fputs (s, file); ++ } ++ else ++ /* %fccN register */ ++ fputs (reg_names[REGNO (x)], file); ++ return; ++ case 'm': ++ /* Print the operand's address only. */ ++ output_address (GET_MODE (x), XEXP (x, 0)); ++ return; ++ case 'r': ++ /* In this case we need a register. Use %g0 if the ++ operand is const0_rtx. */ ++ if (x == const0_rtx ++ || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x)))) ++ { ++ fputs ("%g0", file); ++ return; ++ } ++ else ++ break; ++ ++ case 'A': ++ switch (GET_CODE (x)) ++ { ++ case IOR: ++ s = "or"; ++ break; ++ case AND: ++ s = "and"; ++ break; ++ case XOR: ++ s = "xor"; ++ break; ++ default: ++ output_operand_lossage ("invalid %%A operand"); ++ s = ""; ++ break; ++ } ++ fputs (s, file); ++ return; ++ ++ case 'B': ++ switch (GET_CODE (x)) ++ { ++ case IOR: ++ s = "orn"; ++ break; ++ case AND: ++ s = "andn"; ++ break; ++ case XOR: ++ s = "xnor"; ++ break; ++ default: ++ output_operand_lossage ("invalid %%B operand"); ++ s = ""; ++ break; ++ } ++ fputs (s, file); ++ return; ++ ++ /* This is used by the conditional move instructions. */ ++ case 'C': ++ { ++ machine_mode mode = GET_MODE (XEXP (x, 0)); ++ switch (GET_CODE (x)) ++ { ++ case NE: ++ if (mode == CCVmode || mode == CCXVmode) ++ s = "vs"; ++ else ++ s = "ne"; ++ break; ++ case EQ: ++ if (mode == CCVmode || mode == CCXVmode) ++ s = "vc"; ++ else ++ s = "e"; ++ break; ++ case GE: ++ if (mode == CCNZmode || mode == CCXNZmode) ++ s = "pos"; ++ else ++ s = "ge"; ++ break; ++ case GT: ++ s = "g"; ++ break; ++ case LE: ++ s = "le"; ++ break; ++ case LT: ++ if (mode == CCNZmode || mode == CCXNZmode) ++ s = "neg"; ++ else ++ s = "l"; ++ break; ++ case GEU: ++ s = "geu"; ++ break; ++ case GTU: ++ s = "gu"; ++ break; ++ case LEU: ++ s = "leu"; ++ break; ++ case LTU: ++ s = "lu"; ++ break; ++ case LTGT: ++ s = "lg"; ++ break; ++ case UNORDERED: ++ s = "u"; ++ break; ++ case ORDERED: ++ s = "o"; ++ break; ++ case UNLT: ++ s = "ul"; ++ break; ++ case UNLE: ++ s = "ule"; ++ break; ++ case UNGT: ++ s = "ug"; ++ break; ++ case UNGE: ++ s = "uge" ++ ; break; ++ case UNEQ: ++ s = "ue"; ++ break; ++ default: ++ output_operand_lossage ("invalid %%C operand"); ++ s = ""; ++ break; ++ } ++ fputs (s, file); ++ return; ++ } ++ ++ /* This are used by the movr instruction pattern. */ ++ case 'D': ++ { ++ switch (GET_CODE (x)) ++ { ++ case NE: ++ s = "ne"; ++ break; ++ case EQ: ++ s = "e"; ++ break; ++ case GE: ++ s = "gez"; ++ break; ++ case LT: ++ s = "lz"; ++ break; ++ case LE: ++ s = "lez"; ++ break; ++ case GT: ++ s = "gz"; ++ break; ++ default: ++ output_operand_lossage ("invalid %%D operand"); ++ s = ""; ++ break; ++ } ++ fputs (s, file); ++ return; ++ } ++ ++ case 'b': ++ { ++ /* Print a sign-extended character. */ ++ int i = trunc_int_for_mode (INTVAL (x), QImode); ++ fprintf (file, "%d", i); ++ return; ++ } ++ ++ case 'f': ++ /* Operand must be a MEM; write its address. */ ++ if (GET_CODE (x) != MEM) ++ output_operand_lossage ("invalid %%f operand"); ++ output_address (GET_MODE (x), XEXP (x, 0)); ++ return; ++ ++ case 's': ++ { ++ /* Print a sign-extended 32-bit value. */ ++ HOST_WIDE_INT i; ++ if (GET_CODE(x) == CONST_INT) ++ i = INTVAL (x); ++ else ++ { ++ output_operand_lossage ("invalid %%s operand"); ++ return; ++ } ++ i = trunc_int_for_mode (i, SImode); ++ fprintf (file, HOST_WIDE_INT_PRINT_DEC, i); ++ return; ++ } ++ ++ case 0: ++ /* Do nothing special. */ ++ break; ++ ++ default: ++ /* Undocumented flag. */ ++ output_operand_lossage ("invalid operand output code"); ++ } ++ ++ if (GET_CODE (x) == REG) ++ fputs (reg_names[REGNO (x)], file); ++ else if (GET_CODE (x) == MEM) ++ { ++ fputc ('[', file); ++ /* Poor Sun assembler doesn't understand absolute addressing. */ ++ if (CONSTANT_P (XEXP (x, 0))) ++ fputs ("%g0+", file); ++ output_address (GET_MODE (x), XEXP (x, 0)); ++ fputc (']', file); ++ } ++ else if (GET_CODE (x) == HIGH) ++ { ++ fputs ("%hi(", file); ++ output_addr_const (file, XEXP (x, 0)); ++ fputc (')', file); ++ } ++ else if (GET_CODE (x) == LO_SUM) ++ { ++ sparc_print_operand (file, XEXP (x, 0), 0); ++ if (TARGET_CM_MEDMID) ++ fputs ("+%l44(", file); ++ else ++ fputs ("+%lo(", file); ++ output_addr_const (file, XEXP (x, 1)); ++ fputc (')', file); ++ } ++ else if (GET_CODE (x) == CONST_DOUBLE) ++ output_operand_lossage ("floating-point constant not a valid immediate operand"); ++ else ++ output_addr_const (file, x); ++} ++ ++/* Implement TARGET_PRINT_OPERAND_ADDRESS. */ ++ ++static void ++sparc_print_operand_address (FILE *file, machine_mode /*mode*/, rtx x) ++{ ++ register rtx base, index = 0; ++ int offset = 0; ++ register rtx addr = x; ++ ++ if (REG_P (addr)) ++ fputs (reg_names[REGNO (addr)], file); ++ else if (GET_CODE (addr) == PLUS) ++ { ++ if (CONST_INT_P (XEXP (addr, 0))) ++ offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); ++ else if (CONST_INT_P (XEXP (addr, 1))) ++ offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); ++ else ++ base = XEXP (addr, 0), index = XEXP (addr, 1); ++ if (GET_CODE (base) == LO_SUM) ++ { ++ gcc_assert (USE_AS_OFFSETABLE_LO10 ++ && TARGET_ARCH64 ++ && ! TARGET_CM_MEDMID); ++ output_operand (XEXP (base, 0), 0); ++ fputs ("+%lo(", file); ++ output_address (VOIDmode, XEXP (base, 1)); ++ fprintf (file, ")+%d", offset); ++ } ++ else ++ { ++ fputs (reg_names[REGNO (base)], file); ++ if (index == 0) ++ fprintf (file, "%+d", offset); ++ else if (REG_P (index)) ++ fprintf (file, "+%s", reg_names[REGNO (index)]); ++ else if (GET_CODE (index) == SYMBOL_REF ++ || GET_CODE (index) == LABEL_REF ++ || GET_CODE (index) == CONST) ++ fputc ('+', file), output_addr_const (file, index); ++ else gcc_unreachable (); ++ } ++ } ++ else if (GET_CODE (addr) == MINUS ++ && GET_CODE (XEXP (addr, 1)) == LABEL_REF) ++ { ++ output_addr_const (file, XEXP (addr, 0)); ++ fputs ("-(", file); ++ output_addr_const (file, XEXP (addr, 1)); ++ fputs ("-.)", file); ++ } ++ else if (GET_CODE (addr) == LO_SUM) ++ { ++ output_operand (XEXP (addr, 0), 0); ++ if (TARGET_CM_MEDMID) ++ fputs ("+%l44(", file); ++ else ++ fputs ("+%lo(", file); ++ output_address (VOIDmode, XEXP (addr, 1)); ++ fputc (')', file); ++ } ++ else if (flag_pic ++ && GET_CODE (addr) == CONST ++ && GET_CODE (XEXP (addr, 0)) == MINUS ++ && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST ++ && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS ++ && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) ++ { ++ addr = XEXP (addr, 0); ++ output_addr_const (file, XEXP (addr, 0)); ++ /* Group the args of the second CONST in parenthesis. */ ++ fputs ("-(", file); ++ /* Skip past the second CONST--it does nothing for us. */ ++ output_addr_const (file, XEXP (XEXP (addr, 1), 0)); ++ /* Close the parenthesis. */ ++ fputc (')', file); ++ } ++ else ++ { ++ output_addr_const (file, addr); ++ } ++} ++ ++/* Target hook for assembling integer objects. The sparc version has ++ special handling for aligned DI-mode objects. */ ++ ++static bool ++sparc_assemble_integer (rtx x, unsigned int size, int aligned_p) ++{ ++ /* ??? We only output .xword's for symbols and only then in environments ++ where the assembler can handle them. */ ++ if (aligned_p && size == 8 && GET_CODE (x) != CONST_INT) ++ { ++ if (TARGET_V9) ++ { ++ assemble_integer_with_op ("\t.xword\t", x); ++ return true; ++ } ++ else ++ { ++ assemble_aligned_integer (4, const0_rtx); ++ assemble_aligned_integer (4, x); ++ return true; ++ } ++ } ++ return default_assemble_integer (x, size, aligned_p); ++} ++ ++/* Return the value of a code used in the .proc pseudo-op that says ++ what kind of result this function returns. For non-C types, we pick ++ the closest C type. */ ++ ++#ifndef SHORT_TYPE_SIZE ++#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2) ++#endif ++ ++#ifndef INT_TYPE_SIZE ++#define INT_TYPE_SIZE BITS_PER_WORD ++#endif ++ ++#ifndef LONG_TYPE_SIZE ++#define LONG_TYPE_SIZE BITS_PER_WORD ++#endif ++ ++#ifndef LONG_LONG_TYPE_SIZE ++#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2) ++#endif ++ ++#ifndef FLOAT_TYPE_SIZE ++#define FLOAT_TYPE_SIZE BITS_PER_WORD ++#endif ++ ++#ifndef DOUBLE_TYPE_SIZE ++#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) ++#endif ++ ++#ifndef LONG_DOUBLE_TYPE_SIZE ++#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) ++#endif ++ ++unsigned long ++sparc_type_code (register tree type) ++{ ++ register unsigned long qualifiers = 0; ++ register unsigned shift; ++ ++ /* Only the first 30 bits of the qualifier are valid. We must refrain from ++ setting more, since some assemblers will give an error for this. Also, ++ we must be careful to avoid shifts of 32 bits or more to avoid getting ++ unpredictable results. */ ++ ++ for (shift = 6; shift < 30; shift += 2, type = TREE_TYPE (type)) ++ { ++ switch (TREE_CODE (type)) ++ { ++ case ERROR_MARK: ++ return qualifiers; ++ ++ case ARRAY_TYPE: ++ qualifiers |= (3 << shift); ++ break; ++ ++ case FUNCTION_TYPE: ++ case METHOD_TYPE: ++ qualifiers |= (2 << shift); ++ break; ++ ++ case POINTER_TYPE: ++ case REFERENCE_TYPE: ++ case OFFSET_TYPE: ++ qualifiers |= (1 << shift); ++ break; ++ ++ case RECORD_TYPE: ++ return (qualifiers | 8); ++ ++ case UNION_TYPE: ++ case QUAL_UNION_TYPE: ++ return (qualifiers | 9); ++ ++ case ENUMERAL_TYPE: ++ return (qualifiers | 10); ++ ++ case VOID_TYPE: ++ return (qualifiers | 16); ++ ++ case INTEGER_TYPE: ++ /* If this is a range type, consider it to be the underlying ++ type. */ ++ if (TREE_TYPE (type) != 0) ++ break; ++ ++ /* Carefully distinguish all the standard types of C, ++ without messing up if the language is not C. We do this by ++ testing TYPE_PRECISION and TYPE_UNSIGNED. The old code used to ++ look at both the names and the above fields, but that's redundant. ++ Any type whose size is between two C types will be considered ++ to be the wider of the two types. Also, we do not have a ++ special code to use for "long long", so anything wider than ++ long is treated the same. Note that we can't distinguish ++ between "int" and "long" in this code if they are the same ++ size, but that's fine, since neither can the assembler. */ ++ ++ if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE) ++ return (qualifiers | (TYPE_UNSIGNED (type) ? 12 : 2)); ++ ++ else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE) ++ return (qualifiers | (TYPE_UNSIGNED (type) ? 13 : 3)); ++ ++ else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE) ++ return (qualifiers | (TYPE_UNSIGNED (type) ? 14 : 4)); ++ ++ else ++ return (qualifiers | (TYPE_UNSIGNED (type) ? 15 : 5)); ++ ++ case REAL_TYPE: ++ /* If this is a range type, consider it to be the underlying ++ type. */ ++ if (TREE_TYPE (type) != 0) ++ break; ++ ++ /* Carefully distinguish all the standard types of C, ++ without messing up if the language is not C. */ ++ ++ if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE) ++ return (qualifiers | 6); ++ ++ else ++ return (qualifiers | 7); ++ ++ case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */ ++ /* ??? We need to distinguish between double and float complex types, ++ but I don't know how yet because I can't reach this code from ++ existing front-ends. */ ++ return (qualifiers | 7); /* Who knows? */ ++ ++ case VECTOR_TYPE: ++ case BOOLEAN_TYPE: /* Boolean truth value type. */ ++ case LANG_TYPE: ++ case NULLPTR_TYPE: ++ return qualifiers; ++ ++ default: ++ gcc_unreachable (); /* Not a type! */ ++ } ++ } ++ ++ return qualifiers; ++} ++ ++/* Nested function support. */ ++ ++/* Emit RTL insns to initialize the variable parts of a trampoline. ++ FNADDR is an RTX for the address of the function's pure code. ++ CXT is an RTX for the static chain value for the function. ++ ++ This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi ++ (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes ++ (to store insns). This is a bit excessive. Perhaps a different ++ mechanism would be better here. ++ ++ Emit enough FLUSH insns to synchronize the data and instruction caches. */ ++ ++static void ++sparc32_initialize_trampoline (rtx m_tramp, rtx fnaddr, rtx cxt) ++{ ++ /* SPARC 32-bit trampoline: ++ ++ sethi %hi(fn), %g1 ++ sethi %hi(static), %g2 ++ jmp %g1+%lo(fn) ++ or %g2, %lo(static), %g2 ++ ++ SETHI i,r = 00rr rrr1 00ii iiii iiii iiii iiii iiii ++ JMPL r+i,d = 10dd ddd1 1100 0rrr rr1i iiii iiii iiii ++ */ ++ ++ emit_move_insn ++ (adjust_address (m_tramp, SImode, 0), ++ expand_binop (SImode, ior_optab, ++ expand_shift (RSHIFT_EXPR, SImode, fnaddr, 10, 0, 1), ++ GEN_INT (trunc_int_for_mode (0x03000000, SImode)), ++ NULL_RTX, 1, OPTAB_DIRECT)); ++ ++ emit_move_insn ++ (adjust_address (m_tramp, SImode, 4), ++ expand_binop (SImode, ior_optab, ++ expand_shift (RSHIFT_EXPR, SImode, cxt, 10, 0, 1), ++ GEN_INT (trunc_int_for_mode (0x05000000, SImode)), ++ NULL_RTX, 1, OPTAB_DIRECT)); ++ ++ emit_move_insn ++ (adjust_address (m_tramp, SImode, 8), ++ expand_binop (SImode, ior_optab, ++ expand_and (SImode, fnaddr, GEN_INT (0x3ff), NULL_RTX), ++ GEN_INT (trunc_int_for_mode (0x81c06000, SImode)), ++ NULL_RTX, 1, OPTAB_DIRECT)); ++ ++ emit_move_insn ++ (adjust_address (m_tramp, SImode, 12), ++ expand_binop (SImode, ior_optab, ++ expand_and (SImode, cxt, GEN_INT (0x3ff), NULL_RTX), ++ GEN_INT (trunc_int_for_mode (0x8410a000, SImode)), ++ NULL_RTX, 1, OPTAB_DIRECT)); ++ ++ /* On UltraSPARC a flush flushes an entire cache line. The trampoline is ++ aligned on a 16 byte boundary so one flush clears it all. */ ++ emit_insn (gen_flushsi (validize_mem (adjust_address (m_tramp, SImode, 0)))); ++ if (sparc_cpu != PROCESSOR_ULTRASPARC ++ && sparc_cpu != PROCESSOR_ULTRASPARC3 ++ && sparc_cpu != PROCESSOR_NIAGARA ++ && sparc_cpu != PROCESSOR_NIAGARA2 ++ && sparc_cpu != PROCESSOR_NIAGARA3 ++ && sparc_cpu != PROCESSOR_NIAGARA4 ++ && sparc_cpu != PROCESSOR_NIAGARA7 ++ && sparc_cpu != PROCESSOR_M8) ++ emit_insn (gen_flushsi (validize_mem (adjust_address (m_tramp, SImode, 8)))); ++ ++ /* Call __enable_execute_stack after writing onto the stack to make sure ++ the stack address is accessible. */ ++#ifdef HAVE_ENABLE_EXECUTE_STACK ++ emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), ++ LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode); ++#endif ++ ++} ++ ++/* The 64-bit version is simpler because it makes more sense to load the ++ values as "immediate" data out of the trampoline. It's also easier since ++ we can read the PC without clobbering a register. */ ++ ++static void ++sparc64_initialize_trampoline (rtx m_tramp, rtx fnaddr, rtx cxt) ++{ ++ /* SPARC 64-bit trampoline: ++ ++ rd %pc, %g1 ++ ldx [%g1+24], %g5 ++ jmp %g5 ++ ldx [%g1+16], %g5 ++ +16 bytes data ++ */ ++ ++ emit_move_insn (adjust_address (m_tramp, SImode, 0), ++ GEN_INT (trunc_int_for_mode (0x83414000, SImode))); ++ emit_move_insn (adjust_address (m_tramp, SImode, 4), ++ GEN_INT (trunc_int_for_mode (0xca586018, SImode))); ++ emit_move_insn (adjust_address (m_tramp, SImode, 8), ++ GEN_INT (trunc_int_for_mode (0x81c14000, SImode))); ++ emit_move_insn (adjust_address (m_tramp, SImode, 12), ++ GEN_INT (trunc_int_for_mode (0xca586010, SImode))); ++ emit_move_insn (adjust_address (m_tramp, DImode, 16), cxt); ++ emit_move_insn (adjust_address (m_tramp, DImode, 24), fnaddr); ++ emit_insn (gen_flushdi (validize_mem (adjust_address (m_tramp, DImode, 0)))); ++ ++ if (sparc_cpu != PROCESSOR_ULTRASPARC ++ && sparc_cpu != PROCESSOR_ULTRASPARC3 ++ && sparc_cpu != PROCESSOR_NIAGARA ++ && sparc_cpu != PROCESSOR_NIAGARA2 ++ && sparc_cpu != PROCESSOR_NIAGARA3 ++ && sparc_cpu != PROCESSOR_NIAGARA4 ++ && sparc_cpu != PROCESSOR_NIAGARA7 ++ && sparc_cpu != PROCESSOR_M8) ++ emit_insn (gen_flushdi (validize_mem (adjust_address (m_tramp, DImode, 8)))); ++ ++ /* Call __enable_execute_stack after writing onto the stack to make sure ++ the stack address is accessible. */ ++#ifdef HAVE_ENABLE_EXECUTE_STACK ++ emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), ++ LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode); ++#endif ++} ++ ++/* Worker for TARGET_TRAMPOLINE_INIT. */ ++ ++static void ++sparc_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt) ++{ ++ rtx fnaddr = force_reg (Pmode, XEXP (DECL_RTL (fndecl), 0)); ++ cxt = force_reg (Pmode, cxt); ++ if (TARGET_ARCH64) ++ sparc64_initialize_trampoline (m_tramp, fnaddr, cxt); ++ else ++ sparc32_initialize_trampoline (m_tramp, fnaddr, cxt); ++} ++ ++/* Adjust the cost of a scheduling dependency. Return the new cost of ++ a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ ++ ++static int ++supersparc_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn, ++ int cost) ++{ ++ enum attr_type insn_type; ++ ++ if (recog_memoized (insn) < 0) ++ return cost; ++ ++ insn_type = get_attr_type (insn); ++ ++ if (dep_type == 0) ++ { ++ /* Data dependency; DEP_INSN writes a register that INSN reads some ++ cycles later. */ ++ ++ /* if a load, then the dependence must be on the memory address; ++ add an extra "cycle". Note that the cost could be two cycles ++ if the reg was written late in an instruction group; we ca not tell ++ here. */ ++ if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD) ++ return cost + 3; ++ ++ /* Get the delay only if the address of the store is the dependence. */ ++ if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE) ++ { ++ rtx pat = PATTERN(insn); ++ rtx dep_pat = PATTERN (dep_insn); ++ ++ if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) ++ return cost; /* This should not happen! */ ++ ++ /* The dependency between the two instructions was on the data that ++ is being stored. Assume that this implies that the address of the ++ store is not dependent. */ ++ if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) ++ return cost; ++ ++ return cost + 3; /* An approximation. */ ++ } ++ ++ /* A shift instruction cannot receive its data from an instruction ++ in the same cycle; add a one cycle penalty. */ ++ if (insn_type == TYPE_SHIFT) ++ return cost + 3; /* Split before cascade into shift. */ ++ } ++ else ++ { ++ /* Anti- or output- dependency; DEP_INSN reads/writes a register that ++ INSN writes some cycles later. */ ++ ++ /* These are only significant for the fpu unit; writing a fp reg before ++ the fpu has finished with it stalls the processor. */ ++ ++ /* Reusing an integer register causes no problems. */ ++ if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) ++ return 0; ++ } ++ ++ return cost; ++} ++ ++static int ++hypersparc_adjust_cost (rtx_insn *insn, int dtype, rtx_insn *dep_insn, ++ int cost) ++{ ++ enum attr_type insn_type, dep_type; ++ rtx pat = PATTERN(insn); ++ rtx dep_pat = PATTERN (dep_insn); ++ ++ if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0) ++ return cost; ++ ++ insn_type = get_attr_type (insn); ++ dep_type = get_attr_type (dep_insn); ++ ++ switch (dtype) ++ { ++ case 0: ++ /* Data dependency; DEP_INSN writes a register that INSN reads some ++ cycles later. */ ++ ++ switch (insn_type) ++ { ++ case TYPE_STORE: ++ case TYPE_FPSTORE: ++ /* Get the delay iff the address of the store is the dependence. */ ++ if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) ++ return cost; ++ ++ if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) ++ return cost; ++ return cost + 3; ++ ++ case TYPE_LOAD: ++ case TYPE_SLOAD: ++ case TYPE_FPLOAD: ++ /* If a load, then the dependence must be on the memory address. If ++ the addresses aren't equal, then it might be a false dependency */ ++ if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE) ++ { ++ if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET ++ || GET_CODE (SET_DEST (dep_pat)) != MEM ++ || GET_CODE (SET_SRC (pat)) != MEM ++ || ! rtx_equal_p (XEXP (SET_DEST (dep_pat), 0), ++ XEXP (SET_SRC (pat), 0))) ++ return cost + 2; ++ ++ return cost + 8; ++ } ++ break; ++ ++ case TYPE_BRANCH: ++ /* Compare to branch latency is 0. There is no benefit from ++ separating compare and branch. */ ++ if (dep_type == TYPE_COMPARE) ++ return 0; ++ /* Floating point compare to branch latency is less than ++ compare to conditional move. */ ++ if (dep_type == TYPE_FPCMP) ++ return cost - 1; ++ break; ++ default: ++ break; ++ } ++ break; ++ ++ case REG_DEP_ANTI: ++ /* Anti-dependencies only penalize the fpu unit. */ ++ if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) ++ return 0; ++ break; ++ ++ default: ++ break; ++ } ++ ++ return cost; ++} ++ ++static int ++sparc_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep, int cost, ++ unsigned int) ++{ ++ switch (sparc_cpu) ++ { ++ case PROCESSOR_SUPERSPARC: ++ cost = supersparc_adjust_cost (insn, dep_type, dep, cost); ++ break; ++ case PROCESSOR_HYPERSPARC: ++ case PROCESSOR_SPARCLITE86X: ++ cost = hypersparc_adjust_cost (insn, dep_type, dep, cost); ++ break; ++ default: ++ break; ++ } ++ return cost; ++} ++ ++static void ++sparc_sched_init (FILE *dump ATTRIBUTE_UNUSED, ++ int sched_verbose ATTRIBUTE_UNUSED, ++ int max_ready ATTRIBUTE_UNUSED) ++{} ++ ++static int ++sparc_use_sched_lookahead (void) ++{ ++ switch (sparc_cpu) ++ { ++ case PROCESSOR_ULTRASPARC: ++ case PROCESSOR_ULTRASPARC3: ++ return 4; ++ case PROCESSOR_SUPERSPARC: ++ case PROCESSOR_HYPERSPARC: ++ case PROCESSOR_SPARCLITE86X: ++ return 3; ++ case PROCESSOR_NIAGARA4: ++ case PROCESSOR_NIAGARA7: ++ case PROCESSOR_M8: ++ return 2; ++ case PROCESSOR_NIAGARA: ++ case PROCESSOR_NIAGARA2: ++ case PROCESSOR_NIAGARA3: ++ default: ++ return 0; ++ } ++} ++ ++static int ++sparc_issue_rate (void) ++{ ++ switch (sparc_cpu) ++ { ++ case PROCESSOR_ULTRASPARC: ++ case PROCESSOR_ULTRASPARC3: ++ case PROCESSOR_M8: ++ return 4; ++ case PROCESSOR_SUPERSPARC: ++ return 3; ++ case PROCESSOR_HYPERSPARC: ++ case PROCESSOR_SPARCLITE86X: ++ case PROCESSOR_V9: ++ /* Assume V9 processors are capable of at least dual-issue. */ ++ case PROCESSOR_NIAGARA4: ++ case PROCESSOR_NIAGARA7: ++ return 2; ++ case PROCESSOR_NIAGARA: ++ case PROCESSOR_NIAGARA2: ++ case PROCESSOR_NIAGARA3: ++ default: ++ return 1; ++ } ++} ++ ++int ++sparc_branch_cost (bool speed_p, bool predictable_p) ++{ ++ if (!speed_p) ++ return 2; ++ ++ /* For pre-V9 processors we use a single value (usually 3) to take into ++ account the potential annulling of the delay slot (which ends up being ++ a bubble in the pipeline slot) plus a cycle to take into consideration ++ the instruction cache effects. ++ ++ On V9 and later processors, which have branch prediction facilities, ++ we take into account whether the branch is (easily) predictable. */ ++ const int cost = sparc_costs->branch_cost; ++ ++ switch (sparc_cpu) ++ { ++ case PROCESSOR_V9: ++ case PROCESSOR_ULTRASPARC: ++ case PROCESSOR_ULTRASPARC3: ++ case PROCESSOR_NIAGARA: ++ case PROCESSOR_NIAGARA2: ++ case PROCESSOR_NIAGARA3: ++ case PROCESSOR_NIAGARA4: ++ case PROCESSOR_NIAGARA7: ++ case PROCESSOR_M8: ++ return cost + (predictable_p ? 0 : 2); ++ ++ default: ++ return cost; ++ } ++} ++ ++static int ++set_extends (rtx_insn *insn) ++{ ++ register rtx pat = PATTERN (insn); ++ ++ switch (GET_CODE (SET_SRC (pat))) ++ { ++ /* Load and some shift instructions zero extend. */ ++ case MEM: ++ case ZERO_EXTEND: ++ /* sethi clears the high bits */ ++ case HIGH: ++ /* LO_SUM is used with sethi. sethi cleared the high ++ bits and the values used with lo_sum are positive */ ++ case LO_SUM: ++ /* Store flag stores 0 or 1 */ ++ case LT: case LTU: ++ case GT: case GTU: ++ case LE: case LEU: ++ case GE: case GEU: ++ case EQ: ++ case NE: ++ return 1; ++ case AND: ++ { ++ rtx op0 = XEXP (SET_SRC (pat), 0); ++ rtx op1 = XEXP (SET_SRC (pat), 1); ++ if (GET_CODE (op1) == CONST_INT) ++ return INTVAL (op1) >= 0; ++ if (GET_CODE (op0) != REG) ++ return 0; ++ if (sparc_check_64 (op0, insn) == 1) ++ return 1; ++ return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1); ++ } ++ case IOR: ++ case XOR: ++ { ++ rtx op0 = XEXP (SET_SRC (pat), 0); ++ rtx op1 = XEXP (SET_SRC (pat), 1); ++ if (GET_CODE (op0) != REG || sparc_check_64 (op0, insn) <= 0) ++ return 0; ++ if (GET_CODE (op1) == CONST_INT) ++ return INTVAL (op1) >= 0; ++ return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1); ++ } ++ case LSHIFTRT: ++ return GET_MODE (SET_SRC (pat)) == SImode; ++ /* Positive integers leave the high bits zero. */ ++ case CONST_INT: ++ return !(INTVAL (SET_SRC (pat)) & 0x80000000); ++ case ASHIFTRT: ++ case SIGN_EXTEND: ++ return - (GET_MODE (SET_SRC (pat)) == SImode); ++ case REG: ++ return sparc_check_64 (SET_SRC (pat), insn); ++ default: ++ return 0; ++ } ++} ++ ++/* We _ought_ to have only one kind per function, but... */ ++static GTY(()) rtx sparc_addr_diff_list; ++static GTY(()) rtx sparc_addr_list; ++ ++void ++sparc_defer_case_vector (rtx lab, rtx vec, int diff) ++{ ++ vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec); ++ if (diff) ++ sparc_addr_diff_list ++ = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_diff_list); ++ else ++ sparc_addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_list); ++} ++ ++static void ++sparc_output_addr_vec (rtx vec) ++{ ++ rtx lab = XEXP (vec, 0), body = XEXP (vec, 1); ++ int idx, vlen = XVECLEN (body, 0); ++ ++#ifdef ASM_OUTPUT_ADDR_VEC_START ++ ASM_OUTPUT_ADDR_VEC_START (asm_out_file); ++#endif ++ ++#ifdef ASM_OUTPUT_CASE_LABEL ++ ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab), ++ NEXT_INSN (lab)); ++#else ++ (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab)); ++#endif ++ ++ for (idx = 0; idx < vlen; idx++) ++ { ++ ASM_OUTPUT_ADDR_VEC_ELT ++ (asm_out_file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); ++ } ++ ++#ifdef ASM_OUTPUT_ADDR_VEC_END ++ ASM_OUTPUT_ADDR_VEC_END (asm_out_file); ++#endif ++} ++ ++static void ++sparc_output_addr_diff_vec (rtx vec) ++{ ++ rtx lab = XEXP (vec, 0), body = XEXP (vec, 1); ++ rtx base = XEXP (XEXP (body, 0), 0); ++ int idx, vlen = XVECLEN (body, 1); ++ ++#ifdef ASM_OUTPUT_ADDR_VEC_START ++ ASM_OUTPUT_ADDR_VEC_START (asm_out_file); ++#endif ++ ++#ifdef ASM_OUTPUT_CASE_LABEL ++ ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab), ++ NEXT_INSN (lab)); ++#else ++ (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab)); ++#endif ++ ++ for (idx = 0; idx < vlen; idx++) ++ { ++ ASM_OUTPUT_ADDR_DIFF_ELT ++ (asm_out_file, ++ body, ++ CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)), ++ CODE_LABEL_NUMBER (base)); ++ } ++ ++#ifdef ASM_OUTPUT_ADDR_VEC_END ++ ASM_OUTPUT_ADDR_VEC_END (asm_out_file); ++#endif ++} ++ ++static void ++sparc_output_deferred_case_vectors (void) ++{ ++ rtx t; ++ int align; ++ ++ if (sparc_addr_list == NULL_RTX ++ && sparc_addr_diff_list == NULL_RTX) ++ return; ++ ++ /* Align to cache line in the function's code section. */ ++ switch_to_section (current_function_section ()); ++ ++ align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); ++ if (align > 0) ++ ASM_OUTPUT_ALIGN (asm_out_file, align); ++ ++ for (t = sparc_addr_list; t ; t = XEXP (t, 1)) ++ sparc_output_addr_vec (XEXP (t, 0)); ++ for (t = sparc_addr_diff_list; t ; t = XEXP (t, 1)) ++ sparc_output_addr_diff_vec (XEXP (t, 0)); ++ ++ sparc_addr_list = sparc_addr_diff_list = NULL_RTX; ++} ++ ++/* Return 0 if the high 32 bits of X (the low word of X, if DImode) are ++ unknown. Return 1 if the high bits are zero, -1 if the register is ++ sign extended. */ ++int ++sparc_check_64 (rtx x, rtx_insn *insn) ++{ ++ /* If a register is set only once it is safe to ignore insns this ++ code does not know how to handle. The loop will either recognize ++ the single set and return the correct value or fail to recognize ++ it and return 0. */ ++ int set_once = 0; ++ rtx y = x; ++ ++ gcc_assert (GET_CODE (x) == REG); ++ ++ if (GET_MODE (x) == DImode) ++ y = gen_rtx_REG (SImode, REGNO (x) + WORDS_BIG_ENDIAN); ++ ++ if (flag_expensive_optimizations ++ && df && DF_REG_DEF_COUNT (REGNO (y)) == 1) ++ set_once = 1; ++ ++ if (insn == 0) ++ { ++ if (set_once) ++ insn = get_last_insn_anywhere (); ++ else ++ return 0; ++ } ++ ++ while ((insn = PREV_INSN (insn))) ++ { ++ switch (GET_CODE (insn)) ++ { ++ case JUMP_INSN: ++ case NOTE: ++ break; ++ case CODE_LABEL: ++ case CALL_INSN: ++ default: ++ if (! set_once) ++ return 0; ++ break; ++ case INSN: ++ { ++ rtx pat = PATTERN (insn); ++ if (GET_CODE (pat) != SET) ++ return 0; ++ if (rtx_equal_p (x, SET_DEST (pat))) ++ return set_extends (insn); ++ if (y && rtx_equal_p (y, SET_DEST (pat))) ++ return set_extends (insn); ++ if (reg_overlap_mentioned_p (SET_DEST (pat), y)) ++ return 0; ++ } ++ } ++ } ++ return 0; ++} ++ ++/* Output a wide shift instruction in V8+ mode. INSN is the instruction, ++ OPERANDS are its operands and OPCODE is the mnemonic to be used. */ ++ ++const char * ++output_v8plus_shift (rtx_insn *insn, rtx *operands, const char *opcode) ++{ ++ static char asm_code[60]; ++ ++ /* The scratch register is only required when the destination ++ register is not a 64-bit global or out register. */ ++ if (which_alternative != 2) ++ operands[3] = operands[0]; ++ ++ /* We can only shift by constants <= 63. */ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); ++ ++ if (GET_CODE (operands[1]) == CONST_INT) ++ { ++ output_asm_insn ("mov\t%1, %3", operands); ++ } ++ else ++ { ++ output_asm_insn ("sllx\t%H1, 32, %3", operands); ++ if (sparc_check_64 (operands[1], insn) <= 0) ++ output_asm_insn ("srl\t%L1, 0, %L1", operands); ++ output_asm_insn ("or\t%L1, %3, %3", operands); ++ } ++ ++ strcpy (asm_code, opcode); ++ ++ if (which_alternative != 2) ++ return strcat (asm_code, "\t%0, %2, %L0\n\tsrlx\t%L0, 32, %H0"); ++ else ++ return ++ strcat (asm_code, "\t%3, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"); ++} ++ ++/* Output rtl to increment the profiler label LABELNO ++ for profiling a function entry. */ ++ ++void ++sparc_profile_hook (int labelno) ++{ ++ char buf[32]; ++ rtx lab, fun; ++ ++ fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_FUNCTION); ++ if (NO_PROFILE_COUNTERS) ++ { ++ emit_library_call (fun, LCT_NORMAL, VOIDmode); ++ } ++ else ++ { ++ ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno); ++ lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)); ++ emit_library_call (fun, LCT_NORMAL, VOIDmode, lab, Pmode); ++ } ++} ++ ++#ifdef TARGET_SOLARIS ++/* Solaris implementation of TARGET_ASM_NAMED_SECTION. */ ++ ++static void ++sparc_solaris_elf_asm_named_section (const char *name, unsigned int flags, ++ tree decl ATTRIBUTE_UNUSED) ++{ ++ if (HAVE_COMDAT_GROUP && flags & SECTION_LINKONCE) ++ { ++ solaris_elf_asm_comdat_section (name, flags, decl); ++ return; ++ } ++ ++ fprintf (asm_out_file, "\t.section\t\"%s\"", name); ++ ++ if (!(flags & SECTION_DEBUG)) ++ fputs (",#alloc", asm_out_file); ++#if HAVE_GAS_SECTION_EXCLUDE ++ if (flags & SECTION_EXCLUDE) ++ fputs (",#exclude", asm_out_file); ++#endif ++ if (flags & SECTION_WRITE) ++ fputs (",#write", asm_out_file); ++ if (flags & SECTION_TLS) ++ fputs (",#tls", asm_out_file); ++ if (flags & SECTION_CODE) ++ fputs (",#execinstr", asm_out_file); ++ ++ if (flags & SECTION_NOTYPE) ++ ; ++ else if (flags & SECTION_BSS) ++ fputs (",#nobits", asm_out_file); ++ else ++ fputs (",#progbits", asm_out_file); ++ ++ fputc ('\n', asm_out_file); ++} ++#endif /* TARGET_SOLARIS */ ++ ++/* We do not allow indirect calls to be optimized into sibling calls. ++ ++ We cannot use sibling calls when delayed branches are disabled ++ because they will likely require the call delay slot to be filled. ++ ++ Also, on SPARC 32-bit we cannot emit a sibling call when the ++ current function returns a structure. This is because the "unimp ++ after call" convention would cause the callee to return to the ++ wrong place. The generic code already disallows cases where the ++ function being called returns a structure. ++ ++ It may seem strange how this last case could occur. Usually there ++ is code after the call which jumps to epilogue code which dumps the ++ return value into the struct return area. That ought to invalidate ++ the sibling call right? Well, in the C++ case we can end up passing ++ the pointer to the struct return area to a constructor (which returns ++ void) and then nothing else happens. Such a sibling call would look ++ valid without the added check here. ++ ++ VxWorks PIC PLT entries require the global pointer to be initialized ++ on entry. We therefore can't emit sibling calls to them. */ ++static bool ++sparc_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED) ++{ ++ return (decl ++ && flag_delayed_branch ++ && (TARGET_ARCH64 || ! cfun->returns_struct) ++ && !(TARGET_VXWORKS_RTP ++ && flag_pic ++ && !targetm.binds_local_p (decl))); ++} ++ ++/* libfunc renaming. */ ++ ++static void ++sparc_init_libfuncs (void) ++{ ++ if (TARGET_ARCH32) ++ { ++ /* Use the subroutines that Sun's library provides for integer ++ multiply and divide. The `*' prevents an underscore from ++ being prepended by the compiler. .umul is a little faster ++ than .mul. */ ++ set_optab_libfunc (smul_optab, SImode, "*.umul"); ++ set_optab_libfunc (sdiv_optab, SImode, "*.div"); ++ set_optab_libfunc (udiv_optab, SImode, "*.udiv"); ++ set_optab_libfunc (smod_optab, SImode, "*.rem"); ++ set_optab_libfunc (umod_optab, SImode, "*.urem"); ++ ++ /* TFmode arithmetic. These names are part of the SPARC 32bit ABI. */ ++ set_optab_libfunc (add_optab, TFmode, "_Q_add"); ++ set_optab_libfunc (sub_optab, TFmode, "_Q_sub"); ++ set_optab_libfunc (neg_optab, TFmode, "_Q_neg"); ++ set_optab_libfunc (smul_optab, TFmode, "_Q_mul"); ++ set_optab_libfunc (sdiv_optab, TFmode, "_Q_div"); ++ ++ /* We can define the TFmode sqrt optab only if TARGET_FPU. This ++ is because with soft-float, the SFmode and DFmode sqrt ++ instructions will be absent, and the compiler will notice and ++ try to use the TFmode sqrt instruction for calls to the ++ builtin function sqrt, but this fails. */ ++ if (TARGET_FPU) ++ set_optab_libfunc (sqrt_optab, TFmode, "_Q_sqrt"); ++ ++ set_optab_libfunc (eq_optab, TFmode, "_Q_feq"); ++ set_optab_libfunc (ne_optab, TFmode, "_Q_fne"); ++ set_optab_libfunc (gt_optab, TFmode, "_Q_fgt"); ++ set_optab_libfunc (ge_optab, TFmode, "_Q_fge"); ++ set_optab_libfunc (lt_optab, TFmode, "_Q_flt"); ++ set_optab_libfunc (le_optab, TFmode, "_Q_fle"); ++ ++ set_conv_libfunc (sext_optab, TFmode, SFmode, "_Q_stoq"); ++ set_conv_libfunc (sext_optab, TFmode, DFmode, "_Q_dtoq"); ++ set_conv_libfunc (trunc_optab, SFmode, TFmode, "_Q_qtos"); ++ set_conv_libfunc (trunc_optab, DFmode, TFmode, "_Q_qtod"); ++ ++ set_conv_libfunc (sfix_optab, SImode, TFmode, "_Q_qtoi"); ++ set_conv_libfunc (ufix_optab, SImode, TFmode, "_Q_qtou"); ++ set_conv_libfunc (sfloat_optab, TFmode, SImode, "_Q_itoq"); ++ set_conv_libfunc (ufloat_optab, TFmode, SImode, "_Q_utoq"); ++ ++ if (DITF_CONVERSION_LIBFUNCS) ++ { ++ set_conv_libfunc (sfix_optab, DImode, TFmode, "_Q_qtoll"); ++ set_conv_libfunc (ufix_optab, DImode, TFmode, "_Q_qtoull"); ++ set_conv_libfunc (sfloat_optab, TFmode, DImode, "_Q_lltoq"); ++ set_conv_libfunc (ufloat_optab, TFmode, DImode, "_Q_ulltoq"); ++ } ++ ++ if (SUN_CONVERSION_LIBFUNCS) ++ { ++ set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftoll"); ++ set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoull"); ++ set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtoll"); ++ set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoull"); ++ } ++ } ++ if (TARGET_ARCH64) ++ { ++ /* In the SPARC 64bit ABI, SImode multiply and divide functions ++ do not exist in the library. Make sure the compiler does not ++ emit calls to them by accident. (It should always use the ++ hardware instructions.) */ ++ set_optab_libfunc (smul_optab, SImode, 0); ++ set_optab_libfunc (sdiv_optab, SImode, 0); ++ set_optab_libfunc (udiv_optab, SImode, 0); ++ set_optab_libfunc (smod_optab, SImode, 0); ++ set_optab_libfunc (umod_optab, SImode, 0); ++ ++ if (SUN_INTEGER_MULTIPLY_64) ++ { ++ set_optab_libfunc (smul_optab, DImode, "__mul64"); ++ set_optab_libfunc (sdiv_optab, DImode, "__div64"); ++ set_optab_libfunc (udiv_optab, DImode, "__udiv64"); ++ set_optab_libfunc (smod_optab, DImode, "__rem64"); ++ set_optab_libfunc (umod_optab, DImode, "__urem64"); ++ } ++ ++ if (SUN_CONVERSION_LIBFUNCS) ++ { ++ set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftol"); ++ set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoul"); ++ set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtol"); ++ set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoul"); ++ } ++ } ++} ++ ++/* SPARC builtins. */ ++enum sparc_builtins ++{ ++ /* FPU builtins. */ ++ SPARC_BUILTIN_LDFSR, ++ SPARC_BUILTIN_STFSR, ++ ++ /* VIS 1.0 builtins. */ ++ SPARC_BUILTIN_FPACK16, ++ SPARC_BUILTIN_FPACK32, ++ SPARC_BUILTIN_FPACKFIX, ++ SPARC_BUILTIN_FEXPAND, ++ SPARC_BUILTIN_FPMERGE, ++ SPARC_BUILTIN_FMUL8X16, ++ SPARC_BUILTIN_FMUL8X16AU, ++ SPARC_BUILTIN_FMUL8X16AL, ++ SPARC_BUILTIN_FMUL8SUX16, ++ SPARC_BUILTIN_FMUL8ULX16, ++ SPARC_BUILTIN_FMULD8SUX16, ++ SPARC_BUILTIN_FMULD8ULX16, ++ SPARC_BUILTIN_FALIGNDATAV4HI, ++ SPARC_BUILTIN_FALIGNDATAV8QI, ++ SPARC_BUILTIN_FALIGNDATAV2SI, ++ SPARC_BUILTIN_FALIGNDATADI, ++ SPARC_BUILTIN_WRGSR, ++ SPARC_BUILTIN_RDGSR, ++ SPARC_BUILTIN_ALIGNADDR, ++ SPARC_BUILTIN_ALIGNADDRL, ++ SPARC_BUILTIN_PDIST, ++ SPARC_BUILTIN_EDGE8, ++ SPARC_BUILTIN_EDGE8L, ++ SPARC_BUILTIN_EDGE16, ++ SPARC_BUILTIN_EDGE16L, ++ SPARC_BUILTIN_EDGE32, ++ SPARC_BUILTIN_EDGE32L, ++ SPARC_BUILTIN_FCMPLE16, ++ SPARC_BUILTIN_FCMPLE32, ++ SPARC_BUILTIN_FCMPNE16, ++ SPARC_BUILTIN_FCMPNE32, ++ SPARC_BUILTIN_FCMPGT16, ++ SPARC_BUILTIN_FCMPGT32, ++ SPARC_BUILTIN_FCMPEQ16, ++ SPARC_BUILTIN_FCMPEQ32, ++ SPARC_BUILTIN_FPADD16, ++ SPARC_BUILTIN_FPADD16S, ++ SPARC_BUILTIN_FPADD32, ++ SPARC_BUILTIN_FPADD32S, ++ SPARC_BUILTIN_FPSUB16, ++ SPARC_BUILTIN_FPSUB16S, ++ SPARC_BUILTIN_FPSUB32, ++ SPARC_BUILTIN_FPSUB32S, ++ SPARC_BUILTIN_ARRAY8, ++ SPARC_BUILTIN_ARRAY16, ++ SPARC_BUILTIN_ARRAY32, ++ ++ /* VIS 2.0 builtins. */ ++ SPARC_BUILTIN_EDGE8N, ++ SPARC_BUILTIN_EDGE8LN, ++ SPARC_BUILTIN_EDGE16N, ++ SPARC_BUILTIN_EDGE16LN, ++ SPARC_BUILTIN_EDGE32N, ++ SPARC_BUILTIN_EDGE32LN, ++ SPARC_BUILTIN_BMASK, ++ SPARC_BUILTIN_BSHUFFLEV4HI, ++ SPARC_BUILTIN_BSHUFFLEV8QI, ++ SPARC_BUILTIN_BSHUFFLEV2SI, ++ SPARC_BUILTIN_BSHUFFLEDI, ++ ++ /* VIS 3.0 builtins. */ ++ SPARC_BUILTIN_CMASK8, ++ SPARC_BUILTIN_CMASK16, ++ SPARC_BUILTIN_CMASK32, ++ SPARC_BUILTIN_FCHKSM16, ++ SPARC_BUILTIN_FSLL16, ++ SPARC_BUILTIN_FSLAS16, ++ SPARC_BUILTIN_FSRL16, ++ SPARC_BUILTIN_FSRA16, ++ SPARC_BUILTIN_FSLL32, ++ SPARC_BUILTIN_FSLAS32, ++ SPARC_BUILTIN_FSRL32, ++ SPARC_BUILTIN_FSRA32, ++ SPARC_BUILTIN_PDISTN, ++ SPARC_BUILTIN_FMEAN16, ++ SPARC_BUILTIN_FPADD64, ++ SPARC_BUILTIN_FPSUB64, ++ SPARC_BUILTIN_FPADDS16, ++ SPARC_BUILTIN_FPADDS16S, ++ SPARC_BUILTIN_FPSUBS16, ++ SPARC_BUILTIN_FPSUBS16S, ++ SPARC_BUILTIN_FPADDS32, ++ SPARC_BUILTIN_FPADDS32S, ++ SPARC_BUILTIN_FPSUBS32, ++ SPARC_BUILTIN_FPSUBS32S, ++ SPARC_BUILTIN_FUCMPLE8, ++ SPARC_BUILTIN_FUCMPNE8, ++ SPARC_BUILTIN_FUCMPGT8, ++ SPARC_BUILTIN_FUCMPEQ8, ++ SPARC_BUILTIN_FHADDS, ++ SPARC_BUILTIN_FHADDD, ++ SPARC_BUILTIN_FHSUBS, ++ SPARC_BUILTIN_FHSUBD, ++ SPARC_BUILTIN_FNHADDS, ++ SPARC_BUILTIN_FNHADDD, ++ SPARC_BUILTIN_UMULXHI, ++ SPARC_BUILTIN_XMULX, ++ SPARC_BUILTIN_XMULXHI, ++ ++ /* VIS 4.0 builtins. */ ++ SPARC_BUILTIN_FPADD8, ++ SPARC_BUILTIN_FPADDS8, ++ SPARC_BUILTIN_FPADDUS8, ++ SPARC_BUILTIN_FPADDUS16, ++ SPARC_BUILTIN_FPCMPLE8, ++ SPARC_BUILTIN_FPCMPGT8, ++ SPARC_BUILTIN_FPCMPULE16, ++ SPARC_BUILTIN_FPCMPUGT16, ++ SPARC_BUILTIN_FPCMPULE32, ++ SPARC_BUILTIN_FPCMPUGT32, ++ SPARC_BUILTIN_FPMAX8, ++ SPARC_BUILTIN_FPMAX16, ++ SPARC_BUILTIN_FPMAX32, ++ SPARC_BUILTIN_FPMAXU8, ++ SPARC_BUILTIN_FPMAXU16, ++ SPARC_BUILTIN_FPMAXU32, ++ SPARC_BUILTIN_FPMIN8, ++ SPARC_BUILTIN_FPMIN16, ++ SPARC_BUILTIN_FPMIN32, ++ SPARC_BUILTIN_FPMINU8, ++ SPARC_BUILTIN_FPMINU16, ++ SPARC_BUILTIN_FPMINU32, ++ SPARC_BUILTIN_FPSUB8, ++ SPARC_BUILTIN_FPSUBS8, ++ SPARC_BUILTIN_FPSUBUS8, ++ SPARC_BUILTIN_FPSUBUS16, ++ ++ /* VIS 4.0B builtins. */ ++ ++ /* Note that all the DICTUNPACK* entries should be kept ++ contiguous. */ ++ SPARC_BUILTIN_FIRST_DICTUNPACK, ++ SPARC_BUILTIN_DICTUNPACK8 = SPARC_BUILTIN_FIRST_DICTUNPACK, ++ SPARC_BUILTIN_DICTUNPACK16, ++ SPARC_BUILTIN_DICTUNPACK32, ++ SPARC_BUILTIN_LAST_DICTUNPACK = SPARC_BUILTIN_DICTUNPACK32, ++ ++ /* Note that all the FPCMP*SHL entries should be kept ++ contiguous. */ ++ SPARC_BUILTIN_FIRST_FPCMPSHL, ++ SPARC_BUILTIN_FPCMPLE8SHL = SPARC_BUILTIN_FIRST_FPCMPSHL, ++ SPARC_BUILTIN_FPCMPGT8SHL, ++ SPARC_BUILTIN_FPCMPEQ8SHL, ++ SPARC_BUILTIN_FPCMPNE8SHL, ++ SPARC_BUILTIN_FPCMPLE16SHL, ++ SPARC_BUILTIN_FPCMPGT16SHL, ++ SPARC_BUILTIN_FPCMPEQ16SHL, ++ SPARC_BUILTIN_FPCMPNE16SHL, ++ SPARC_BUILTIN_FPCMPLE32SHL, ++ SPARC_BUILTIN_FPCMPGT32SHL, ++ SPARC_BUILTIN_FPCMPEQ32SHL, ++ SPARC_BUILTIN_FPCMPNE32SHL, ++ SPARC_BUILTIN_FPCMPULE8SHL, ++ SPARC_BUILTIN_FPCMPUGT8SHL, ++ SPARC_BUILTIN_FPCMPULE16SHL, ++ SPARC_BUILTIN_FPCMPUGT16SHL, ++ SPARC_BUILTIN_FPCMPULE32SHL, ++ SPARC_BUILTIN_FPCMPUGT32SHL, ++ SPARC_BUILTIN_FPCMPDE8SHL, ++ SPARC_BUILTIN_FPCMPDE16SHL, ++ SPARC_BUILTIN_FPCMPDE32SHL, ++ SPARC_BUILTIN_FPCMPUR8SHL, ++ SPARC_BUILTIN_FPCMPUR16SHL, ++ SPARC_BUILTIN_FPCMPUR32SHL, ++ SPARC_BUILTIN_LAST_FPCMPSHL = SPARC_BUILTIN_FPCMPUR32SHL, ++ ++ SPARC_BUILTIN_MAX ++}; ++ ++static GTY (()) tree sparc_builtins[(int) SPARC_BUILTIN_MAX]; ++static enum insn_code sparc_builtins_icode[(int) SPARC_BUILTIN_MAX]; ++ ++/* Return true if OPVAL can be used for operand OPNUM of instruction ICODE. ++ The instruction should require a constant operand of some sort. The ++ function prints an error if OPVAL is not valid. */ ++ ++static int ++check_constant_argument (enum insn_code icode, int opnum, rtx opval) ++{ ++ if (GET_CODE (opval) != CONST_INT) ++ { ++ error ("%qs expects a constant argument", insn_data[icode].name); ++ return false; ++ } ++ ++ if (!(*insn_data[icode].operand[opnum].predicate) (opval, VOIDmode)) ++ { ++ error ("constant argument out of range for %qs", insn_data[icode].name); ++ return false; ++ } ++ return true; ++} ++ ++/* Add a SPARC builtin function with NAME, ICODE, CODE and TYPE. Return the ++ function decl or NULL_TREE if the builtin was not added. */ ++ ++static tree ++def_builtin (const char *name, enum insn_code icode, enum sparc_builtins code, ++ tree type) ++{ ++ tree t ++ = add_builtin_function (name, type, code, BUILT_IN_MD, NULL, NULL_TREE); ++ ++ if (t) ++ { ++ sparc_builtins[code] = t; ++ sparc_builtins_icode[code] = icode; ++ } ++ ++ return t; ++} ++ ++/* Likewise, but also marks the function as "const". */ ++ ++static tree ++def_builtin_const (const char *name, enum insn_code icode, ++ enum sparc_builtins code, tree type) ++{ ++ tree t = def_builtin (name, icode, code, type); ++ ++ if (t) ++ TREE_READONLY (t) = 1; ++ ++ return t; ++} ++ ++/* Implement the TARGET_INIT_BUILTINS target hook. ++ Create builtin functions for special SPARC instructions. */ ++ ++static void ++sparc_init_builtins (void) ++{ ++ if (TARGET_FPU) ++ sparc_fpu_init_builtins (); ++ ++ if (TARGET_VIS) ++ sparc_vis_init_builtins (); ++} ++ ++/* Create builtin functions for FPU instructions. */ ++ ++static void ++sparc_fpu_init_builtins (void) ++{ ++ tree ftype ++ = build_function_type_list (void_type_node, ++ build_pointer_type (unsigned_type_node), 0); ++ def_builtin ("__builtin_load_fsr", CODE_FOR_ldfsr, ++ SPARC_BUILTIN_LDFSR, ftype); ++ def_builtin ("__builtin_store_fsr", CODE_FOR_stfsr, ++ SPARC_BUILTIN_STFSR, ftype); ++} ++ ++/* Create builtin functions for VIS instructions. */ ++ ++static void ++sparc_vis_init_builtins (void) ++{ ++ tree v4qi = build_vector_type (unsigned_intQI_type_node, 4); ++ tree v8qi = build_vector_type (unsigned_intQI_type_node, 8); ++ tree v4hi = build_vector_type (intHI_type_node, 4); ++ tree v2hi = build_vector_type (intHI_type_node, 2); ++ tree v2si = build_vector_type (intSI_type_node, 2); ++ tree v1si = build_vector_type (intSI_type_node, 1); ++ ++ tree v4qi_ftype_v4hi = build_function_type_list (v4qi, v4hi, 0); ++ tree v8qi_ftype_v2si_v8qi = build_function_type_list (v8qi, v2si, v8qi, 0); ++ tree v2hi_ftype_v2si = build_function_type_list (v2hi, v2si, 0); ++ tree v4hi_ftype_v4qi = build_function_type_list (v4hi, v4qi, 0); ++ tree v8qi_ftype_v4qi_v4qi = build_function_type_list (v8qi, v4qi, v4qi, 0); ++ tree v4hi_ftype_v4qi_v4hi = build_function_type_list (v4hi, v4qi, v4hi, 0); ++ tree v4hi_ftype_v4qi_v2hi = build_function_type_list (v4hi, v4qi, v2hi, 0); ++ tree v2si_ftype_v4qi_v2hi = build_function_type_list (v2si, v4qi, v2hi, 0); ++ tree v4hi_ftype_v8qi_v4hi = build_function_type_list (v4hi, v8qi, v4hi, 0); ++ tree v4hi_ftype_v4hi_v4hi = build_function_type_list (v4hi, v4hi, v4hi, 0); ++ tree v2si_ftype_v2si_v2si = build_function_type_list (v2si, v2si, v2si, 0); ++ tree v8qi_ftype_v8qi_v8qi = build_function_type_list (v8qi, v8qi, v8qi, 0); ++ tree v2hi_ftype_v2hi_v2hi = build_function_type_list (v2hi, v2hi, v2hi, 0); ++ tree v1si_ftype_v1si_v1si = build_function_type_list (v1si, v1si, v1si, 0); ++ tree di_ftype_v8qi_v8qi_di = build_function_type_list (intDI_type_node, ++ v8qi, v8qi, ++ intDI_type_node, 0); ++ tree di_ftype_v8qi_v8qi = build_function_type_list (intDI_type_node, ++ v8qi, v8qi, 0); ++ tree si_ftype_v8qi_v8qi = build_function_type_list (intSI_type_node, ++ v8qi, v8qi, 0); ++ tree v8qi_ftype_df_si = build_function_type_list (v8qi, double_type_node, ++ intSI_type_node, 0); ++ tree v4hi_ftype_df_si = build_function_type_list (v4hi, double_type_node, ++ intSI_type_node, 0); ++ tree v2si_ftype_df_si = build_function_type_list (v2si, double_type_node, ++ intDI_type_node, 0); ++ tree di_ftype_di_di = build_function_type_list (intDI_type_node, ++ intDI_type_node, ++ intDI_type_node, 0); ++ tree si_ftype_si_si = build_function_type_list (intSI_type_node, ++ intSI_type_node, ++ intSI_type_node, 0); ++ tree ptr_ftype_ptr_si = build_function_type_list (ptr_type_node, ++ ptr_type_node, ++ intSI_type_node, 0); ++ tree ptr_ftype_ptr_di = build_function_type_list (ptr_type_node, ++ ptr_type_node, ++ intDI_type_node, 0); ++ tree si_ftype_ptr_ptr = build_function_type_list (intSI_type_node, ++ ptr_type_node, ++ ptr_type_node, 0); ++ tree di_ftype_ptr_ptr = build_function_type_list (intDI_type_node, ++ ptr_type_node, ++ ptr_type_node, 0); ++ tree si_ftype_v4hi_v4hi = build_function_type_list (intSI_type_node, ++ v4hi, v4hi, 0); ++ tree si_ftype_v2si_v2si = build_function_type_list (intSI_type_node, ++ v2si, v2si, 0); ++ tree di_ftype_v4hi_v4hi = build_function_type_list (intDI_type_node, ++ v4hi, v4hi, 0); ++ tree di_ftype_v2si_v2si = build_function_type_list (intDI_type_node, ++ v2si, v2si, 0); ++ tree void_ftype_di = build_function_type_list (void_type_node, ++ intDI_type_node, 0); ++ tree di_ftype_void = build_function_type_list (intDI_type_node, ++ void_type_node, 0); ++ tree void_ftype_si = build_function_type_list (void_type_node, ++ intSI_type_node, 0); ++ tree sf_ftype_sf_sf = build_function_type_list (float_type_node, ++ float_type_node, ++ float_type_node, 0); ++ tree df_ftype_df_df = build_function_type_list (double_type_node, ++ double_type_node, ++ double_type_node, 0); ++ ++ /* Packing and expanding vectors. */ ++ def_builtin ("__builtin_vis_fpack16", CODE_FOR_fpack16_vis, ++ SPARC_BUILTIN_FPACK16, v4qi_ftype_v4hi); ++ def_builtin ("__builtin_vis_fpack32", CODE_FOR_fpack32_vis, ++ SPARC_BUILTIN_FPACK32, v8qi_ftype_v2si_v8qi); ++ def_builtin ("__builtin_vis_fpackfix", CODE_FOR_fpackfix_vis, ++ SPARC_BUILTIN_FPACKFIX, v2hi_ftype_v2si); ++ def_builtin_const ("__builtin_vis_fexpand", CODE_FOR_fexpand_vis, ++ SPARC_BUILTIN_FEXPAND, v4hi_ftype_v4qi); ++ def_builtin_const ("__builtin_vis_fpmerge", CODE_FOR_fpmerge_vis, ++ SPARC_BUILTIN_FPMERGE, v8qi_ftype_v4qi_v4qi); ++ ++ /* Multiplications. */ ++ def_builtin_const ("__builtin_vis_fmul8x16", CODE_FOR_fmul8x16_vis, ++ SPARC_BUILTIN_FMUL8X16, v4hi_ftype_v4qi_v4hi); ++ def_builtin_const ("__builtin_vis_fmul8x16au", CODE_FOR_fmul8x16au_vis, ++ SPARC_BUILTIN_FMUL8X16AU, v4hi_ftype_v4qi_v2hi); ++ def_builtin_const ("__builtin_vis_fmul8x16al", CODE_FOR_fmul8x16al_vis, ++ SPARC_BUILTIN_FMUL8X16AL, v4hi_ftype_v4qi_v2hi); ++ def_builtin_const ("__builtin_vis_fmul8sux16", CODE_FOR_fmul8sux16_vis, ++ SPARC_BUILTIN_FMUL8SUX16, v4hi_ftype_v8qi_v4hi); ++ def_builtin_const ("__builtin_vis_fmul8ulx16", CODE_FOR_fmul8ulx16_vis, ++ SPARC_BUILTIN_FMUL8ULX16, v4hi_ftype_v8qi_v4hi); ++ def_builtin_const ("__builtin_vis_fmuld8sux16", CODE_FOR_fmuld8sux16_vis, ++ SPARC_BUILTIN_FMULD8SUX16, v2si_ftype_v4qi_v2hi); ++ def_builtin_const ("__builtin_vis_fmuld8ulx16", CODE_FOR_fmuld8ulx16_vis, ++ SPARC_BUILTIN_FMULD8ULX16, v2si_ftype_v4qi_v2hi); ++ ++ /* Data aligning. */ ++ def_builtin ("__builtin_vis_faligndatav4hi", CODE_FOR_faligndatav4hi_vis, ++ SPARC_BUILTIN_FALIGNDATAV4HI, v4hi_ftype_v4hi_v4hi); ++ def_builtin ("__builtin_vis_faligndatav8qi", CODE_FOR_faligndatav8qi_vis, ++ SPARC_BUILTIN_FALIGNDATAV8QI, v8qi_ftype_v8qi_v8qi); ++ def_builtin ("__builtin_vis_faligndatav2si", CODE_FOR_faligndatav2si_vis, ++ SPARC_BUILTIN_FALIGNDATAV2SI, v2si_ftype_v2si_v2si); ++ def_builtin ("__builtin_vis_faligndatadi", CODE_FOR_faligndatav1di_vis, ++ SPARC_BUILTIN_FALIGNDATADI, di_ftype_di_di); ++ ++ def_builtin ("__builtin_vis_write_gsr", CODE_FOR_wrgsr_vis, ++ SPARC_BUILTIN_WRGSR, void_ftype_di); ++ def_builtin ("__builtin_vis_read_gsr", CODE_FOR_rdgsr_vis, ++ SPARC_BUILTIN_RDGSR, di_ftype_void); ++ ++ if (TARGET_ARCH64) ++ { ++ def_builtin ("__builtin_vis_alignaddr", CODE_FOR_alignaddrdi_vis, ++ SPARC_BUILTIN_ALIGNADDR, ptr_ftype_ptr_di); ++ def_builtin ("__builtin_vis_alignaddrl", CODE_FOR_alignaddrldi_vis, ++ SPARC_BUILTIN_ALIGNADDRL, ptr_ftype_ptr_di); ++ } ++ else ++ { ++ def_builtin ("__builtin_vis_alignaddr", CODE_FOR_alignaddrsi_vis, ++ SPARC_BUILTIN_ALIGNADDR, ptr_ftype_ptr_si); ++ def_builtin ("__builtin_vis_alignaddrl", CODE_FOR_alignaddrlsi_vis, ++ SPARC_BUILTIN_ALIGNADDRL, ptr_ftype_ptr_si); ++ } ++ ++ /* Pixel distance. */ ++ def_builtin_const ("__builtin_vis_pdist", CODE_FOR_pdist_vis, ++ SPARC_BUILTIN_PDIST, di_ftype_v8qi_v8qi_di); ++ ++ /* Edge handling. */ ++ if (TARGET_ARCH64) ++ { ++ def_builtin_const ("__builtin_vis_edge8", CODE_FOR_edge8di_vis, ++ SPARC_BUILTIN_EDGE8, di_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge8l", CODE_FOR_edge8ldi_vis, ++ SPARC_BUILTIN_EDGE8L, di_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge16", CODE_FOR_edge16di_vis, ++ SPARC_BUILTIN_EDGE16, di_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge16l", CODE_FOR_edge16ldi_vis, ++ SPARC_BUILTIN_EDGE16L, di_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge32", CODE_FOR_edge32di_vis, ++ SPARC_BUILTIN_EDGE32, di_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge32l", CODE_FOR_edge32ldi_vis, ++ SPARC_BUILTIN_EDGE32L, di_ftype_ptr_ptr); ++ } ++ else ++ { ++ def_builtin_const ("__builtin_vis_edge8", CODE_FOR_edge8si_vis, ++ SPARC_BUILTIN_EDGE8, si_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge8l", CODE_FOR_edge8lsi_vis, ++ SPARC_BUILTIN_EDGE8L, si_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge16", CODE_FOR_edge16si_vis, ++ SPARC_BUILTIN_EDGE16, si_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge16l", CODE_FOR_edge16lsi_vis, ++ SPARC_BUILTIN_EDGE16L, si_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge32", CODE_FOR_edge32si_vis, ++ SPARC_BUILTIN_EDGE32, si_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge32l", CODE_FOR_edge32lsi_vis, ++ SPARC_BUILTIN_EDGE32L, si_ftype_ptr_ptr); ++ } ++ ++ /* Pixel compare. */ ++ if (TARGET_ARCH64) ++ { ++ def_builtin_const ("__builtin_vis_fcmple16", CODE_FOR_fcmple16di_vis, ++ SPARC_BUILTIN_FCMPLE16, di_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fcmple32", CODE_FOR_fcmple32di_vis, ++ SPARC_BUILTIN_FCMPLE32, di_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fcmpne16", CODE_FOR_fcmpne16di_vis, ++ SPARC_BUILTIN_FCMPNE16, di_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fcmpne32", CODE_FOR_fcmpne32di_vis, ++ SPARC_BUILTIN_FCMPNE32, di_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fcmpgt16", CODE_FOR_fcmpgt16di_vis, ++ SPARC_BUILTIN_FCMPGT16, di_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fcmpgt32", CODE_FOR_fcmpgt32di_vis, ++ SPARC_BUILTIN_FCMPGT32, di_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fcmpeq16", CODE_FOR_fcmpeq16di_vis, ++ SPARC_BUILTIN_FCMPEQ16, di_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fcmpeq32", CODE_FOR_fcmpeq32di_vis, ++ SPARC_BUILTIN_FCMPEQ32, di_ftype_v2si_v2si); ++ } ++ else ++ { ++ def_builtin_const ("__builtin_vis_fcmple16", CODE_FOR_fcmple16si_vis, ++ SPARC_BUILTIN_FCMPLE16, si_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fcmple32", CODE_FOR_fcmple32si_vis, ++ SPARC_BUILTIN_FCMPLE32, si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fcmpne16", CODE_FOR_fcmpne16si_vis, ++ SPARC_BUILTIN_FCMPNE16, si_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fcmpne32", CODE_FOR_fcmpne32si_vis, ++ SPARC_BUILTIN_FCMPNE32, si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fcmpgt16", CODE_FOR_fcmpgt16si_vis, ++ SPARC_BUILTIN_FCMPGT16, si_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fcmpgt32", CODE_FOR_fcmpgt32si_vis, ++ SPARC_BUILTIN_FCMPGT32, si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fcmpeq16", CODE_FOR_fcmpeq16si_vis, ++ SPARC_BUILTIN_FCMPEQ16, si_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fcmpeq32", CODE_FOR_fcmpeq32si_vis, ++ SPARC_BUILTIN_FCMPEQ32, si_ftype_v2si_v2si); ++ } ++ ++ /* Addition and subtraction. */ ++ def_builtin_const ("__builtin_vis_fpadd16", CODE_FOR_addv4hi3, ++ SPARC_BUILTIN_FPADD16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpadd16s", CODE_FOR_addv2hi3, ++ SPARC_BUILTIN_FPADD16S, v2hi_ftype_v2hi_v2hi); ++ def_builtin_const ("__builtin_vis_fpadd32", CODE_FOR_addv2si3, ++ SPARC_BUILTIN_FPADD32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fpadd32s", CODE_FOR_addv1si3, ++ SPARC_BUILTIN_FPADD32S, v1si_ftype_v1si_v1si); ++ def_builtin_const ("__builtin_vis_fpsub16", CODE_FOR_subv4hi3, ++ SPARC_BUILTIN_FPSUB16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpsub16s", CODE_FOR_subv2hi3, ++ SPARC_BUILTIN_FPSUB16S, v2hi_ftype_v2hi_v2hi); ++ def_builtin_const ("__builtin_vis_fpsub32", CODE_FOR_subv2si3, ++ SPARC_BUILTIN_FPSUB32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fpsub32s", CODE_FOR_subv1si3, ++ SPARC_BUILTIN_FPSUB32S, v1si_ftype_v1si_v1si); ++ ++ /* Three-dimensional array addressing. */ ++ if (TARGET_ARCH64) ++ { ++ def_builtin_const ("__builtin_vis_array8", CODE_FOR_array8di_vis, ++ SPARC_BUILTIN_ARRAY8, di_ftype_di_di); ++ def_builtin_const ("__builtin_vis_array16", CODE_FOR_array16di_vis, ++ SPARC_BUILTIN_ARRAY16, di_ftype_di_di); ++ def_builtin_const ("__builtin_vis_array32", CODE_FOR_array32di_vis, ++ SPARC_BUILTIN_ARRAY32, di_ftype_di_di); ++ } ++ else ++ { ++ def_builtin_const ("__builtin_vis_array8", CODE_FOR_array8si_vis, ++ SPARC_BUILTIN_ARRAY8, si_ftype_si_si); ++ def_builtin_const ("__builtin_vis_array16", CODE_FOR_array16si_vis, ++ SPARC_BUILTIN_ARRAY16, si_ftype_si_si); ++ def_builtin_const ("__builtin_vis_array32", CODE_FOR_array32si_vis, ++ SPARC_BUILTIN_ARRAY32, si_ftype_si_si); ++ } ++ ++ if (TARGET_VIS2) ++ { ++ /* Edge handling. */ ++ if (TARGET_ARCH64) ++ { ++ def_builtin_const ("__builtin_vis_edge8n", CODE_FOR_edge8ndi_vis, ++ SPARC_BUILTIN_EDGE8N, di_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge8ln", CODE_FOR_edge8lndi_vis, ++ SPARC_BUILTIN_EDGE8LN, di_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge16n", CODE_FOR_edge16ndi_vis, ++ SPARC_BUILTIN_EDGE16N, di_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge16ln", CODE_FOR_edge16lndi_vis, ++ SPARC_BUILTIN_EDGE16LN, di_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge32n", CODE_FOR_edge32ndi_vis, ++ SPARC_BUILTIN_EDGE32N, di_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge32ln", CODE_FOR_edge32lndi_vis, ++ SPARC_BUILTIN_EDGE32LN, di_ftype_ptr_ptr); ++ } ++ else ++ { ++ def_builtin_const ("__builtin_vis_edge8n", CODE_FOR_edge8nsi_vis, ++ SPARC_BUILTIN_EDGE8N, si_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge8ln", CODE_FOR_edge8lnsi_vis, ++ SPARC_BUILTIN_EDGE8LN, si_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge16n", CODE_FOR_edge16nsi_vis, ++ SPARC_BUILTIN_EDGE16N, si_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge16ln", CODE_FOR_edge16lnsi_vis, ++ SPARC_BUILTIN_EDGE16LN, si_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge32n", CODE_FOR_edge32nsi_vis, ++ SPARC_BUILTIN_EDGE32N, si_ftype_ptr_ptr); ++ def_builtin_const ("__builtin_vis_edge32ln", CODE_FOR_edge32lnsi_vis, ++ SPARC_BUILTIN_EDGE32LN, si_ftype_ptr_ptr); ++ } ++ ++ /* Byte mask and shuffle. */ ++ if (TARGET_ARCH64) ++ def_builtin ("__builtin_vis_bmask", CODE_FOR_bmaskdi_vis, ++ SPARC_BUILTIN_BMASK, di_ftype_di_di); ++ else ++ def_builtin ("__builtin_vis_bmask", CODE_FOR_bmasksi_vis, ++ SPARC_BUILTIN_BMASK, si_ftype_si_si); ++ def_builtin ("__builtin_vis_bshufflev4hi", CODE_FOR_bshufflev4hi_vis, ++ SPARC_BUILTIN_BSHUFFLEV4HI, v4hi_ftype_v4hi_v4hi); ++ def_builtin ("__builtin_vis_bshufflev8qi", CODE_FOR_bshufflev8qi_vis, ++ SPARC_BUILTIN_BSHUFFLEV8QI, v8qi_ftype_v8qi_v8qi); ++ def_builtin ("__builtin_vis_bshufflev2si", CODE_FOR_bshufflev2si_vis, ++ SPARC_BUILTIN_BSHUFFLEV2SI, v2si_ftype_v2si_v2si); ++ def_builtin ("__builtin_vis_bshuffledi", CODE_FOR_bshufflev1di_vis, ++ SPARC_BUILTIN_BSHUFFLEDI, di_ftype_di_di); ++ } ++ ++ if (TARGET_VIS3) ++ { ++ if (TARGET_ARCH64) ++ { ++ def_builtin ("__builtin_vis_cmask8", CODE_FOR_cmask8di_vis, ++ SPARC_BUILTIN_CMASK8, void_ftype_di); ++ def_builtin ("__builtin_vis_cmask16", CODE_FOR_cmask16di_vis, ++ SPARC_BUILTIN_CMASK16, void_ftype_di); ++ def_builtin ("__builtin_vis_cmask32", CODE_FOR_cmask32di_vis, ++ SPARC_BUILTIN_CMASK32, void_ftype_di); ++ } ++ else ++ { ++ def_builtin ("__builtin_vis_cmask8", CODE_FOR_cmask8si_vis, ++ SPARC_BUILTIN_CMASK8, void_ftype_si); ++ def_builtin ("__builtin_vis_cmask16", CODE_FOR_cmask16si_vis, ++ SPARC_BUILTIN_CMASK16, void_ftype_si); ++ def_builtin ("__builtin_vis_cmask32", CODE_FOR_cmask32si_vis, ++ SPARC_BUILTIN_CMASK32, void_ftype_si); ++ } ++ ++ def_builtin_const ("__builtin_vis_fchksm16", CODE_FOR_fchksm16_vis, ++ SPARC_BUILTIN_FCHKSM16, v4hi_ftype_v4hi_v4hi); ++ ++ def_builtin_const ("__builtin_vis_fsll16", CODE_FOR_vashlv4hi3, ++ SPARC_BUILTIN_FSLL16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fslas16", CODE_FOR_vssashlv4hi3, ++ SPARC_BUILTIN_FSLAS16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fsrl16", CODE_FOR_vlshrv4hi3, ++ SPARC_BUILTIN_FSRL16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fsra16", CODE_FOR_vashrv4hi3, ++ SPARC_BUILTIN_FSRA16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fsll32", CODE_FOR_vashlv2si3, ++ SPARC_BUILTIN_FSLL32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fslas32", CODE_FOR_vssashlv2si3, ++ SPARC_BUILTIN_FSLAS32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fsrl32", CODE_FOR_vlshrv2si3, ++ SPARC_BUILTIN_FSRL32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fsra32", CODE_FOR_vashrv2si3, ++ SPARC_BUILTIN_FSRA32, v2si_ftype_v2si_v2si); ++ ++ if (TARGET_ARCH64) ++ def_builtin_const ("__builtin_vis_pdistn", CODE_FOR_pdistndi_vis, ++ SPARC_BUILTIN_PDISTN, di_ftype_v8qi_v8qi); ++ else ++ def_builtin_const ("__builtin_vis_pdistn", CODE_FOR_pdistnsi_vis, ++ SPARC_BUILTIN_PDISTN, si_ftype_v8qi_v8qi); ++ ++ def_builtin_const ("__builtin_vis_fmean16", CODE_FOR_fmean16_vis, ++ SPARC_BUILTIN_FMEAN16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpadd64", CODE_FOR_fpadd64_vis, ++ SPARC_BUILTIN_FPADD64, di_ftype_di_di); ++ def_builtin_const ("__builtin_vis_fpsub64", CODE_FOR_fpsub64_vis, ++ SPARC_BUILTIN_FPSUB64, di_ftype_di_di); ++ ++ def_builtin_const ("__builtin_vis_fpadds16", CODE_FOR_ssaddv4hi3, ++ SPARC_BUILTIN_FPADDS16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpadds16s", CODE_FOR_ssaddv2hi3, ++ SPARC_BUILTIN_FPADDS16S, v2hi_ftype_v2hi_v2hi); ++ def_builtin_const ("__builtin_vis_fpsubs16", CODE_FOR_sssubv4hi3, ++ SPARC_BUILTIN_FPSUBS16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpsubs16s", CODE_FOR_sssubv2hi3, ++ SPARC_BUILTIN_FPSUBS16S, v2hi_ftype_v2hi_v2hi); ++ def_builtin_const ("__builtin_vis_fpadds32", CODE_FOR_ssaddv2si3, ++ SPARC_BUILTIN_FPADDS32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fpadds32s", CODE_FOR_ssaddv1si3, ++ SPARC_BUILTIN_FPADDS32S, v1si_ftype_v1si_v1si); ++ def_builtin_const ("__builtin_vis_fpsubs32", CODE_FOR_sssubv2si3, ++ SPARC_BUILTIN_FPSUBS32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fpsubs32s", CODE_FOR_sssubv1si3, ++ SPARC_BUILTIN_FPSUBS32S, v1si_ftype_v1si_v1si); ++ ++ if (TARGET_ARCH64) ++ { ++ def_builtin_const ("__builtin_vis_fucmple8", CODE_FOR_fucmple8di_vis, ++ SPARC_BUILTIN_FUCMPLE8, di_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fucmpne8", CODE_FOR_fucmpne8di_vis, ++ SPARC_BUILTIN_FUCMPNE8, di_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fucmpgt8", CODE_FOR_fucmpgt8di_vis, ++ SPARC_BUILTIN_FUCMPGT8, di_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fucmpeq8", CODE_FOR_fucmpeq8di_vis, ++ SPARC_BUILTIN_FUCMPEQ8, di_ftype_v8qi_v8qi); ++ } ++ else ++ { ++ def_builtin_const ("__builtin_vis_fucmple8", CODE_FOR_fucmple8si_vis, ++ SPARC_BUILTIN_FUCMPLE8, si_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fucmpne8", CODE_FOR_fucmpne8si_vis, ++ SPARC_BUILTIN_FUCMPNE8, si_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fucmpgt8", CODE_FOR_fucmpgt8si_vis, ++ SPARC_BUILTIN_FUCMPGT8, si_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fucmpeq8", CODE_FOR_fucmpeq8si_vis, ++ SPARC_BUILTIN_FUCMPEQ8, si_ftype_v8qi_v8qi); ++ } ++ ++ def_builtin_const ("__builtin_vis_fhadds", CODE_FOR_fhaddsf_vis, ++ SPARC_BUILTIN_FHADDS, sf_ftype_sf_sf); ++ def_builtin_const ("__builtin_vis_fhaddd", CODE_FOR_fhadddf_vis, ++ SPARC_BUILTIN_FHADDD, df_ftype_df_df); ++ def_builtin_const ("__builtin_vis_fhsubs", CODE_FOR_fhsubsf_vis, ++ SPARC_BUILTIN_FHSUBS, sf_ftype_sf_sf); ++ def_builtin_const ("__builtin_vis_fhsubd", CODE_FOR_fhsubdf_vis, ++ SPARC_BUILTIN_FHSUBD, df_ftype_df_df); ++ def_builtin_const ("__builtin_vis_fnhadds", CODE_FOR_fnhaddsf_vis, ++ SPARC_BUILTIN_FNHADDS, sf_ftype_sf_sf); ++ def_builtin_const ("__builtin_vis_fnhaddd", CODE_FOR_fnhadddf_vis, ++ SPARC_BUILTIN_FNHADDD, df_ftype_df_df); ++ ++ def_builtin_const ("__builtin_vis_umulxhi", CODE_FOR_umulxhi_vis, ++ SPARC_BUILTIN_UMULXHI, di_ftype_di_di); ++ def_builtin_const ("__builtin_vis_xmulx", CODE_FOR_xmulx_vis, ++ SPARC_BUILTIN_XMULX, di_ftype_di_di); ++ def_builtin_const ("__builtin_vis_xmulxhi", CODE_FOR_xmulxhi_vis, ++ SPARC_BUILTIN_XMULXHI, di_ftype_di_di); ++ } ++ ++ if (TARGET_VIS4) ++ { ++ def_builtin_const ("__builtin_vis_fpadd8", CODE_FOR_addv8qi3, ++ SPARC_BUILTIN_FPADD8, v8qi_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpadds8", CODE_FOR_ssaddv8qi3, ++ SPARC_BUILTIN_FPADDS8, v8qi_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpaddus8", CODE_FOR_usaddv8qi3, ++ SPARC_BUILTIN_FPADDUS8, v8qi_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpaddus16", CODE_FOR_usaddv4hi3, ++ SPARC_BUILTIN_FPADDUS16, v4hi_ftype_v4hi_v4hi); ++ ++ ++ if (TARGET_ARCH64) ++ { ++ def_builtin_const ("__builtin_vis_fpcmple8", CODE_FOR_fpcmple8di_vis, ++ SPARC_BUILTIN_FPCMPLE8, di_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpcmpgt8", CODE_FOR_fpcmpgt8di_vis, ++ SPARC_BUILTIN_FPCMPGT8, di_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpcmpule16", CODE_FOR_fpcmpule16di_vis, ++ SPARC_BUILTIN_FPCMPULE16, di_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpcmpugt16", CODE_FOR_fpcmpugt16di_vis, ++ SPARC_BUILTIN_FPCMPUGT16, di_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpcmpule32", CODE_FOR_fpcmpule32di_vis, ++ SPARC_BUILTIN_FPCMPULE32, di_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fpcmpugt32", CODE_FOR_fpcmpugt32di_vis, ++ SPARC_BUILTIN_FPCMPUGT32, di_ftype_v2si_v2si); ++ } ++ else ++ { ++ def_builtin_const ("__builtin_vis_fpcmple8", CODE_FOR_fpcmple8si_vis, ++ SPARC_BUILTIN_FPCMPLE8, si_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpcmpgt8", CODE_FOR_fpcmpgt8si_vis, ++ SPARC_BUILTIN_FPCMPGT8, si_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpcmpule16", CODE_FOR_fpcmpule16si_vis, ++ SPARC_BUILTIN_FPCMPULE16, si_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpcmpugt16", CODE_FOR_fpcmpugt16si_vis, ++ SPARC_BUILTIN_FPCMPUGT16, si_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpcmpule32", CODE_FOR_fpcmpule32si_vis, ++ SPARC_BUILTIN_FPCMPULE32, di_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fpcmpugt32", CODE_FOR_fpcmpugt32si_vis, ++ SPARC_BUILTIN_FPCMPUGT32, di_ftype_v2si_v2si); ++ } ++ ++ def_builtin_const ("__builtin_vis_fpmax8", CODE_FOR_maxv8qi3, ++ SPARC_BUILTIN_FPMAX8, v8qi_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpmax16", CODE_FOR_maxv4hi3, ++ SPARC_BUILTIN_FPMAX16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpmax32", CODE_FOR_maxv2si3, ++ SPARC_BUILTIN_FPMAX32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fpmaxu8", CODE_FOR_maxuv8qi3, ++ SPARC_BUILTIN_FPMAXU8, v8qi_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpmaxu16", CODE_FOR_maxuv4hi3, ++ SPARC_BUILTIN_FPMAXU16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpmaxu32", CODE_FOR_maxuv2si3, ++ SPARC_BUILTIN_FPMAXU32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fpmin8", CODE_FOR_minv8qi3, ++ SPARC_BUILTIN_FPMIN8, v8qi_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpmin16", CODE_FOR_minv4hi3, ++ SPARC_BUILTIN_FPMIN16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpmin32", CODE_FOR_minv2si3, ++ SPARC_BUILTIN_FPMIN32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fpminu8", CODE_FOR_minuv8qi3, ++ SPARC_BUILTIN_FPMINU8, v8qi_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpminu16", CODE_FOR_minuv4hi3, ++ SPARC_BUILTIN_FPMINU16, v4hi_ftype_v4hi_v4hi); ++ def_builtin_const ("__builtin_vis_fpminu32", CODE_FOR_minuv2si3, ++ SPARC_BUILTIN_FPMINU32, v2si_ftype_v2si_v2si); ++ def_builtin_const ("__builtin_vis_fpsub8", CODE_FOR_subv8qi3, ++ SPARC_BUILTIN_FPSUB8, v8qi_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpsubs8", CODE_FOR_sssubv8qi3, ++ SPARC_BUILTIN_FPSUBS8, v8qi_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpsubus8", CODE_FOR_ussubv8qi3, ++ SPARC_BUILTIN_FPSUBUS8, v8qi_ftype_v8qi_v8qi); ++ def_builtin_const ("__builtin_vis_fpsubus16", CODE_FOR_ussubv4hi3, ++ SPARC_BUILTIN_FPSUBUS16, v4hi_ftype_v4hi_v4hi); ++ } ++ ++ if (TARGET_VIS4B) ++ { ++ def_builtin_const ("__builtin_vis_dictunpack8", CODE_FOR_dictunpack8, ++ SPARC_BUILTIN_DICTUNPACK8, v8qi_ftype_df_si); ++ def_builtin_const ("__builtin_vis_dictunpack16", CODE_FOR_dictunpack16, ++ SPARC_BUILTIN_DICTUNPACK16, v4hi_ftype_df_si); ++ def_builtin_const ("__builtin_vis_dictunpack32", CODE_FOR_dictunpack32, ++ SPARC_BUILTIN_DICTUNPACK32, v2si_ftype_df_si); ++ ++ if (TARGET_ARCH64) ++ { ++ tree di_ftype_v8qi_v8qi_si = build_function_type_list (intDI_type_node, ++ v8qi, v8qi, ++ intSI_type_node, 0); ++ tree di_ftype_v4hi_v4hi_si = build_function_type_list (intDI_type_node, ++ v4hi, v4hi, ++ intSI_type_node, 0); ++ tree di_ftype_v2si_v2si_si = build_function_type_list (intDI_type_node, ++ v2si, v2si, ++ intSI_type_node, 0); ++ ++ def_builtin_const ("__builtin_vis_fpcmple8shl", CODE_FOR_fpcmple8dishl, ++ SPARC_BUILTIN_FPCMPLE8SHL, di_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpgt8shl", CODE_FOR_fpcmpgt8dishl, ++ SPARC_BUILTIN_FPCMPGT8SHL, di_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpeq8shl", CODE_FOR_fpcmpeq8dishl, ++ SPARC_BUILTIN_FPCMPEQ8SHL, di_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpne8shl", CODE_FOR_fpcmpne8dishl, ++ SPARC_BUILTIN_FPCMPNE8SHL, di_ftype_v8qi_v8qi_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmple16shl", CODE_FOR_fpcmple16dishl, ++ SPARC_BUILTIN_FPCMPLE16SHL, di_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpgt16shl", CODE_FOR_fpcmpgt16dishl, ++ SPARC_BUILTIN_FPCMPGT16SHL, di_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpeq16shl", CODE_FOR_fpcmpeq16dishl, ++ SPARC_BUILTIN_FPCMPEQ16SHL, di_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpne16shl", CODE_FOR_fpcmpne16dishl, ++ SPARC_BUILTIN_FPCMPNE16SHL, di_ftype_v4hi_v4hi_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmple32shl", CODE_FOR_fpcmple32dishl, ++ SPARC_BUILTIN_FPCMPLE32SHL, di_ftype_v2si_v2si_si); ++ def_builtin_const ("__builtin_vis_fpcmpgt32shl", CODE_FOR_fpcmpgt32dishl, ++ SPARC_BUILTIN_FPCMPGT32SHL, di_ftype_v2si_v2si_si); ++ def_builtin_const ("__builtin_vis_fpcmpeq32shl", CODE_FOR_fpcmpeq32dishl, ++ SPARC_BUILTIN_FPCMPEQ32SHL, di_ftype_v2si_v2si_si); ++ def_builtin_const ("__builtin_vis_fpcmpne32shl", CODE_FOR_fpcmpne32dishl, ++ SPARC_BUILTIN_FPCMPNE32SHL, di_ftype_v2si_v2si_si); ++ ++ ++ def_builtin_const ("__builtin_vis_fpcmpule8shl", CODE_FOR_fpcmpule8dishl, ++ SPARC_BUILTIN_FPCMPULE8SHL, di_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpugt8shl", CODE_FOR_fpcmpugt8dishl, ++ SPARC_BUILTIN_FPCMPUGT8SHL, di_ftype_v8qi_v8qi_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmpule16shl", CODE_FOR_fpcmpule16dishl, ++ SPARC_BUILTIN_FPCMPULE16SHL, di_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpugt16shl", CODE_FOR_fpcmpugt16dishl, ++ SPARC_BUILTIN_FPCMPUGT16SHL, di_ftype_v4hi_v4hi_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmpule32shl", CODE_FOR_fpcmpule32dishl, ++ SPARC_BUILTIN_FPCMPULE32SHL, di_ftype_v2si_v2si_si); ++ def_builtin_const ("__builtin_vis_fpcmpugt32shl", CODE_FOR_fpcmpugt32dishl, ++ SPARC_BUILTIN_FPCMPUGT32SHL, di_ftype_v2si_v2si_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmpde8shl", CODE_FOR_fpcmpde8dishl, ++ SPARC_BUILTIN_FPCMPDE8SHL, di_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpde16shl", CODE_FOR_fpcmpde16dishl, ++ SPARC_BUILTIN_FPCMPDE16SHL, di_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpde32shl", CODE_FOR_fpcmpde32dishl, ++ SPARC_BUILTIN_FPCMPDE32SHL, di_ftype_v2si_v2si_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmpur8shl", CODE_FOR_fpcmpur8dishl, ++ SPARC_BUILTIN_FPCMPUR8SHL, di_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpur16shl", CODE_FOR_fpcmpur16dishl, ++ SPARC_BUILTIN_FPCMPUR16SHL, di_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpur32shl", CODE_FOR_fpcmpur32dishl, ++ SPARC_BUILTIN_FPCMPUR32SHL, di_ftype_v2si_v2si_si); ++ ++ } ++ else ++ { ++ tree si_ftype_v8qi_v8qi_si = build_function_type_list (intSI_type_node, ++ v8qi, v8qi, ++ intSI_type_node, 0); ++ tree si_ftype_v4hi_v4hi_si = build_function_type_list (intSI_type_node, ++ v4hi, v4hi, ++ intSI_type_node, 0); ++ tree si_ftype_v2si_v2si_si = build_function_type_list (intSI_type_node, ++ v2si, v2si, ++ intSI_type_node, 0); ++ ++ def_builtin_const ("__builtin_vis_fpcmple8shl", CODE_FOR_fpcmple8sishl, ++ SPARC_BUILTIN_FPCMPLE8SHL, si_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpgt8shl", CODE_FOR_fpcmpgt8sishl, ++ SPARC_BUILTIN_FPCMPGT8SHL, si_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpeq8shl", CODE_FOR_fpcmpeq8sishl, ++ SPARC_BUILTIN_FPCMPEQ8SHL, si_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpne8shl", CODE_FOR_fpcmpne8sishl, ++ SPARC_BUILTIN_FPCMPNE8SHL, si_ftype_v8qi_v8qi_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmple16shl", CODE_FOR_fpcmple16sishl, ++ SPARC_BUILTIN_FPCMPLE16SHL, si_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpgt16shl", CODE_FOR_fpcmpgt16sishl, ++ SPARC_BUILTIN_FPCMPGT16SHL, si_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpeq16shl", CODE_FOR_fpcmpeq16sishl, ++ SPARC_BUILTIN_FPCMPEQ16SHL, si_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpne16shl", CODE_FOR_fpcmpne16sishl, ++ SPARC_BUILTIN_FPCMPNE16SHL, si_ftype_v4hi_v4hi_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmple32shl", CODE_FOR_fpcmple32sishl, ++ SPARC_BUILTIN_FPCMPLE32SHL, si_ftype_v2si_v2si_si); ++ def_builtin_const ("__builtin_vis_fpcmpgt32shl", CODE_FOR_fpcmpgt32sishl, ++ SPARC_BUILTIN_FPCMPGT32SHL, si_ftype_v2si_v2si_si); ++ def_builtin_const ("__builtin_vis_fpcmpeq32shl", CODE_FOR_fpcmpeq32sishl, ++ SPARC_BUILTIN_FPCMPEQ32SHL, si_ftype_v2si_v2si_si); ++ def_builtin_const ("__builtin_vis_fpcmpne32shl", CODE_FOR_fpcmpne32sishl, ++ SPARC_BUILTIN_FPCMPNE32SHL, si_ftype_v2si_v2si_si); ++ ++ ++ def_builtin_const ("__builtin_vis_fpcmpule8shl", CODE_FOR_fpcmpule8sishl, ++ SPARC_BUILTIN_FPCMPULE8SHL, si_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpugt8shl", CODE_FOR_fpcmpugt8sishl, ++ SPARC_BUILTIN_FPCMPUGT8SHL, si_ftype_v8qi_v8qi_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmpule16shl", CODE_FOR_fpcmpule16sishl, ++ SPARC_BUILTIN_FPCMPULE16SHL, si_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpugt16shl", CODE_FOR_fpcmpugt16sishl, ++ SPARC_BUILTIN_FPCMPUGT16SHL, si_ftype_v4hi_v4hi_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmpule32shl", CODE_FOR_fpcmpule32sishl, ++ SPARC_BUILTIN_FPCMPULE32SHL, si_ftype_v2si_v2si_si); ++ def_builtin_const ("__builtin_vis_fpcmpugt32shl", CODE_FOR_fpcmpugt32sishl, ++ SPARC_BUILTIN_FPCMPUGT32SHL, si_ftype_v2si_v2si_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmpde8shl", CODE_FOR_fpcmpde8sishl, ++ SPARC_BUILTIN_FPCMPDE8SHL, si_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpde16shl", CODE_FOR_fpcmpde16sishl, ++ SPARC_BUILTIN_FPCMPDE16SHL, si_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpde32shl", CODE_FOR_fpcmpde32sishl, ++ SPARC_BUILTIN_FPCMPDE32SHL, si_ftype_v2si_v2si_si); ++ ++ def_builtin_const ("__builtin_vis_fpcmpur8shl", CODE_FOR_fpcmpur8sishl, ++ SPARC_BUILTIN_FPCMPUR8SHL, si_ftype_v8qi_v8qi_si); ++ def_builtin_const ("__builtin_vis_fpcmpur16shl", CODE_FOR_fpcmpur16sishl, ++ SPARC_BUILTIN_FPCMPUR16SHL, si_ftype_v4hi_v4hi_si); ++ def_builtin_const ("__builtin_vis_fpcmpur32shl", CODE_FOR_fpcmpur32sishl, ++ SPARC_BUILTIN_FPCMPUR32SHL, si_ftype_v2si_v2si_si); ++ } ++ } ++} ++ ++/* Implement TARGET_BUILTIN_DECL hook. */ ++ ++static tree ++sparc_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED) ++{ ++ if (code >= SPARC_BUILTIN_MAX) ++ return error_mark_node; ++ ++ return sparc_builtins[code]; ++} ++ ++/* Implemented TARGET_EXPAND_BUILTIN hook. */ ++ ++static rtx ++sparc_expand_builtin (tree exp, rtx target, ++ rtx subtarget ATTRIBUTE_UNUSED, ++ machine_mode tmode ATTRIBUTE_UNUSED, ++ int ignore ATTRIBUTE_UNUSED) ++{ ++ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); ++ enum sparc_builtins code ++ = (enum sparc_builtins) DECL_MD_FUNCTION_CODE (fndecl); ++ enum insn_code icode = sparc_builtins_icode[code]; ++ bool nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node; ++ call_expr_arg_iterator iter; ++ int arg_count = 0; ++ rtx pat, op[4]; ++ tree arg; ++ ++ if (nonvoid) ++ { ++ machine_mode tmode = insn_data[icode].operand[0].mode; ++ if (!target ++ || GET_MODE (target) != tmode ++ || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) ++ op[0] = gen_reg_rtx (tmode); ++ else ++ op[0] = target; ++ } ++ else ++ op[0] = NULL_RTX; ++ ++ FOR_EACH_CALL_EXPR_ARG (arg, iter, exp) ++ { ++ const struct insn_operand_data *insn_op; ++ int idx; ++ ++ if (arg == error_mark_node) ++ return NULL_RTX; ++ ++ arg_count++; ++ idx = arg_count - !nonvoid; ++ insn_op = &insn_data[icode].operand[idx]; ++ op[arg_count] = expand_normal (arg); ++ ++ /* Some of the builtins require constant arguments. We check ++ for this here. */ ++ if ((code >= SPARC_BUILTIN_FIRST_FPCMPSHL ++ && code <= SPARC_BUILTIN_LAST_FPCMPSHL ++ && arg_count == 3) ++ || (code >= SPARC_BUILTIN_FIRST_DICTUNPACK ++ && code <= SPARC_BUILTIN_LAST_DICTUNPACK ++ && arg_count == 2)) ++ { ++ if (!check_constant_argument (icode, idx, op[arg_count])) ++ return const0_rtx; ++ } ++ ++ if (code == SPARC_BUILTIN_LDFSR || code == SPARC_BUILTIN_STFSR) ++ { ++ if (!address_operand (op[arg_count], SImode)) ++ { ++ op[arg_count] = convert_memory_address (Pmode, op[arg_count]); ++ op[arg_count] = copy_addr_to_reg (op[arg_count]); ++ } ++ op[arg_count] = gen_rtx_MEM (SImode, op[arg_count]); ++ } ++ ++ else if (insn_op->mode == V1DImode ++ && GET_MODE (op[arg_count]) == DImode) ++ op[arg_count] = gen_lowpart (V1DImode, op[arg_count]); ++ ++ else if (insn_op->mode == V1SImode ++ && GET_MODE (op[arg_count]) == SImode) ++ op[arg_count] = gen_lowpart (V1SImode, op[arg_count]); ++ ++ if (! (*insn_data[icode].operand[idx].predicate) (op[arg_count], ++ insn_op->mode)) ++ op[arg_count] = copy_to_mode_reg (insn_op->mode, op[arg_count]); ++ } ++ ++ switch (arg_count) ++ { ++ case 0: ++ pat = GEN_FCN (icode) (op[0]); ++ break; ++ case 1: ++ if (nonvoid) ++ pat = GEN_FCN (icode) (op[0], op[1]); ++ else ++ pat = GEN_FCN (icode) (op[1]); ++ break; ++ case 2: ++ pat = GEN_FCN (icode) (op[0], op[1], op[2]); ++ break; ++ case 3: ++ pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]); ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ ++ if (!pat) ++ return NULL_RTX; ++ ++ emit_insn (pat); ++ ++ return (nonvoid ? op[0] : const0_rtx); ++} ++ ++/* Return the upper 16 bits of the 8x16 multiplication. */ ++ ++static int ++sparc_vis_mul8x16 (int e8, int e16) ++{ ++ return (e8 * e16 + 128) / 256; ++} ++ ++/* Multiply the VECTOR_CSTs CST0 and CST1 as specified by FNCODE and put ++ the result into the array N_ELTS, whose elements are of INNER_TYPE. */ ++ ++static void ++sparc_handle_vis_mul8x16 (vec *n_elts, enum sparc_builtins fncode, ++ tree inner_type, tree cst0, tree cst1) ++{ ++ unsigned i, num = VECTOR_CST_NELTS (cst0); ++ int scale; ++ ++ switch (fncode) ++ { ++ case SPARC_BUILTIN_FMUL8X16: ++ for (i = 0; i < num; ++i) ++ { ++ int val ++ = sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)), ++ TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, i))); ++ n_elts->quick_push (build_int_cst (inner_type, val)); ++ } ++ break; ++ ++ case SPARC_BUILTIN_FMUL8X16AU: ++ scale = TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, 0)); ++ ++ for (i = 0; i < num; ++i) ++ { ++ int val ++ = sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)), ++ scale); ++ n_elts->quick_push (build_int_cst (inner_type, val)); ++ } ++ break; ++ ++ case SPARC_BUILTIN_FMUL8X16AL: ++ scale = TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, 1)); ++ ++ for (i = 0; i < num; ++i) ++ { ++ int val ++ = sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)), ++ scale); ++ n_elts->quick_push (build_int_cst (inner_type, val)); ++ } ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++} ++ ++/* Implement TARGET_FOLD_BUILTIN hook. ++ ++ Fold builtin functions for SPARC intrinsics. If IGNORE is true the ++ result of the function call is ignored. NULL_TREE is returned if the ++ function could not be folded. */ ++ ++static tree ++sparc_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED, ++ tree *args, bool ignore) ++{ ++ enum sparc_builtins code ++ = (enum sparc_builtins) DECL_MD_FUNCTION_CODE (fndecl); ++ tree rtype = TREE_TYPE (TREE_TYPE (fndecl)); ++ tree arg0, arg1, arg2; ++ ++ if (ignore) ++ switch (code) ++ { ++ case SPARC_BUILTIN_LDFSR: ++ case SPARC_BUILTIN_STFSR: ++ case SPARC_BUILTIN_ALIGNADDR: ++ case SPARC_BUILTIN_WRGSR: ++ case SPARC_BUILTIN_BMASK: ++ case SPARC_BUILTIN_CMASK8: ++ case SPARC_BUILTIN_CMASK16: ++ case SPARC_BUILTIN_CMASK32: ++ break; ++ ++ default: ++ return build_zero_cst (rtype); ++ } ++ ++ switch (code) ++ { ++ case SPARC_BUILTIN_FEXPAND: ++ arg0 = args[0]; ++ STRIP_NOPS (arg0); ++ ++ if (TREE_CODE (arg0) == VECTOR_CST) ++ { ++ tree inner_type = TREE_TYPE (rtype); ++ unsigned i; ++ ++ tree_vector_builder n_elts (rtype, VECTOR_CST_NELTS (arg0), 1); ++ for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i) ++ { ++ unsigned HOST_WIDE_INT val ++ = TREE_INT_CST_LOW (VECTOR_CST_ELT (arg0, i)); ++ n_elts.quick_push (build_int_cst (inner_type, val << 4)); ++ } ++ return n_elts.build (); ++ } ++ break; ++ ++ case SPARC_BUILTIN_FMUL8X16: ++ case SPARC_BUILTIN_FMUL8X16AU: ++ case SPARC_BUILTIN_FMUL8X16AL: ++ arg0 = args[0]; ++ arg1 = args[1]; ++ STRIP_NOPS (arg0); ++ STRIP_NOPS (arg1); ++ ++ if (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST) ++ { ++ tree inner_type = TREE_TYPE (rtype); ++ tree_vector_builder n_elts (rtype, VECTOR_CST_NELTS (arg0), 1); ++ sparc_handle_vis_mul8x16 (&n_elts, code, inner_type, arg0, arg1); ++ return n_elts.build (); ++ } ++ break; ++ ++ case SPARC_BUILTIN_FPMERGE: ++ arg0 = args[0]; ++ arg1 = args[1]; ++ STRIP_NOPS (arg0); ++ STRIP_NOPS (arg1); ++ ++ if (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST) ++ { ++ tree_vector_builder n_elts (rtype, 2 * VECTOR_CST_NELTS (arg0), 1); ++ unsigned i; ++ for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i) ++ { ++ n_elts.quick_push (VECTOR_CST_ELT (arg0, i)); ++ n_elts.quick_push (VECTOR_CST_ELT (arg1, i)); ++ } ++ ++ return n_elts.build (); ++ } ++ break; ++ ++ case SPARC_BUILTIN_PDIST: ++ case SPARC_BUILTIN_PDISTN: ++ arg0 = args[0]; ++ arg1 = args[1]; ++ STRIP_NOPS (arg0); ++ STRIP_NOPS (arg1); ++ if (code == SPARC_BUILTIN_PDIST) ++ { ++ arg2 = args[2]; ++ STRIP_NOPS (arg2); ++ } ++ else ++ arg2 = integer_zero_node; ++ ++ if (TREE_CODE (arg0) == VECTOR_CST ++ && TREE_CODE (arg1) == VECTOR_CST ++ && TREE_CODE (arg2) == INTEGER_CST) ++ { ++ bool overflow = false; ++ widest_int result = wi::to_widest (arg2); ++ widest_int tmp; ++ unsigned i; ++ ++ for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i) ++ { ++ tree e0 = VECTOR_CST_ELT (arg0, i); ++ tree e1 = VECTOR_CST_ELT (arg1, i); ++ ++ wi::overflow_type neg1_ovf, neg2_ovf, add1_ovf, add2_ovf; ++ ++ tmp = wi::neg (wi::to_widest (e1), &neg1_ovf); ++ tmp = wi::add (wi::to_widest (e0), tmp, SIGNED, &add1_ovf); ++ if (wi::neg_p (tmp)) ++ tmp = wi::neg (tmp, &neg2_ovf); ++ else ++ neg2_ovf = wi::OVF_NONE; ++ result = wi::add (result, tmp, SIGNED, &add2_ovf); ++ overflow |= ((neg1_ovf != wi::OVF_NONE) ++ | (neg2_ovf != wi::OVF_NONE) ++ | (add1_ovf != wi::OVF_NONE) ++ | (add2_ovf != wi::OVF_NONE)); ++ } ++ ++ gcc_assert (!overflow); ++ ++ return wide_int_to_tree (rtype, result); ++ } ++ ++ default: ++ break; ++ } ++ ++ return NULL_TREE; ++} ++ ++/* ??? This duplicates information provided to the compiler by the ++ ??? scheduler description. Some day, teach genautomata to output ++ ??? the latencies and then CSE will just use that. */ ++ ++static bool ++sparc_rtx_costs (rtx x, machine_mode mode, int outer_code, ++ int opno ATTRIBUTE_UNUSED, ++ int *total, bool speed ATTRIBUTE_UNUSED) ++{ ++ int code = GET_CODE (x); ++ bool float_mode_p = FLOAT_MODE_P (mode); ++ ++ switch (code) ++ { ++ case CONST_INT: ++ if (SMALL_INT (x)) ++ *total = 0; ++ else ++ *total = 2; ++ return true; ++ ++ case CONST_WIDE_INT: ++ *total = 0; ++ if (!SPARC_SIMM13_P (CONST_WIDE_INT_ELT (x, 0))) ++ *total += 2; ++ if (!SPARC_SIMM13_P (CONST_WIDE_INT_ELT (x, 1))) ++ *total += 2; ++ return true; ++ ++ case HIGH: ++ *total = 2; ++ return true; ++ ++ case CONST: ++ case LABEL_REF: ++ case SYMBOL_REF: ++ *total = 4; ++ return true; ++ ++ case CONST_DOUBLE: ++ *total = 8; ++ return true; ++ ++ case MEM: ++ /* If outer-code was a sign or zero extension, a cost ++ of COSTS_N_INSNS (1) was already added in. This is ++ why we are subtracting it back out. */ ++ if (outer_code == ZERO_EXTEND) ++ { ++ *total = sparc_costs->int_zload - COSTS_N_INSNS (1); ++ } ++ else if (outer_code == SIGN_EXTEND) ++ { ++ *total = sparc_costs->int_sload - COSTS_N_INSNS (1); ++ } ++ else if (float_mode_p) ++ { ++ *total = sparc_costs->float_load; ++ } ++ else ++ { ++ *total = sparc_costs->int_load; ++ } ++ ++ return true; ++ ++ case PLUS: ++ case MINUS: ++ if (float_mode_p) ++ *total = sparc_costs->float_plusminus; ++ else ++ *total = COSTS_N_INSNS (1); ++ return false; ++ ++ case FMA: ++ { ++ rtx sub; ++ ++ gcc_assert (float_mode_p); ++ *total = sparc_costs->float_mul; ++ ++ sub = XEXP (x, 0); ++ if (GET_CODE (sub) == NEG) ++ sub = XEXP (sub, 0); ++ *total += rtx_cost (sub, mode, FMA, 0, speed); ++ ++ sub = XEXP (x, 2); ++ if (GET_CODE (sub) == NEG) ++ sub = XEXP (sub, 0); ++ *total += rtx_cost (sub, mode, FMA, 2, speed); ++ return true; ++ } ++ ++ case MULT: ++ if (float_mode_p) ++ *total = sparc_costs->float_mul; ++ else if (TARGET_ARCH32 && !TARGET_HARD_MUL) ++ *total = COSTS_N_INSNS (25); ++ else ++ { ++ int bit_cost; ++ ++ bit_cost = 0; ++ if (sparc_costs->int_mul_bit_factor) ++ { ++ int nbits; ++ ++ if (GET_CODE (XEXP (x, 1)) == CONST_INT) ++ { ++ unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); ++ for (nbits = 0; value != 0; value &= value - 1) ++ nbits++; ++ } ++ else ++ nbits = 7; ++ ++ if (nbits < 3) ++ nbits = 3; ++ bit_cost = (nbits - 3) / sparc_costs->int_mul_bit_factor; ++ bit_cost = COSTS_N_INSNS (bit_cost); ++ } ++ ++ if (mode == DImode || !TARGET_HARD_MUL) ++ *total = sparc_costs->int_mulX + bit_cost; ++ else ++ *total = sparc_costs->int_mul + bit_cost; ++ } ++ return false; ++ ++ case ASHIFT: ++ case ASHIFTRT: ++ case LSHIFTRT: ++ *total = COSTS_N_INSNS (1) + sparc_costs->shift_penalty; ++ return false; ++ ++ case DIV: ++ case UDIV: ++ case MOD: ++ case UMOD: ++ if (float_mode_p) ++ { ++ if (mode == DFmode) ++ *total = sparc_costs->float_div_df; ++ else ++ *total = sparc_costs->float_div_sf; ++ } ++ else ++ { ++ if (mode == DImode) ++ *total = sparc_costs->int_divX; ++ else ++ *total = sparc_costs->int_div; ++ } ++ return false; ++ ++ case NEG: ++ if (! float_mode_p) ++ { ++ *total = COSTS_N_INSNS (1); ++ return false; ++ } ++ /* FALLTHRU */ ++ ++ case ABS: ++ case FLOAT: ++ case UNSIGNED_FLOAT: ++ case FIX: ++ case UNSIGNED_FIX: ++ case FLOAT_EXTEND: ++ case FLOAT_TRUNCATE: ++ *total = sparc_costs->float_move; ++ return false; ++ ++ case SQRT: ++ if (mode == DFmode) ++ *total = sparc_costs->float_sqrt_df; ++ else ++ *total = sparc_costs->float_sqrt_sf; ++ return false; ++ ++ case COMPARE: ++ if (float_mode_p) ++ *total = sparc_costs->float_cmp; ++ else ++ *total = COSTS_N_INSNS (1); ++ return false; ++ ++ case IF_THEN_ELSE: ++ if (float_mode_p) ++ *total = sparc_costs->float_cmove; ++ else ++ *total = sparc_costs->int_cmove; ++ return false; ++ ++ case IOR: ++ /* Handle the NAND vector patterns. */ ++ if (sparc_vector_mode_supported_p (mode) ++ && GET_CODE (XEXP (x, 0)) == NOT ++ && GET_CODE (XEXP (x, 1)) == NOT) ++ { ++ *total = COSTS_N_INSNS (1); ++ return true; ++ } ++ else ++ return false; ++ ++ default: ++ return false; ++ } ++} ++ ++/* Return true if CLASS is either GENERAL_REGS or I64_REGS. */ ++ ++static inline bool ++general_or_i64_p (reg_class_t rclass) ++{ ++ return (rclass == GENERAL_REGS || rclass == I64_REGS); ++} ++ ++/* Implement TARGET_REGISTER_MOVE_COST. */ ++ ++static int ++sparc_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED, ++ reg_class_t from, reg_class_t to) ++{ ++ bool need_memory = false; ++ ++ /* This helps postreload CSE to eliminate redundant comparisons. */ ++ if (from == NO_REGS || to == NO_REGS) ++ return 100; ++ ++ if (from == FPCC_REGS || to == FPCC_REGS) ++ need_memory = true; ++ else if ((FP_REG_CLASS_P (from) && general_or_i64_p (to)) ++ || (general_or_i64_p (from) && FP_REG_CLASS_P (to))) ++ { ++ if (TARGET_VIS3) ++ { ++ int size = GET_MODE_SIZE (mode); ++ if (size == 8 || size == 4) ++ { ++ if (! TARGET_ARCH32 || size == 4) ++ return 4; ++ else ++ return 6; ++ } ++ } ++ need_memory = true; ++ } ++ ++ if (need_memory) ++ { ++ if (sparc_cpu == PROCESSOR_ULTRASPARC ++ || sparc_cpu == PROCESSOR_ULTRASPARC3 ++ || sparc_cpu == PROCESSOR_NIAGARA ++ || sparc_cpu == PROCESSOR_NIAGARA2 ++ || sparc_cpu == PROCESSOR_NIAGARA3 ++ || sparc_cpu == PROCESSOR_NIAGARA4 ++ || sparc_cpu == PROCESSOR_NIAGARA7 ++ || sparc_cpu == PROCESSOR_M8) ++ return 12; ++ ++ return 6; ++ } ++ ++ return 2; ++} ++ ++/* Emit the sequence of insns SEQ while preserving the registers REG and REG2. ++ This is achieved by means of a manual dynamic stack space allocation in ++ the current frame. We make the assumption that SEQ doesn't contain any ++ function calls, with the possible exception of calls to the GOT helper. */ ++ ++static void ++emit_and_preserve (rtx seq, rtx reg, rtx reg2) ++{ ++ /* We must preserve the lowest 16 words for the register save area. */ ++ HOST_WIDE_INT offset = 16*UNITS_PER_WORD; ++ /* We really need only 2 words of fresh stack space. */ ++ HOST_WIDE_INT size = SPARC_STACK_ALIGN (offset + 2*UNITS_PER_WORD); ++ ++ rtx slot ++ = gen_rtx_MEM (word_mode, plus_constant (Pmode, stack_pointer_rtx, ++ SPARC_STACK_BIAS + offset)); ++ ++ emit_insn (gen_stack_pointer_inc (GEN_INT (-size))); ++ emit_insn (gen_rtx_SET (slot, reg)); ++ if (reg2) ++ emit_insn (gen_rtx_SET (adjust_address (slot, word_mode, UNITS_PER_WORD), ++ reg2)); ++ emit_insn (seq); ++ if (reg2) ++ emit_insn (gen_rtx_SET (reg2, ++ adjust_address (slot, word_mode, UNITS_PER_WORD))); ++ emit_insn (gen_rtx_SET (reg, slot)); ++ emit_insn (gen_stack_pointer_inc (GEN_INT (size))); ++} ++ ++/* Output the assembler code for a thunk function. THUNK_DECL is the ++ declaration for the thunk function itself, FUNCTION is the decl for ++ the target function. DELTA is an immediate constant offset to be ++ added to THIS. If VCALL_OFFSET is nonzero, the word at address ++ (*THIS + VCALL_OFFSET) should be additionally added to THIS. */ ++ ++static void ++sparc_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, ++ HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, ++ tree function) ++{ ++ const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl)); ++ rtx this_rtx, funexp; ++ rtx_insn *insn; ++ unsigned int int_arg_first; ++ ++ reload_completed = 1; ++ epilogue_completed = 1; ++ ++ emit_note (NOTE_INSN_PROLOGUE_END); ++ ++ if (TARGET_FLAT) ++ { ++ sparc_leaf_function_p = 1; ++ ++ int_arg_first = SPARC_OUTGOING_INT_ARG_FIRST; ++ } ++ else if (flag_delayed_branch) ++ { ++ /* We will emit a regular sibcall below, so we need to instruct ++ output_sibcall that we are in a leaf function. */ ++ sparc_leaf_function_p = crtl->uses_only_leaf_regs = 1; ++ ++ /* This will cause final.c to invoke leaf_renumber_regs so we ++ must behave as if we were in a not-yet-leafified function. */ ++ int_arg_first = SPARC_INCOMING_INT_ARG_FIRST; ++ } ++ else ++ { ++ /* We will emit the sibcall manually below, so we will need to ++ manually spill non-leaf registers. */ ++ sparc_leaf_function_p = crtl->uses_only_leaf_regs = 0; ++ ++ /* We really are in a leaf function. */ ++ int_arg_first = SPARC_OUTGOING_INT_ARG_FIRST; ++ } ++ ++ /* Find the "this" pointer. Normally in %o0, but in ARCH64 if the function ++ returns a structure, the structure return pointer is there instead. */ ++ if (TARGET_ARCH64 ++ && aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) ++ this_rtx = gen_rtx_REG (Pmode, int_arg_first + 1); ++ else ++ this_rtx = gen_rtx_REG (Pmode, int_arg_first); ++ ++ /* Add DELTA. When possible use a plain add, otherwise load it into ++ a register first. */ ++ if (delta) ++ { ++ rtx delta_rtx = GEN_INT (delta); ++ ++ if (! SPARC_SIMM13_P (delta)) ++ { ++ rtx scratch = gen_rtx_REG (Pmode, 1); ++ emit_move_insn (scratch, delta_rtx); ++ delta_rtx = scratch; ++ } ++ ++ /* THIS_RTX += DELTA. */ ++ emit_insn (gen_add2_insn (this_rtx, delta_rtx)); ++ } ++ ++ /* Add the word at address (*THIS_RTX + VCALL_OFFSET). */ ++ if (vcall_offset) ++ { ++ rtx vcall_offset_rtx = GEN_INT (vcall_offset); ++ rtx scratch = gen_rtx_REG (Pmode, 1); ++ ++ gcc_assert (vcall_offset < 0); ++ ++ /* SCRATCH = *THIS_RTX. */ ++ emit_move_insn (scratch, gen_rtx_MEM (Pmode, this_rtx)); ++ ++ /* Prepare for adding VCALL_OFFSET. The difficulty is that we ++ may not have any available scratch register at this point. */ ++ if (SPARC_SIMM13_P (vcall_offset)) ++ ; ++ /* This is the case if ARCH64 (unless -ffixed-g5 is passed). */ ++ else if (! fixed_regs[5] ++ /* The below sequence is made up of at least 2 insns, ++ while the default method may need only one. */ ++ && vcall_offset < -8192) ++ { ++ rtx scratch2 = gen_rtx_REG (Pmode, 5); ++ emit_move_insn (scratch2, vcall_offset_rtx); ++ vcall_offset_rtx = scratch2; ++ } ++ else ++ { ++ rtx increment = GEN_INT (-4096); ++ ++ /* VCALL_OFFSET is a negative number whose typical range can be ++ estimated as -32768..0 in 32-bit mode. In almost all cases ++ it is therefore cheaper to emit multiple add insns than ++ spilling and loading the constant into a register (at least ++ 6 insns). */ ++ while (! SPARC_SIMM13_P (vcall_offset)) ++ { ++ emit_insn (gen_add2_insn (scratch, increment)); ++ vcall_offset += 4096; ++ } ++ vcall_offset_rtx = GEN_INT (vcall_offset); /* cannot be 0 */ ++ } ++ ++ /* SCRATCH = *(*THIS_RTX + VCALL_OFFSET). */ ++ emit_move_insn (scratch, gen_rtx_MEM (Pmode, ++ gen_rtx_PLUS (Pmode, ++ scratch, ++ vcall_offset_rtx))); ++ ++ /* THIS_RTX += *(*THIS_RTX + VCALL_OFFSET). */ ++ emit_insn (gen_add2_insn (this_rtx, scratch)); ++ } ++ ++ /* Generate a tail call to the target function. */ ++ if (! TREE_USED (function)) ++ { ++ assemble_external (function); ++ TREE_USED (function) = 1; ++ } ++ funexp = XEXP (DECL_RTL (function), 0); ++ ++ if (flag_delayed_branch) ++ { ++ funexp = gen_rtx_MEM (FUNCTION_MODE, funexp); ++ insn = emit_call_insn (gen_sibcall (funexp)); ++ SIBLING_CALL_P (insn) = 1; ++ } ++ else ++ { ++ /* The hoops we have to jump through in order to generate a sibcall ++ without using delay slots... */ ++ rtx spill_reg, seq, scratch = gen_rtx_REG (Pmode, 1); ++ ++ if (flag_pic) ++ { ++ spill_reg = gen_rtx_REG (word_mode, 15); /* %o7 */ ++ start_sequence (); ++ load_got_register (); /* clobbers %o7 */ ++ if (!TARGET_VXWORKS_RTP) ++ pic_offset_table_rtx = got_register_rtx; ++ scratch = sparc_legitimize_pic_address (funexp, scratch); ++ seq = get_insns (); ++ end_sequence (); ++ emit_and_preserve (seq, spill_reg, pic_offset_table_rtx); ++ } ++ else if (TARGET_ARCH32) ++ { ++ emit_insn (gen_rtx_SET (scratch, ++ gen_rtx_HIGH (SImode, funexp))); ++ emit_insn (gen_rtx_SET (scratch, ++ gen_rtx_LO_SUM (SImode, scratch, funexp))); ++ } ++ else /* TARGET_ARCH64 */ ++ { ++ switch (sparc_code_model) ++ { ++ case CM_MEDLOW: ++ case CM_MEDMID: ++ /* The destination can serve as a temporary. */ ++ sparc_emit_set_symbolic_const64 (scratch, funexp, scratch); ++ break; ++ ++ case CM_MEDANY: ++ case CM_EMBMEDANY: ++ /* The destination cannot serve as a temporary. */ ++ spill_reg = gen_rtx_REG (DImode, 15); /* %o7 */ ++ start_sequence (); ++ sparc_emit_set_symbolic_const64 (scratch, funexp, spill_reg); ++ seq = get_insns (); ++ end_sequence (); ++ emit_and_preserve (seq, spill_reg, 0); ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ } ++ ++ emit_jump_insn (gen_indirect_jump (scratch)); ++ } ++ ++ emit_barrier (); ++ ++ /* Run just enough of rest_of_compilation to get the insns emitted. ++ There's not really enough bulk here to make other passes such as ++ instruction scheduling worth while. */ ++ insn = get_insns (); ++ shorten_branches (insn); ++ assemble_start_function (thunk_fndecl, fnname); ++ final_start_function (insn, file, 1); ++ final (insn, file, 1); ++ final_end_function (); ++ assemble_end_function (thunk_fndecl, fnname); ++ ++ reload_completed = 0; ++ epilogue_completed = 0; ++} ++ ++/* Return true if sparc_output_mi_thunk would be able to output the ++ assembler code for the thunk function specified by the arguments ++ it is passed, and false otherwise. */ ++static bool ++sparc_can_output_mi_thunk (const_tree thunk_fndecl ATTRIBUTE_UNUSED, ++ HOST_WIDE_INT delta ATTRIBUTE_UNUSED, ++ HOST_WIDE_INT vcall_offset, ++ const_tree function ATTRIBUTE_UNUSED) ++{ ++ /* Bound the loop used in the default method above. */ ++ return (vcall_offset >= -32768 || ! fixed_regs[5]); ++} ++ ++/* How to allocate a 'struct machine_function'. */ ++ ++static struct machine_function * ++sparc_init_machine_status (void) ++{ ++ return ggc_cleared_alloc (); ++} ++ ++/* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */ ++ ++static unsigned HOST_WIDE_INT ++sparc_asan_shadow_offset (void) ++{ ++ return TARGET_ARCH64 ? (HOST_WIDE_INT_1 << 43) : (HOST_WIDE_INT_1 << 29); ++} ++ ++/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL. ++ We need to emit DTP-relative relocations. */ ++ ++static void ++sparc_output_dwarf_dtprel (FILE *file, int size, rtx x) ++{ ++ switch (size) ++ { ++ case 4: ++ fputs ("\t.word\t%r_tls_dtpoff32(", file); ++ break; ++ case 8: ++ fputs ("\t.xword\t%r_tls_dtpoff64(", file); ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ output_addr_const (file, x); ++ fputs (")", file); ++} ++ ++/* Do whatever processing is required at the end of a file. */ ++ ++static void ++sparc_file_end (void) ++{ ++ /* If we need to emit the special GOT helper function, do so now. */ ++ if (got_helper_needed) ++ { ++ const char *name = XSTR (got_helper_rtx, 0); ++#ifdef DWARF2_UNWIND_INFO ++ bool do_cfi; ++#endif ++ ++ if (USE_HIDDEN_LINKONCE) ++ { ++ tree decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, ++ get_identifier (name), ++ build_function_type_list (void_type_node, ++ NULL_TREE)); ++ DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, ++ NULL_TREE, void_type_node); ++ TREE_PUBLIC (decl) = 1; ++ TREE_STATIC (decl) = 1; ++ make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl)); ++ DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN; ++ DECL_VISIBILITY_SPECIFIED (decl) = 1; ++ resolve_unique_section (decl, 0, flag_function_sections); ++ allocate_struct_function (decl, true); ++ cfun->is_thunk = 1; ++ current_function_decl = decl; ++ init_varasm_status (); ++ assemble_start_function (decl, name); ++ } ++ else ++ { ++ const int align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); ++ switch_to_section (text_section); ++ if (align > 0) ++ ASM_OUTPUT_ALIGN (asm_out_file, align); ++ ASM_OUTPUT_LABEL (asm_out_file, name); ++ } ++ ++#ifdef DWARF2_UNWIND_INFO ++ do_cfi = dwarf2out_do_cfi_asm (); ++ if (do_cfi) ++ output_asm_insn (".cfi_startproc", NULL); ++#endif ++ if (flag_delayed_branch) ++ { ++ output_asm_insn ("jmp\t%%o7+8", NULL); ++ output_asm_insn (" add\t%%o7, %0, %0", &got_register_rtx); ++ } ++ else ++ { ++ output_asm_insn ("add\t%%o7, %0, %0", &got_register_rtx); ++ output_asm_insn ("jmp\t%%o7+8", NULL); ++ output_asm_insn (" nop", NULL); ++ } ++#ifdef DWARF2_UNWIND_INFO ++ if (do_cfi) ++ output_asm_insn (".cfi_endproc", NULL); ++#endif ++ } ++ ++ if (NEED_INDICATE_EXEC_STACK) ++ file_end_indicate_exec_stack (); ++ ++#ifdef TARGET_SOLARIS ++ solaris_file_end (); ++#endif ++} ++ ++#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING ++/* Implement TARGET_MANGLE_TYPE. */ ++ ++static const char * ++sparc_mangle_type (const_tree type) ++{ ++ if (TARGET_ARCH32 ++ && TYPE_MAIN_VARIANT (type) == long_double_type_node ++ && TARGET_LONG_DOUBLE_128) ++ return "g"; ++ ++ /* For all other types, use normal C++ mangling. */ ++ return NULL; ++} ++#endif ++ ++/* Expand a membar instruction for various use cases. Both the LOAD_STORE ++ and BEFORE_AFTER arguments of the form X_Y. They are two-bit masks where ++ bit 0 indicates that X is true, and bit 1 indicates Y is true. */ ++ ++void ++sparc_emit_membar_for_model (enum memmodel model, ++ int load_store, int before_after) ++{ ++ /* Bits for the MEMBAR mmask field. */ ++ const int LoadLoad = 1; ++ const int StoreLoad = 2; ++ const int LoadStore = 4; ++ const int StoreStore = 8; ++ ++ int mm = 0, implied = 0; ++ ++ switch (sparc_memory_model) ++ { ++ case SMM_SC: ++ /* Sequential Consistency. All memory transactions are immediately ++ visible in sequential execution order. No barriers needed. */ ++ implied = LoadLoad | StoreLoad | LoadStore | StoreStore; ++ break; ++ ++ case SMM_TSO: ++ /* Total Store Ordering: all memory transactions with store semantics ++ are followed by an implied StoreStore. */ ++ implied |= StoreStore; ++ ++ /* If we're not looking for a raw barrer (before+after), then atomic ++ operations get the benefit of being both load and store. */ ++ if (load_store == 3 && before_after == 1) ++ implied |= StoreLoad; ++ /* FALLTHRU */ ++ ++ case SMM_PSO: ++ /* Partial Store Ordering: all memory transactions with load semantics ++ are followed by an implied LoadLoad | LoadStore. */ ++ implied |= LoadLoad | LoadStore; ++ ++ /* If we're not looking for a raw barrer (before+after), then atomic ++ operations get the benefit of being both load and store. */ ++ if (load_store == 3 && before_after == 2) ++ implied |= StoreLoad | StoreStore; ++ /* FALLTHRU */ ++ ++ case SMM_RMO: ++ /* Relaxed Memory Ordering: no implicit bits. */ ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ ++ if (before_after & 1) ++ { ++ if (is_mm_release (model) || is_mm_acq_rel (model) ++ || is_mm_seq_cst (model)) ++ { ++ if (load_store & 1) ++ mm |= LoadLoad | StoreLoad; ++ if (load_store & 2) ++ mm |= LoadStore | StoreStore; ++ } ++ } ++ if (before_after & 2) ++ { ++ if (is_mm_acquire (model) || is_mm_acq_rel (model) ++ || is_mm_seq_cst (model)) ++ { ++ if (load_store & 1) ++ mm |= LoadLoad | LoadStore; ++ if (load_store & 2) ++ mm |= StoreLoad | StoreStore; ++ } ++ } ++ ++ /* Remove the bits implied by the system memory model. */ ++ mm &= ~implied; ++ ++ /* For raw barriers (before+after), always emit a barrier. ++ This will become a compile-time barrier if needed. */ ++ if (mm || before_after == 3) ++ emit_insn (gen_membar (GEN_INT (mm))); ++} ++ ++/* Expand code to perform a 8 or 16-bit compare and swap by doing 32-bit ++ compare and swap on the word containing the byte or half-word. */ ++ ++static void ++sparc_expand_compare_and_swap_12 (rtx bool_result, rtx result, rtx mem, ++ rtx oldval, rtx newval) ++{ ++ rtx addr1 = force_reg (Pmode, XEXP (mem, 0)); ++ rtx addr = gen_reg_rtx (Pmode); ++ rtx off = gen_reg_rtx (SImode); ++ rtx oldv = gen_reg_rtx (SImode); ++ rtx newv = gen_reg_rtx (SImode); ++ rtx oldvalue = gen_reg_rtx (SImode); ++ rtx newvalue = gen_reg_rtx (SImode); ++ rtx res = gen_reg_rtx (SImode); ++ rtx resv = gen_reg_rtx (SImode); ++ rtx memsi, val, mask, cc; ++ ++ emit_insn (gen_rtx_SET (addr, gen_rtx_AND (Pmode, addr1, GEN_INT (-4)))); ++ ++ if (Pmode != SImode) ++ addr1 = gen_lowpart (SImode, addr1); ++ emit_insn (gen_rtx_SET (off, gen_rtx_AND (SImode, addr1, GEN_INT (3)))); ++ ++ memsi = gen_rtx_MEM (SImode, addr); ++ set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER); ++ MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem); ++ ++ val = copy_to_reg (memsi); ++ ++ emit_insn (gen_rtx_SET (off, ++ gen_rtx_XOR (SImode, off, ++ GEN_INT (GET_MODE (mem) == QImode ++ ? 3 : 2)))); ++ ++ emit_insn (gen_rtx_SET (off, gen_rtx_ASHIFT (SImode, off, GEN_INT (3)))); ++ ++ if (GET_MODE (mem) == QImode) ++ mask = force_reg (SImode, GEN_INT (0xff)); ++ else ++ mask = force_reg (SImode, GEN_INT (0xffff)); ++ ++ emit_insn (gen_rtx_SET (mask, gen_rtx_ASHIFT (SImode, mask, off))); ++ ++ emit_insn (gen_rtx_SET (val, ++ gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask), ++ val))); ++ ++ oldval = gen_lowpart (SImode, oldval); ++ emit_insn (gen_rtx_SET (oldv, gen_rtx_ASHIFT (SImode, oldval, off))); ++ ++ newval = gen_lowpart_common (SImode, newval); ++ emit_insn (gen_rtx_SET (newv, gen_rtx_ASHIFT (SImode, newval, off))); ++ ++ emit_insn (gen_rtx_SET (oldv, gen_rtx_AND (SImode, oldv, mask))); ++ ++ emit_insn (gen_rtx_SET (newv, gen_rtx_AND (SImode, newv, mask))); ++ ++ rtx_code_label *end_label = gen_label_rtx (); ++ rtx_code_label *loop_label = gen_label_rtx (); ++ emit_label (loop_label); ++ ++ emit_insn (gen_rtx_SET (oldvalue, gen_rtx_IOR (SImode, oldv, val))); ++ ++ emit_insn (gen_rtx_SET (newvalue, gen_rtx_IOR (SImode, newv, val))); ++ ++ emit_move_insn (bool_result, const1_rtx); ++ ++ emit_insn (gen_atomic_compare_and_swapsi_1 (res, memsi, oldvalue, newvalue)); ++ ++ emit_cmp_and_jump_insns (res, oldvalue, EQ, NULL, SImode, 0, end_label); ++ ++ emit_insn (gen_rtx_SET (resv, ++ gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask), ++ res))); ++ ++ emit_move_insn (bool_result, const0_rtx); ++ ++ cc = gen_compare_reg_1 (NE, resv, val); ++ emit_insn (gen_rtx_SET (val, resv)); ++ ++ /* Use cbranchcc4 to separate the compare and branch! */ ++ emit_jump_insn (gen_cbranchcc4 (gen_rtx_NE (VOIDmode, cc, const0_rtx), ++ cc, const0_rtx, loop_label)); ++ ++ emit_label (end_label); ++ ++ emit_insn (gen_rtx_SET (res, gen_rtx_AND (SImode, res, mask))); ++ ++ emit_insn (gen_rtx_SET (res, gen_rtx_LSHIFTRT (SImode, res, off))); ++ ++ emit_move_insn (result, gen_lowpart (GET_MODE (result), res)); ++} ++ ++/* Expand code to perform a compare-and-swap. */ ++ ++void ++sparc_expand_compare_and_swap (rtx operands[]) ++{ ++ rtx bval, retval, mem, oldval, newval; ++ machine_mode mode; ++ enum memmodel model; ++ ++ bval = operands[0]; ++ retval = operands[1]; ++ mem = operands[2]; ++ oldval = operands[3]; ++ newval = operands[4]; ++ model = (enum memmodel) INTVAL (operands[6]); ++ mode = GET_MODE (mem); ++ ++ sparc_emit_membar_for_model (model, 3, 1); ++ ++ if (reg_overlap_mentioned_p (retval, oldval)) ++ oldval = copy_to_reg (oldval); ++ ++ if (mode == QImode || mode == HImode) ++ sparc_expand_compare_and_swap_12 (bval, retval, mem, oldval, newval); ++ else ++ { ++ rtx (*gen) (rtx, rtx, rtx, rtx); ++ rtx x; ++ ++ if (mode == SImode) ++ gen = gen_atomic_compare_and_swapsi_1; ++ else ++ gen = gen_atomic_compare_and_swapdi_1; ++ emit_insn (gen (retval, mem, oldval, newval)); ++ ++ x = emit_store_flag (bval, EQ, retval, oldval, mode, 1, 1); ++ if (x != bval) ++ convert_move (bval, x, 1); ++ } ++ ++ sparc_emit_membar_for_model (model, 3, 2); ++} ++ ++void ++sparc_expand_vec_perm_bmask (machine_mode vmode, rtx sel) ++{ ++ rtx t_1, t_2, t_3; ++ ++ sel = gen_lowpart (DImode, sel); ++ switch (vmode) ++ { ++ case E_V2SImode: ++ /* inp = xxxxxxxAxxxxxxxB */ ++ t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* t_1 = ....xxxxxxxAxxx. */ ++ sel = expand_simple_binop (SImode, AND, gen_lowpart (SImode, sel), ++ GEN_INT (3), NULL_RTX, 1, OPTAB_DIRECT); ++ t_1 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_1), ++ GEN_INT (0x30000), NULL_RTX, 1, OPTAB_DIRECT); ++ /* sel = .......B */ ++ /* t_1 = ...A.... */ ++ sel = expand_simple_binop (SImode, IOR, sel, t_1, sel, 1, OPTAB_DIRECT); ++ /* sel = ...A...B */ ++ sel = expand_mult (SImode, sel, GEN_INT (0x4444), sel, 1); ++ /* sel = AAAABBBB * 4 */ ++ t_1 = force_reg (SImode, GEN_INT (0x01230123)); ++ /* sel = { A*4, A*4+1, A*4+2, ... } */ ++ break; ++ ++ case E_V4HImode: ++ /* inp = xxxAxxxBxxxCxxxD */ ++ t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (8), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ t_2 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ t_3 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (24), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* t_1 = ..xxxAxxxBxxxCxx */ ++ /* t_2 = ....xxxAxxxBxxxC */ ++ /* t_3 = ......xxxAxxxBxx */ ++ sel = expand_simple_binop (SImode, AND, gen_lowpart (SImode, sel), ++ GEN_INT (0x07), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ t_1 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_1), ++ GEN_INT (0x0700), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ t_2 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_2), ++ GEN_INT (0x070000), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ t_3 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_3), ++ GEN_INT (0x07000000), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* sel = .......D */ ++ /* t_1 = .....C.. */ ++ /* t_2 = ...B.... */ ++ /* t_3 = .A...... */ ++ sel = expand_simple_binop (SImode, IOR, sel, t_1, sel, 1, OPTAB_DIRECT); ++ t_2 = expand_simple_binop (SImode, IOR, t_2, t_3, t_2, 1, OPTAB_DIRECT); ++ sel = expand_simple_binop (SImode, IOR, sel, t_2, sel, 1, OPTAB_DIRECT); ++ /* sel = .A.B.C.D */ ++ sel = expand_mult (SImode, sel, GEN_INT (0x22), sel, 1); ++ /* sel = AABBCCDD * 2 */ ++ t_1 = force_reg (SImode, GEN_INT (0x01010101)); ++ /* sel = { A*2, A*2+1, B*2, B*2+1, ... } */ ++ break; ++ ++ case E_V8QImode: ++ /* input = xAxBxCxDxExFxGxH */ ++ sel = expand_simple_binop (DImode, AND, sel, ++ GEN_INT ((HOST_WIDE_INT)0x0f0f0f0f << 32 ++ | 0x0f0f0f0f), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* sel = .A.B.C.D.E.F.G.H */ ++ t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (4), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* t_1 = ..A.B.C.D.E.F.G. */ ++ sel = expand_simple_binop (DImode, IOR, sel, t_1, ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* sel = .AABBCCDDEEFFGGH */ ++ sel = expand_simple_binop (DImode, AND, sel, ++ GEN_INT ((HOST_WIDE_INT)0xff00ff << 32 ++ | 0xff00ff), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* sel = ..AB..CD..EF..GH */ ++ t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (8), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* t_1 = ....AB..CD..EF.. */ ++ sel = expand_simple_binop (DImode, IOR, sel, t_1, ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* sel = ..ABABCDCDEFEFGH */ ++ sel = expand_simple_binop (DImode, AND, sel, ++ GEN_INT ((HOST_WIDE_INT)0xffff << 32 | 0xffff), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* sel = ....ABCD....EFGH */ ++ t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16), ++ NULL_RTX, 1, OPTAB_DIRECT); ++ /* t_1 = ........ABCD.... */ ++ sel = gen_lowpart (SImode, sel); ++ t_1 = gen_lowpart (SImode, t_1); ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ ++ /* Always perform the final addition/merge within the bmask insn. */ ++ emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), sel, t_1)); ++} ++ ++/* Implement TARGET_VEC_PERM_CONST. */ ++ ++static bool ++sparc_vectorize_vec_perm_const (machine_mode vmode, rtx target, rtx op0, ++ rtx op1, const vec_perm_indices &sel) ++{ ++ if (!TARGET_VIS2) ++ return false; ++ ++ /* All permutes are supported. */ ++ if (!target) ++ return true; ++ ++ /* Force target-independent code to convert constant permutations on other ++ modes down to V8QI. Rely on this to avoid the complexity of the byte ++ order of the permutation. */ ++ if (vmode != V8QImode) ++ return false; ++ ++ unsigned int i, mask; ++ for (i = mask = 0; i < 8; ++i) ++ mask |= (sel[i] & 0xf) << (28 - i*4); ++ rtx mask_rtx = force_reg (SImode, gen_int_mode (mask, SImode)); ++ ++ emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), mask_rtx, const0_rtx)); ++ emit_insn (gen_bshufflev8qi_vis (target, op0, op1)); ++ return true; ++} ++ ++/* Implement TARGET_FRAME_POINTER_REQUIRED. */ ++ ++static bool ++sparc_frame_pointer_required (void) ++{ ++ /* If the stack pointer is dynamically modified in the function, it cannot ++ serve as the frame pointer. */ ++ if (cfun->calls_alloca) ++ return true; ++ ++ /* If the function receives nonlocal gotos, it needs to save the frame ++ pointer in the nonlocal_goto_save_area object. */ ++ if (cfun->has_nonlocal_label) ++ return true; ++ ++ /* In flat mode, that's it. */ ++ if (TARGET_FLAT) ++ return false; ++ ++ /* Otherwise, the frame pointer is required if the function isn't leaf, but ++ we cannot use sparc_leaf_function_p since it hasn't been computed yet. */ ++ return !(optimize > 0 && crtl->is_leaf && only_leaf_regs_used ()); ++} ++ ++/* The way this is structured, we can't eliminate SFP in favor of SP ++ if the frame pointer is required: we want to use the SFP->HFP elimination ++ in that case. But the test in update_eliminables doesn't know we are ++ assuming below that we only do the former elimination. */ ++ ++static bool ++sparc_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to) ++{ ++ return to == HARD_FRAME_POINTER_REGNUM || !sparc_frame_pointer_required (); ++} ++ ++/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that ++ they won't be allocated. */ ++ ++static void ++sparc_conditional_register_usage (void) ++{ ++ if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) ++ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; ++ /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ ++ /* then honor it. */ ++ if (TARGET_ARCH32 && fixed_regs[5]) ++ fixed_regs[5] = 1; ++ else if (TARGET_ARCH64 && fixed_regs[5] == 2) ++ fixed_regs[5] = 0; ++ if (! TARGET_V9) ++ { ++ int regno; ++ for (regno = SPARC_FIRST_V9_FP_REG; ++ regno <= SPARC_LAST_V9_FP_REG; ++ regno++) ++ fixed_regs[regno] = 1; ++ /* %fcc0 is used by v8 and v9. */ ++ for (regno = SPARC_FIRST_V9_FCC_REG + 1; ++ regno <= SPARC_LAST_V9_FCC_REG; ++ regno++) ++ fixed_regs[regno] = 1; ++ } ++ if (! TARGET_FPU) ++ { ++ int regno; ++ for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) ++ fixed_regs[regno] = 1; ++ } ++ /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ ++ /* then honor it. Likewise with g3 and g4. */ ++ if (fixed_regs[2] == 2) ++ fixed_regs[2] = ! TARGET_APP_REGS; ++ if (fixed_regs[3] == 2) ++ fixed_regs[3] = ! TARGET_APP_REGS; ++ if (TARGET_ARCH32 && fixed_regs[4] == 2) ++ fixed_regs[4] = ! TARGET_APP_REGS; ++ else if (TARGET_CM_EMBMEDANY) ++ fixed_regs[4] = 1; ++ else if (fixed_regs[4] == 2) ++ fixed_regs[4] = 0; ++ if (TARGET_FLAT) ++ { ++ int regno; ++ /* Disable leaf functions. */ ++ memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); ++ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) ++ leaf_reg_remap [regno] = regno; ++ } ++ if (TARGET_VIS) ++ global_regs[SPARC_GSR_REG] = 1; ++} ++ ++/* Implement TARGET_USE_PSEUDO_PIC_REG. */ ++ ++static bool ++sparc_use_pseudo_pic_reg (void) ++{ ++ return !TARGET_VXWORKS_RTP && flag_pic; ++} ++ ++/* Implement TARGET_INIT_PIC_REG. */ ++ ++static void ++sparc_init_pic_reg (void) ++{ ++ edge entry_edge; ++ rtx_insn *seq; ++ ++ /* In PIC mode, we need to always initialize the PIC register if optimization ++ is enabled, because we are called from IRA and LRA may later force things ++ to the constant pool for optimization purposes. */ ++ if (!flag_pic || (!crtl->uses_pic_offset_table && !optimize)) ++ return; ++ ++ start_sequence (); ++ load_got_register (); ++ if (!TARGET_VXWORKS_RTP) ++ emit_move_insn (pic_offset_table_rtx, got_register_rtx); ++ seq = get_insns (); ++ end_sequence (); ++ ++ entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); ++ insert_insn_on_edge (seq, entry_edge); ++ commit_one_edge_insertion (entry_edge); ++} ++ ++/* Implement TARGET_PREFERRED_RELOAD_CLASS: ++ ++ - We can't load constants into FP registers. ++ - We can't load FP constants into integer registers when soft-float, ++ because there is no soft-float pattern with a r/F constraint. ++ - We can't load FP constants into integer registers for TFmode unless ++ it is 0.0L, because there is no movtf pattern with a r/F constraint. ++ - Try and reload integer constants (symbolic or otherwise) back into ++ registers directly, rather than having them dumped to memory. */ ++ ++static reg_class_t ++sparc_preferred_reload_class (rtx x, reg_class_t rclass) ++{ ++ machine_mode mode = GET_MODE (x); ++ if (CONSTANT_P (x)) ++ { ++ if (FP_REG_CLASS_P (rclass) ++ || rclass == GENERAL_OR_FP_REGS ++ || rclass == GENERAL_OR_EXTRA_FP_REGS ++ || (GET_MODE_CLASS (mode) == MODE_FLOAT && ! TARGET_FPU) ++ || (mode == TFmode && ! const_zero_operand (x, mode))) ++ return NO_REGS; ++ ++ if (GET_MODE_CLASS (mode) == MODE_INT) ++ return GENERAL_REGS; ++ ++ if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT) ++ { ++ if (! FP_REG_CLASS_P (rclass) ++ || !(const_zero_operand (x, mode) ++ || const_all_ones_operand (x, mode))) ++ return NO_REGS; ++ } ++ } ++ ++ if (TARGET_VIS3 ++ && ! TARGET_ARCH64 ++ && (rclass == EXTRA_FP_REGS ++ || rclass == GENERAL_OR_EXTRA_FP_REGS)) ++ { ++ int regno = true_regnum (x); ++ ++ if (SPARC_INT_REG_P (regno)) ++ return (rclass == EXTRA_FP_REGS ++ ? FP_REGS : GENERAL_OR_FP_REGS); ++ } ++ ++ return rclass; ++} ++ ++/* Return true if we use LRA instead of reload pass. */ ++ ++static bool ++sparc_lra_p (void) ++{ ++ return TARGET_LRA; ++} ++ ++/* Output a wide multiply instruction in V8+ mode. INSN is the instruction, ++ OPERANDS are its operands and OPCODE is the mnemonic to be used. */ ++ ++const char * ++output_v8plus_mult (rtx_insn *insn, rtx *operands, const char *opcode) ++{ ++ char mulstr[32]; ++ ++ gcc_assert (! TARGET_ARCH64); ++ ++ if (sparc_check_64 (operands[1], insn) <= 0) ++ output_asm_insn ("srl\t%L1, 0, %L1", operands); ++ if (which_alternative == 1) ++ output_asm_insn ("sllx\t%H1, 32, %H1", operands); ++ if (GET_CODE (operands[2]) == CONST_INT) ++ { ++ if (which_alternative == 1) ++ { ++ output_asm_insn ("or\t%L1, %H1, %H1", operands); ++ sprintf (mulstr, "%s\t%%H1, %%2, %%L0", opcode); ++ output_asm_insn (mulstr, operands); ++ return "srlx\t%L0, 32, %H0"; ++ } ++ else ++ { ++ output_asm_insn ("sllx\t%H1, 32, %3", operands); ++ output_asm_insn ("or\t%L1, %3, %3", operands); ++ sprintf (mulstr, "%s\t%%3, %%2, %%3", opcode); ++ output_asm_insn (mulstr, operands); ++ output_asm_insn ("srlx\t%3, 32, %H0", operands); ++ return "mov\t%3, %L0"; ++ } ++ } ++ else if (rtx_equal_p (operands[1], operands[2])) ++ { ++ if (which_alternative == 1) ++ { ++ output_asm_insn ("or\t%L1, %H1, %H1", operands); ++ sprintf (mulstr, "%s\t%%H1, %%H1, %%L0", opcode); ++ output_asm_insn (mulstr, operands); ++ return "srlx\t%L0, 32, %H0"; ++ } ++ else ++ { ++ output_asm_insn ("sllx\t%H1, 32, %3", operands); ++ output_asm_insn ("or\t%L1, %3, %3", operands); ++ sprintf (mulstr, "%s\t%%3, %%3, %%3", opcode); ++ output_asm_insn (mulstr, operands); ++ output_asm_insn ("srlx\t%3, 32, %H0", operands); ++ return "mov\t%3, %L0"; ++ } ++ } ++ if (sparc_check_64 (operands[2], insn) <= 0) ++ output_asm_insn ("srl\t%L2, 0, %L2", operands); ++ if (which_alternative == 1) ++ { ++ output_asm_insn ("or\t%L1, %H1, %H1", operands); ++ output_asm_insn ("sllx\t%H2, 32, %L1", operands); ++ output_asm_insn ("or\t%L2, %L1, %L1", operands); ++ sprintf (mulstr, "%s\t%%H1, %%L1, %%L0", opcode); ++ output_asm_insn (mulstr, operands); ++ return "srlx\t%L0, 32, %H0"; ++ } ++ else ++ { ++ output_asm_insn ("sllx\t%H1, 32, %3", operands); ++ output_asm_insn ("sllx\t%H2, 32, %4", operands); ++ output_asm_insn ("or\t%L1, %3, %3", operands); ++ output_asm_insn ("or\t%L2, %4, %4", operands); ++ sprintf (mulstr, "%s\t%%3, %%4, %%3", opcode); ++ output_asm_insn (mulstr, operands); ++ output_asm_insn ("srlx\t%3, 32, %H0", operands); ++ return "mov\t%3, %L0"; ++ } ++} ++ ++/* Subroutine of sparc_expand_vector_init. Emit code to initialize ++ all fields of TARGET to ELT by means of VIS2 BSHUFFLE insn. MODE ++ and INNER_MODE are the modes describing TARGET. */ ++ ++static void ++vector_init_bshuffle (rtx target, rtx elt, machine_mode mode, ++ machine_mode inner_mode) ++{ ++ rtx t1, final_insn, sel; ++ int bmask; ++ ++ t1 = gen_reg_rtx (mode); ++ ++ elt = convert_modes (SImode, inner_mode, elt, true); ++ emit_move_insn (gen_lowpart(SImode, t1), elt); ++ ++ switch (mode) ++ { ++ case E_V2SImode: ++ final_insn = gen_bshufflev2si_vis (target, t1, t1); ++ bmask = 0x45674567; ++ break; ++ case E_V4HImode: ++ final_insn = gen_bshufflev4hi_vis (target, t1, t1); ++ bmask = 0x67676767; ++ break; ++ case E_V8QImode: ++ final_insn = gen_bshufflev8qi_vis (target, t1, t1); ++ bmask = 0x77777777; ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ ++ sel = force_reg (SImode, GEN_INT (bmask)); ++ emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), sel, const0_rtx)); ++ emit_insn (final_insn); ++} ++ ++/* Subroutine of sparc_expand_vector_init. Emit code to initialize ++ all fields of TARGET to ELT in V8QI by means of VIS FPMERGE insn. */ ++ ++static void ++vector_init_fpmerge (rtx target, rtx elt) ++{ ++ rtx t1, t2, t2_low, t3, t3_low; ++ ++ t1 = gen_reg_rtx (V4QImode); ++ elt = convert_modes (SImode, QImode, elt, true); ++ emit_move_insn (gen_lowpart (SImode, t1), elt); ++ ++ t2 = gen_reg_rtx (V8QImode); ++ t2_low = gen_lowpart (V4QImode, t2); ++ emit_insn (gen_fpmerge_vis (t2, t1, t1)); ++ ++ t3 = gen_reg_rtx (V8QImode); ++ t3_low = gen_lowpart (V4QImode, t3); ++ emit_insn (gen_fpmerge_vis (t3, t2_low, t2_low)); ++ ++ emit_insn (gen_fpmerge_vis (target, t3_low, t3_low)); ++} ++ ++/* Subroutine of sparc_expand_vector_init. Emit code to initialize ++ all fields of TARGET to ELT in V4HI by means of VIS FALIGNDATA insn. */ ++ ++static void ++vector_init_faligndata (rtx target, rtx elt) ++{ ++ rtx t1 = gen_reg_rtx (V4HImode); ++ int i; ++ ++ elt = convert_modes (SImode, HImode, elt, true); ++ emit_move_insn (gen_lowpart (SImode, t1), elt); ++ ++ emit_insn (gen_alignaddrsi_vis (gen_reg_rtx (SImode), ++ force_reg (SImode, GEN_INT (6)), ++ const0_rtx)); ++ ++ for (i = 0; i < 4; i++) ++ emit_insn (gen_faligndatav4hi_vis (target, t1, target)); ++} ++ ++/* Emit code to initialize TARGET to values for individual fields VALS. */ ++ ++void ++sparc_expand_vector_init (rtx target, rtx vals) ++{ ++ const machine_mode mode = GET_MODE (target); ++ const machine_mode inner_mode = GET_MODE_INNER (mode); ++ const int n_elts = GET_MODE_NUNITS (mode); ++ int i, n_var = 0; ++ bool all_same = true; ++ rtx mem; ++ ++ for (i = 0; i < n_elts; i++) ++ { ++ rtx x = XVECEXP (vals, 0, i); ++ if (!(CONST_SCALAR_INT_P (x) || CONST_DOUBLE_P (x) || CONST_FIXED_P (x))) ++ n_var++; ++ ++ if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0))) ++ all_same = false; ++ } ++ ++ if (n_var == 0) ++ { ++ emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0))); ++ return; ++ } ++ ++ if (GET_MODE_SIZE (inner_mode) == GET_MODE_SIZE (mode)) ++ { ++ if (GET_MODE_SIZE (inner_mode) == 4) ++ { ++ emit_move_insn (gen_lowpart (SImode, target), ++ gen_lowpart (SImode, XVECEXP (vals, 0, 0))); ++ return; ++ } ++ else if (GET_MODE_SIZE (inner_mode) == 8) ++ { ++ emit_move_insn (gen_lowpart (DImode, target), ++ gen_lowpart (DImode, XVECEXP (vals, 0, 0))); ++ return; ++ } ++ } ++ else if (GET_MODE_SIZE (inner_mode) == GET_MODE_SIZE (word_mode) ++ && GET_MODE_SIZE (mode) == 2 * GET_MODE_SIZE (word_mode)) ++ { ++ emit_move_insn (gen_highpart (word_mode, target), ++ gen_lowpart (word_mode, XVECEXP (vals, 0, 0))); ++ emit_move_insn (gen_lowpart (word_mode, target), ++ gen_lowpart (word_mode, XVECEXP (vals, 0, 1))); ++ return; ++ } ++ ++ if (all_same && GET_MODE_SIZE (mode) == 8) ++ { ++ if (TARGET_VIS2) ++ { ++ vector_init_bshuffle (target, XVECEXP (vals, 0, 0), mode, inner_mode); ++ return; ++ } ++ if (mode == V8QImode) ++ { ++ vector_init_fpmerge (target, XVECEXP (vals, 0, 0)); ++ return; ++ } ++ if (mode == V4HImode) ++ { ++ vector_init_faligndata (target, XVECEXP (vals, 0, 0)); ++ return; ++ } ++ } ++ ++ mem = assign_stack_temp (mode, GET_MODE_SIZE (mode)); ++ for (i = 0; i < n_elts; i++) ++ emit_move_insn (adjust_address_nv (mem, inner_mode, ++ i * GET_MODE_SIZE (inner_mode)), ++ XVECEXP (vals, 0, i)); ++ emit_move_insn (target, mem); ++} ++ ++/* Implement TARGET_SECONDARY_RELOAD. */ ++ ++static reg_class_t ++sparc_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i, ++ machine_mode mode, secondary_reload_info *sri) ++{ ++ enum reg_class rclass = (enum reg_class) rclass_i; ++ ++ sri->icode = CODE_FOR_nothing; ++ sri->extra_cost = 0; ++ ++ /* We need a temporary when loading/storing a HImode/QImode value ++ between memory and the FPU registers. This can happen when combine puts ++ a paradoxical subreg in a float/fix conversion insn. */ ++ if (FP_REG_CLASS_P (rclass) ++ && (mode == HImode || mode == QImode) ++ && (GET_CODE (x) == MEM ++ || ((GET_CODE (x) == REG || GET_CODE (x) == SUBREG) ++ && true_regnum (x) == -1))) ++ return GENERAL_REGS; ++ ++ /* On 32-bit we need a temporary when loading/storing a DFmode value ++ between unaligned memory and the upper FPU registers. */ ++ if (TARGET_ARCH32 ++ && rclass == EXTRA_FP_REGS ++ && mode == DFmode ++ && GET_CODE (x) == MEM ++ && ! mem_min_alignment (x, 8)) ++ return FP_REGS; ++ ++ if (((TARGET_CM_MEDANY ++ && symbolic_operand (x, mode)) ++ || (TARGET_CM_EMBMEDANY ++ && text_segment_operand (x, mode))) ++ && ! flag_pic) ++ { ++ if (in_p) ++ sri->icode = direct_optab_handler (reload_in_optab, mode); ++ else ++ sri->icode = direct_optab_handler (reload_out_optab, mode); ++ return NO_REGS; ++ } ++ ++ if (TARGET_VIS3 && TARGET_ARCH32) ++ { ++ int regno = true_regnum (x); ++ ++ /* When using VIS3 fp<-->int register moves, on 32-bit we have ++ to move 8-byte values in 4-byte pieces. This only works via ++ FP_REGS, and not via EXTRA_FP_REGS. Therefore if we try to ++ move between EXTRA_FP_REGS and GENERAL_REGS, we will need ++ an FP_REGS intermediate move. */ ++ if ((rclass == EXTRA_FP_REGS && SPARC_INT_REG_P (regno)) ++ || ((general_or_i64_p (rclass) ++ || rclass == GENERAL_OR_FP_REGS) ++ && SPARC_FP_REG_P (regno))) ++ { ++ sri->extra_cost = 2; ++ return FP_REGS; ++ } ++ } ++ ++ return NO_REGS; ++} ++ ++/* Implement TARGET_SECONDARY_MEMORY_NEEDED. ++ ++ On SPARC when not VIS3 it is not possible to directly move data ++ between GENERAL_REGS and FP_REGS. */ ++ ++static bool ++sparc_secondary_memory_needed (machine_mode mode, reg_class_t class1, ++ reg_class_t class2) ++{ ++ return ((FP_REG_CLASS_P (class1) != FP_REG_CLASS_P (class2)) ++ && (! TARGET_VIS3 ++ || GET_MODE_SIZE (mode) > 8 ++ || GET_MODE_SIZE (mode) < 4)); ++} ++ ++/* Implement TARGET_SECONDARY_MEMORY_NEEDED_MODE. ++ ++ get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9 ++ because the movsi and movsf patterns don't handle r/f moves. ++ For v8 we copy the default definition. */ ++ ++static machine_mode ++sparc_secondary_memory_needed_mode (machine_mode mode) ++{ ++ if (TARGET_ARCH64) ++ { ++ if (GET_MODE_BITSIZE (mode) < 32) ++ return mode_for_size (32, GET_MODE_CLASS (mode), 0).require (); ++ return mode; ++ } ++ else ++ { ++ if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD) ++ return mode_for_size (BITS_PER_WORD, ++ GET_MODE_CLASS (mode), 0).require (); ++ return mode; ++ } ++} ++ ++/* Emit code to conditionally move either OPERANDS[2] or OPERANDS[3] into ++ OPERANDS[0] in MODE. OPERANDS[1] is the operator of the condition. */ ++ ++bool ++sparc_expand_conditional_move (machine_mode mode, rtx *operands) ++{ ++ enum rtx_code rc = GET_CODE (operands[1]); ++ machine_mode cmp_mode; ++ rtx cc_reg, dst, cmp; ++ ++ cmp = operands[1]; ++ if (GET_MODE (XEXP (cmp, 0)) == DImode && !TARGET_ARCH64) ++ return false; ++ ++ if (GET_MODE (XEXP (cmp, 0)) == TFmode && !TARGET_HARD_QUAD) ++ cmp = sparc_emit_float_lib_cmp (XEXP (cmp, 0), XEXP (cmp, 1), rc); ++ ++ cmp_mode = GET_MODE (XEXP (cmp, 0)); ++ rc = GET_CODE (cmp); ++ ++ dst = operands[0]; ++ if (! rtx_equal_p (operands[2], dst) ++ && ! rtx_equal_p (operands[3], dst)) ++ { ++ if (reg_overlap_mentioned_p (dst, cmp)) ++ dst = gen_reg_rtx (mode); ++ ++ emit_move_insn (dst, operands[3]); ++ } ++ else if (operands[2] == dst) ++ { ++ operands[2] = operands[3]; ++ ++ if (GET_MODE_CLASS (cmp_mode) == MODE_FLOAT) ++ rc = reverse_condition_maybe_unordered (rc); ++ else ++ rc = reverse_condition (rc); ++ } ++ ++ if (XEXP (cmp, 1) == const0_rtx ++ && GET_CODE (XEXP (cmp, 0)) == REG ++ && cmp_mode == DImode ++ && v9_regcmp_p (rc)) ++ cc_reg = XEXP (cmp, 0); ++ else ++ cc_reg = gen_compare_reg_1 (rc, XEXP (cmp, 0), XEXP (cmp, 1)); ++ ++ cmp = gen_rtx_fmt_ee (rc, GET_MODE (cc_reg), cc_reg, const0_rtx); ++ ++ emit_insn (gen_rtx_SET (dst, ++ gen_rtx_IF_THEN_ELSE (mode, cmp, operands[2], dst))); ++ ++ if (dst != operands[0]) ++ emit_move_insn (operands[0], dst); ++ ++ return true; ++} ++ ++/* Emit code to conditionally move a combination of OPERANDS[1] and OPERANDS[2] ++ into OPERANDS[0] in MODE, depending on the outcome of the comparison of ++ OPERANDS[4] and OPERANDS[5]. OPERANDS[3] is the operator of the condition. ++ FCODE is the machine code to be used for OPERANDS[3] and CCODE the machine ++ code to be used for the condition mask. */ ++ ++void ++sparc_expand_vcond (machine_mode mode, rtx *operands, int ccode, int fcode) ++{ ++ rtx mask, cop0, cop1, fcmp, cmask, bshuf, gsr; ++ enum rtx_code code = GET_CODE (operands[3]); ++ ++ mask = gen_reg_rtx (Pmode); ++ cop0 = operands[4]; ++ cop1 = operands[5]; ++ if (code == LT || code == GE) ++ { ++ rtx t; ++ ++ code = swap_condition (code); ++ t = cop0; cop0 = cop1; cop1 = t; ++ } ++ ++ gsr = gen_rtx_REG (DImode, SPARC_GSR_REG); ++ ++ fcmp = gen_rtx_UNSPEC (Pmode, ++ gen_rtvec (1, gen_rtx_fmt_ee (code, mode, cop0, cop1)), ++ fcode); ++ ++ cmask = gen_rtx_UNSPEC (DImode, ++ gen_rtvec (2, mask, gsr), ++ ccode); ++ ++ bshuf = gen_rtx_UNSPEC (mode, ++ gen_rtvec (3, operands[1], operands[2], gsr), ++ UNSPEC_BSHUFFLE); ++ ++ emit_insn (gen_rtx_SET (mask, fcmp)); ++ emit_insn (gen_rtx_SET (gsr, cmask)); ++ ++ emit_insn (gen_rtx_SET (operands[0], bshuf)); ++} ++ ++/* On sparc, any mode which naturally allocates into the float ++ registers should return 4 here. */ ++ ++unsigned int ++sparc_regmode_natural_size (machine_mode mode) ++{ ++ int size = UNITS_PER_WORD; ++ ++ if (TARGET_ARCH64) ++ { ++ enum mode_class mclass = GET_MODE_CLASS (mode); ++ ++ if (mclass == MODE_FLOAT || mclass == MODE_VECTOR_INT) ++ size = 4; ++ } ++ ++ return size; ++} ++ ++/* Implement TARGET_HARD_REGNO_NREGS. ++ ++ On SPARC, ordinary registers hold 32 bits worth; this means both ++ integer and floating point registers. On v9, integer regs hold 64 ++ bits worth; floating point regs hold 32 bits worth (this includes the ++ new fp regs as even the odd ones are included in the hard register ++ count). */ ++ ++static unsigned int ++sparc_hard_regno_nregs (unsigned int regno, machine_mode mode) ++{ ++ if (regno == SPARC_GSR_REG) ++ return 1; ++ if (TARGET_ARCH64) ++ { ++ if (SPARC_INT_REG_P (regno) || regno == FRAME_POINTER_REGNUM) ++ return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD); ++ return CEIL (GET_MODE_SIZE (mode), 4); ++ } ++ return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD); ++} ++ ++/* Implement TARGET_HARD_REGNO_MODE_OK. ++ ++ ??? Because of the funny way we pass parameters we should allow certain ++ ??? types of float/complex values to be in integer registers during ++ ??? RTL generation. This only matters on arch32. */ ++ ++static bool ++sparc_hard_regno_mode_ok (unsigned int regno, machine_mode mode) ++{ ++ return (hard_regno_mode_classes[regno] & sparc_mode_class[mode]) != 0; ++} ++ ++/* Implement TARGET_MODES_TIEABLE_P. ++ ++ For V9 we have to deal with the fact that only the lower 32 floating ++ point registers are 32-bit addressable. */ ++ ++static bool ++sparc_modes_tieable_p (machine_mode mode1, machine_mode mode2) ++{ ++ enum mode_class mclass1, mclass2; ++ unsigned short size1, size2; ++ ++ if (mode1 == mode2) ++ return true; ++ ++ mclass1 = GET_MODE_CLASS (mode1); ++ mclass2 = GET_MODE_CLASS (mode2); ++ if (mclass1 != mclass2) ++ return false; ++ ++ if (! TARGET_V9) ++ return true; ++ ++ /* Classes are the same and we are V9 so we have to deal with upper ++ vs. lower floating point registers. If one of the modes is a ++ 4-byte mode, and the other is not, we have to mark them as not ++ tieable because only the lower 32 floating point register are ++ addressable 32-bits at a time. ++ ++ We can't just test explicitly for SFmode, otherwise we won't ++ cover the vector mode cases properly. */ ++ ++ if (mclass1 != MODE_FLOAT && mclass1 != MODE_VECTOR_INT) ++ return true; ++ ++ size1 = GET_MODE_SIZE (mode1); ++ size2 = GET_MODE_SIZE (mode2); ++ if ((size1 > 4 && size2 == 4) ++ || (size2 > 4 && size1 == 4)) ++ return false; ++ ++ return true; ++} ++ ++/* Implement TARGET_CSTORE_MODE. */ ++ ++static scalar_int_mode ++sparc_cstore_mode (enum insn_code icode ATTRIBUTE_UNUSED) ++{ ++ return (TARGET_ARCH64 ? DImode : SImode); ++} ++ ++/* Return the compound expression made of T1 and T2. */ ++ ++static inline tree ++compound_expr (tree t1, tree t2) ++{ ++ return build2 (COMPOUND_EXPR, void_type_node, t1, t2); ++} ++ ++/* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV hook. */ ++ ++static void ++sparc_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update) ++{ ++ if (!TARGET_FPU) ++ return; ++ ++ const unsigned HOST_WIDE_INT accrued_exception_mask = 0x1f << 5; ++ const unsigned HOST_WIDE_INT trap_enable_mask = 0x1f << 23; ++ ++ /* We generate the equivalent of feholdexcept (&fenv_var): ++ ++ unsigned int fenv_var; ++ __builtin_store_fsr (&fenv_var); ++ ++ unsigned int tmp1_var; ++ tmp1_var = fenv_var & ~(accrued_exception_mask | trap_enable_mask); ++ ++ __builtin_load_fsr (&tmp1_var); */ ++ ++ tree fenv_var = create_tmp_var_raw (unsigned_type_node); ++ TREE_ADDRESSABLE (fenv_var) = 1; ++ tree fenv_addr = build_fold_addr_expr (fenv_var); ++ tree stfsr = sparc_builtins[SPARC_BUILTIN_STFSR]; ++ tree hold_stfsr ++ = build4 (TARGET_EXPR, unsigned_type_node, fenv_var, ++ build_call_expr (stfsr, 1, fenv_addr), NULL_TREE, NULL_TREE); ++ ++ tree tmp1_var = create_tmp_var_raw (unsigned_type_node); ++ TREE_ADDRESSABLE (tmp1_var) = 1; ++ tree masked_fenv_var ++ = build2 (BIT_AND_EXPR, unsigned_type_node, fenv_var, ++ build_int_cst (unsigned_type_node, ++ ~(accrued_exception_mask | trap_enable_mask))); ++ tree hold_mask ++ = build4 (TARGET_EXPR, unsigned_type_node, tmp1_var, masked_fenv_var, ++ NULL_TREE, NULL_TREE); ++ ++ tree tmp1_addr = build_fold_addr_expr (tmp1_var); ++ tree ldfsr = sparc_builtins[SPARC_BUILTIN_LDFSR]; ++ tree hold_ldfsr = build_call_expr (ldfsr, 1, tmp1_addr); ++ ++ *hold = compound_expr (compound_expr (hold_stfsr, hold_mask), hold_ldfsr); ++ ++ /* We reload the value of tmp1_var to clear the exceptions: ++ ++ __builtin_load_fsr (&tmp1_var); */ ++ ++ *clear = build_call_expr (ldfsr, 1, tmp1_addr); ++ ++ /* We generate the equivalent of feupdateenv (&fenv_var): ++ ++ unsigned int tmp2_var; ++ __builtin_store_fsr (&tmp2_var); ++ ++ __builtin_load_fsr (&fenv_var); ++ ++ if (SPARC_LOW_FE_EXCEPT_VALUES) ++ tmp2_var >>= 5; ++ __atomic_feraiseexcept ((int) tmp2_var); */ ++ ++ tree tmp2_var = create_tmp_var_raw (unsigned_type_node); ++ TREE_ADDRESSABLE (tmp2_var) = 1; ++ tree tmp2_addr = build_fold_addr_expr (tmp2_var); ++ tree update_stfsr ++ = build4 (TARGET_EXPR, unsigned_type_node, tmp2_var, ++ build_call_expr (stfsr, 1, tmp2_addr), NULL_TREE, NULL_TREE); ++ ++ tree update_ldfsr = build_call_expr (ldfsr, 1, fenv_addr); ++ ++ tree atomic_feraiseexcept ++ = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT); ++ tree update_call ++ = build_call_expr (atomic_feraiseexcept, 1, ++ fold_convert (integer_type_node, tmp2_var)); ++ ++ if (SPARC_LOW_FE_EXCEPT_VALUES) ++ { ++ tree shifted_tmp2_var ++ = build2 (RSHIFT_EXPR, unsigned_type_node, tmp2_var, ++ build_int_cst (unsigned_type_node, 5)); ++ tree update_shift ++ = build2 (MODIFY_EXPR, void_type_node, tmp2_var, shifted_tmp2_var); ++ update_call = compound_expr (update_shift, update_call); ++ } ++ ++ *update ++ = compound_expr (compound_expr (update_stfsr, update_ldfsr), update_call); ++} ++ ++/* Implement TARGET_CAN_CHANGE_MODE_CLASS. Borrowed from the PA port. ++ ++ SImode loads to floating-point registers are not zero-extended. ++ The definition for LOAD_EXTEND_OP specifies that integer loads ++ narrower than BITS_PER_WORD will be zero-extended. As a result, ++ we inhibit changes from SImode unless they are to a mode that is ++ identical in size. ++ ++ Likewise for SFmode, since word-mode paradoxical subregs are ++ problematic on big-endian architectures. */ ++ ++static bool ++sparc_can_change_mode_class (machine_mode from, machine_mode to, ++ reg_class_t rclass) ++{ ++ if (TARGET_ARCH64 ++ && GET_MODE_SIZE (from) == 4 ++ && GET_MODE_SIZE (to) != 4) ++ return !reg_classes_intersect_p (rclass, FP_REGS); ++ return true; ++} ++ ++/* Implement TARGET_CONSTANT_ALIGNMENT. */ ++ ++static HOST_WIDE_INT ++sparc_constant_alignment (const_tree exp, HOST_WIDE_INT align) ++{ ++ if (TREE_CODE (exp) == STRING_CST) ++ return MAX (align, FASTEST_ALIGNMENT); ++ return align; ++} ++ ++#include "gt-sparc.h" +diff -Nur gcc-10.3.0.orig/gcc/config/sparc/sparc.md gcc-10.3.0/gcc/config/sparc/sparc.md +--- gcc-10.3.0.orig/gcc/config/sparc/sparc.md 2021-04-08 13:56:28.205742322 +0200 ++++ gcc-10.3.0/gcc/config/sparc/sparc.md 2021-04-09 07:51:37.936504607 +0200 +@@ -1601,7 +1601,10 @@ + (clobber (reg:P O7_REG))] + "REGNO (operands[0]) == INTVAL (operands[3])" + { +- return output_load_pcrel_sym (operands); ++ if (flag_delayed_branch) ++ return "sethi\t%%hi(%a1-4), %0\n\tcall\t%a2\n\t add\t%0, %%lo(%a1+4), %0"; ++ else ++ return "sethi\t%%hi(%a1-8), %0\n\tadd\t%0, %%lo(%a1-4), %0\n\tcall\t%a2\n\t nop"; + } + [(set (attr "type") (const_string "multi")) + (set (attr "length") +diff -Nur gcc-10.3.0.orig/gcc/config/sparc/sparc.md.orig gcc-10.3.0/gcc/config/sparc/sparc.md.orig +--- gcc-10.3.0.orig/gcc/config/sparc/sparc.md.orig 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-10.3.0/gcc/config/sparc/sparc.md.orig 2021-04-08 13:56:28.205742322 +0200 +@@ -0,0 +1,9524 @@ ++;; Machine description for SPARC. ++;; Copyright (C) 1987-2020 Free Software Foundation, Inc. ++;; Contributed by Michael Tiemann (tiemann@cygnus.com) ++;; 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, ++;; at Cygnus Support. ++ ++;; This file is part of GCC. ++ ++;; GCC is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 3, or (at your option) ++;; any later version. ++ ++;; GCC is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++ ++;; You should have received a copy of the GNU General Public License ++;; along with GCC; see the file COPYING3. If not see ++;; . ++ ++(define_c_enum "unspec" [ ++ UNSPEC_MOVE_PIC ++ UNSPEC_UPDATE_RETURN ++ UNSPEC_LOAD_PCREL_SYM ++ UNSPEC_FRAME_BLOCKAGE ++ UNSPEC_MOVE_PIC_LABEL ++ UNSPEC_SETH44 ++ UNSPEC_SETM44 ++ UNSPEC_SETHH ++ UNSPEC_SETLM ++ UNSPEC_EMB_HISUM ++ UNSPEC_EMB_TEXTUHI ++ UNSPEC_EMB_TEXTHI ++ UNSPEC_EMB_TEXTULO ++ UNSPEC_EMB_SETHM ++ UNSPEC_MOVE_GOTDATA ++ ++ UNSPEC_MEMBAR ++ UNSPEC_ATOMIC ++ ++ UNSPEC_TLSGD ++ UNSPEC_TLSLDM ++ UNSPEC_TLSLDO ++ UNSPEC_TLSIE ++ UNSPEC_TLSLE ++ UNSPEC_TLSLD_BASE ++ ++ UNSPEC_FPACK16 ++ UNSPEC_FPACK32 ++ UNSPEC_FPACKFIX ++ UNSPEC_FEXPAND ++ UNSPEC_MUL16AU ++ UNSPEC_MUL16AL ++ UNSPEC_MUL8UL ++ UNSPEC_MULDUL ++ UNSPEC_ALIGNDATA ++ UNSPEC_FCMP ++ UNSPEC_PDIST ++ UNSPEC_EDGE8 ++ UNSPEC_EDGE8L ++ UNSPEC_EDGE16 ++ UNSPEC_EDGE16L ++ UNSPEC_EDGE32 ++ UNSPEC_EDGE32L ++ UNSPEC_ARRAY8 ++ UNSPEC_ARRAY16 ++ UNSPEC_ARRAY32 ++ ++ UNSPEC_SP_SET ++ UNSPEC_SP_TEST ++ ++ UNSPEC_EDGE8N ++ UNSPEC_EDGE8LN ++ UNSPEC_EDGE16N ++ UNSPEC_EDGE16LN ++ UNSPEC_EDGE32N ++ UNSPEC_EDGE32LN ++ UNSPEC_BSHUFFLE ++ UNSPEC_CMASK8 ++ UNSPEC_CMASK16 ++ UNSPEC_CMASK32 ++ UNSPEC_FCHKSM16 ++ UNSPEC_PDISTN ++ UNSPEC_FUCMP ++ UNSPEC_FHADD ++ UNSPEC_FHSUB ++ UNSPEC_XMUL ++ UNSPEC_MUL8 ++ UNSPEC_MUL8SU ++ UNSPEC_MULDSU ++ ++ UNSPEC_ADDV ++ UNSPEC_SUBV ++ UNSPEC_NEGV ++ ++ UNSPEC_DICTUNPACK ++ UNSPEC_FPCMPSHL ++ UNSPEC_FPUCMPSHL ++ UNSPEC_FPCMPDESHL ++ UNSPEC_FPCMPURSHL ++]) ++ ++(define_c_enum "unspecv" [ ++ UNSPECV_BLOCKAGE ++ ++ UNSPECV_SPECULATION_BARRIER ++ ++ UNSPECV_PROBE_STACK_RANGE ++ ++ UNSPECV_FLUSHW ++ UNSPECV_SAVEW ++ ++ UNSPECV_FLUSH ++ ++ UNSPECV_LDSTUB ++ UNSPECV_SWAP ++ UNSPECV_CAS ++ ++ UNSPECV_LDFSR ++ UNSPECV_STFSR ++]) ++ ++(define_constants ++ [(G0_REG 0) ++ (G1_REG 1) ++ (G2_REG 2) ++ (G3_REG 3) ++ (G4_REG 4) ++ (G5_REG 5) ++ (G6_REG 6) ++ (G7_REG 7) ++ (O0_REG 8) ++ (O1_REG 9) ++ (O2_REG 10) ++ (O3_REG 11) ++ (O4_REG 12) ++ (O5_REG 13) ++ (O6_REG 14) ++ (O7_REG 15) ++ (L0_REG 16) ++ (L1_REG 17) ++ (L2_REG 18) ++ (L3_REG 19) ++ (L4_REG 20) ++ (L5_REG 21) ++ (L6_REG 22) ++ (L7_REG 23) ++ (I0_REG 24) ++ (I1_REG 25) ++ (I2_REG 26) ++ (I3_REG 27) ++ (I4_REG 28) ++ (I5_REG 29) ++ (I6_REG 30) ++ (I7_REG 31) ++ (F0_REG 32) ++ (F1_REG 33) ++ (F2_REG 34) ++ (F3_REG 35) ++ (F4_REG 36) ++ (F5_REG 37) ++ (F6_REG 38) ++ (F7_REG 39) ++ (F8_REG 40) ++ (F9_REG 41) ++ (F10_REG 42) ++ (F11_REG 43) ++ (F12_REG 44) ++ (F13_REG 45) ++ (F14_REG 46) ++ (F15_REG 47) ++ (F16_REG 48) ++ (F17_REG 49) ++ (F18_REG 50) ++ (F19_REG 51) ++ (F20_REG 52) ++ (F21_REG 53) ++ (F22_REG 54) ++ (F23_REG 55) ++ (F24_REG 56) ++ (F25_REG 57) ++ (F26_REG 58) ++ (F27_REG 59) ++ (F28_REG 60) ++ (F29_REG 61) ++ (F30_REG 62) ++ (F31_REG 63) ++ (F32_REG 64) ++ (F34_REG 66) ++ (F36_REG 68) ++ (F38_REG 70) ++ (F40_REG 72) ++ (F42_REG 74) ++ (F44_REG 76) ++ (F46_REG 78) ++ (F48_REG 80) ++ (F50_REG 82) ++ (F52_REG 84) ++ (F54_REG 86) ++ (F56_REG 88) ++ (F58_REG 90) ++ (F60_REG 92) ++ (F62_REG 94) ++ (FCC0_REG 96) ++ (FCC1_REG 97) ++ (FCC2_REG 98) ++ (FCC3_REG 99) ++ (CC_REG 100) ++ (SFP_REG 101) ++ (GSR_REG 102) ++ ]) ++ ++(define_mode_iterator I [QI HI SI DI]) ++(define_mode_iterator P [(SI "TARGET_ARCH32") (DI "TARGET_ARCH64")]) ++(define_mode_iterator W [SI (DI "TARGET_ARCH64")]) ++(define_mode_iterator F [SF DF TF]) ++ ++;; The upper 32 fp regs on the v9 can't hold SFmode values. To deal with this ++;; a second register class, EXTRA_FP_REGS, exists for the v9 chip. The name ++;; is a bit of a misnomer as it covers all 64 fp regs. The corresponding ++;; constraint letter is 'e'. To avoid any confusion, 'e' is used instead of ++;; 'f' for all DF/TFmode values, including those that are specific to the v8. ++ ++;; Attribute for cpu type. ++;; These must match the values of enum sparc_processor_type in sparc-opts.h. ++(define_attr "cpu" ++ "v7, ++ cypress, ++ v8, ++ supersparc, ++ hypersparc, ++ leon, ++ leon3, ++ leon3v7, ++ sparclite, ++ f930, ++ f934, ++ sparclite86x, ++ sparclet, ++ tsc701, ++ v9, ++ ultrasparc, ++ ultrasparc3, ++ niagara, ++ niagara2, ++ niagara3, ++ niagara4, ++ niagara7, ++ m8" ++ (const (symbol_ref "sparc_cpu_attr"))) ++ ++;; Attribute for the instruction set. ++;; At present we only need to distinguish v9/!v9, but for clarity we ++;; test TARGET_V8 too. ++(define_attr "isa" "v7,v8,v9,sparclet" ++ (const ++ (cond [(symbol_ref "TARGET_V9") (const_string "v9") ++ (symbol_ref "TARGET_V8") (const_string "v8") ++ (symbol_ref "TARGET_SPARCLET") (const_string "sparclet")] ++ (const_string "v7")))) ++ ++(define_attr "cpu_feature" "none,fpu,fpunotv9,v9,vis,vis3,vis4,vis4b" ++ (const_string "none")) ++ ++(define_attr "lra" "disabled,enabled" ++ (const_string "enabled")) ++ ++(define_attr "enabled" "" ++ (cond [(eq_attr "cpu_feature" "none") ++ (cond [(eq_attr "lra" "disabled") (symbol_ref "!TARGET_LRA")] (const_int 1)) ++ (eq_attr "cpu_feature" "fpu") (symbol_ref "TARGET_FPU") ++ (eq_attr "cpu_feature" "fpunotv9") (symbol_ref "TARGET_FPU && !TARGET_V9") ++ (eq_attr "cpu_feature" "v9") (symbol_ref "TARGET_V9") ++ (eq_attr "cpu_feature" "vis") (symbol_ref "TARGET_VIS") ++ (eq_attr "cpu_feature" "vis3") (symbol_ref "TARGET_VIS3") ++ (eq_attr "cpu_feature" "vis4") (symbol_ref "TARGET_VIS4") ++ (eq_attr "cpu_feature" "vis4b") (symbol_ref "TARGET_VIS4B")] ++ (const_int 0))) ++ ++;; The SPARC instructions used by the backend are organized into a ++;; hierarchy using the insn attributes "type" and "subtype". ++;; ++;; The mnemonics used in the list below are the architectural names ++;; used in the Oracle SPARC Architecture specs. A / character ++;; separates the type from the subtype where appropriate. For ++;; brevity, text enclosed in {} denotes alternatives, while text ++;; enclosed in [] is optional. ++;; ++;; Please keep this list updated. It is of great help for keeping the ++;; correctness and coherence of the DFA schedulers. ++;; ++;; ialu: ++;; ialuX: ADD[X]C SUB[X]C ++;; shift: SLL[X] SRL[X] SRA[X] ++;; cmove: MOV{A,N,NE,E,G,LE,GE,L,GU,LEU,CC,CS,POS,NEG,VC,VS} ++;; MOVF{A,N,U,G,UG,L,UL,LG,NE,E,UE,GE,UGE,LE,ULE,O} ++;; MOVR{Z,LEZ,LZ,NZ,GZ,GEZ} ++;; compare: ADDcc ADDCcc ANDcc ORcc SUBcc SUBCcc XORcc XNORcc ++;; imul: MULX SMUL[cc] UMUL UMULXHI XMULX XMULXHI ++;; idiv: UDIVX SDIVX ++;; flush: FLUSH ++;; load/regular: LD{UB,UH,UW} LDFSR ++;; load/prefetch: PREFETCH ++;; fpload: LDF LDDF LDQF ++;; sload: LD{SB,SH,SW} ++;; store: ST{B,H,W,X} STFSR ++;; fpstore: STF STDF STQF ++;; cbcond: CWB{NE,E,G,LE,GE,L,GU,LEU,CC,CS,POS,NEG,VC,VS} ++;; CXB{NE,E,G,LE,GE,L,GU,LEU,CC,CS,POS,NEG,VC,VS} ++;; uncond_branch: BA BPA JMPL ++;; branch: B{NE,E,G,LE,GE,L,GU,LEU,CC,CS,POS,NEG,VC,VS} ++;; BP{NE,E,G,LE,GE,L,GU,LEU,CC,CS,POS,NEG,VC,VS} ++;; FB{U,G,UG,L,UL,LG,NE,BE,UE,GE,UGE,LE,ULE,O} ++;; call: CALL ++;; return: RESTORE RETURN ++;; fpmove: FABS{s,d,q} FMOV{s,d,q} FNEG{s,d,q} ++;; fpcmove: FMOV{S,D,Q}{icc,xcc,fcc} ++;; fpcrmove: FMOVR{s,d,q}{Z,LEZ,LZ,NZ,GZ,GEZ} ++;; fp: FADD{s,d,q} FSUB{s,d,q} FHSUB{s,d} FNHADD{s,d} FNADD{s,d} ++;; FiTO{s,d,q} FsTO{i,x,d,q} FdTO{i,x,s,q} FxTO{d,s,q} FqTO{i,x,s,d} ++;; fpcmp: FCMP{s,d,q} FCMPE{s,d,q} ++;; fpmul: FMADD{s,d} FMSUB{s,d} FMUL{s,d,q} FNMADD{s,d} ++;; FNMSUB{s,d} FNMUL{s,d} FNsMULd FsMULd ++;; FdMULq ++;; array: ARRAY{8,16,32} ++;; bmask: BMASK ++;; edge: EDGE{8,16,32}[L]cc ++;; edgen: EDGE{8,16,32}[L]n ++;; fpdivs: FDIV{s,q} ++;; fpsqrts: FSQRT{s,q} ++;; fpdivd: FDIVd ++;; fpsqrtd: FSQRTd ++;; lzd: LZCNT ++;; fga/addsub64: FP{ADD,SUB}64 ++;; fga/fpu: FCHKSM16 FEXPANd FMEAN16 FPMERGE ++;; FS{LL,RA,RL}{16,32} ++;; fga/maxmin: FP{MAX,MIN}[U]{8,16,32} ++;; fga/cmask: CMASK{8,16,32} ++;; fga/other: BSHUFFLE FALIGNDATAg FP{ADD,SUB}[S]{8,16,32} ++;; FP{ADD,SUB}US{8,16} DICTUNPACK ++;; gsr/reg: RDGSR WRGSR ++;; gsr/alignaddr: ALIGNADDRESS[_LITTLE] ++;; vismv/double: FSRC2d ++;; vismv/single: MOVwTOs FSRC2s ++;; vismv/movstouw: MOVsTOuw ++;; vismv/movxtod: MOVxTOd ++;; vismv/movdtox: MOVdTOx ++;; visl/single: F{AND,NAND,NOR,OR,NOT1}s ++;; F{AND,OR}NOT{1,2}s ++;; FONEs F{ZERO,XNOR,XOR}s FNOT2s ++;; visl/double: FONEd FZEROd FNOT1d F{OR,AND,XOR}d F{NOR,NAND,XNOR}d ++;; F{OR,AND}NOT1d F{OR,AND}NOT2d ++;; viscmp: FPCMP{LE,GT,NE,EQ}{8,16,32} FPCMPU{LE,GT,NE,EQ}{8,16,32} ++;; FPCMP{LE,GT,EQ,NE}{8,16,32}SHL FPCMPU{LE,GT,EQ,NE}{8,16,32}SHL ++;; FPCMPDE{8,16,32}SHL FPCMPUR{8,16,32}SHL ++;; fgm_pack: FPACKFIX FPACK{8,16,32} ++;; fgm_mul: FMUL8SUx16 FMUL8ULx16 FMUL8x16 FMUL8x16AL ++;; FMUL8x16AU FMULD8SUx16 FMULD8ULx16 ++;; pdist: PDIST ++;; pdistn: PDISTN ++ ++(define_attr "type" ++ "ialu,compare,shift, ++ load,sload,store, ++ uncond_branch,branch,call,sibcall,call_no_delay_slot,return, ++ cbcond,uncond_cbcond, ++ imul,idiv, ++ fpload,fpstore, ++ fp,fpmove, ++ fpcmove,fpcrmove, ++ fpcmp, ++ fpmul,fpdivs,fpdivd, ++ fpsqrts,fpsqrtd, ++ fga,visl,vismv,viscmp, ++ fgm_pack,fgm_mul,pdist,pdistn,edge,edgen,gsr,array,bmask, ++ cmove, ++ ialuX, ++ multi,savew,flushw,iflush,trap,lzd" ++ (const_string "ialu")) ++ ++(define_attr "subtype" ++ "single,double,movstouw,movxtod,movdtox, ++ addsub64,cmask,fpu,maxmin,other, ++ reg,alignaddr, ++ prefetch,regular" ++ (const_string "single")) ++ ++;; True if branch/call has empty delay slot and will emit a nop in it ++(define_attr "empty_delay_slot" "false,true" ++ (symbol_ref "(empty_delay_slot (insn) ++ ? EMPTY_DELAY_SLOT_TRUE : EMPTY_DELAY_SLOT_FALSE)")) ++ ++;; True if we are making use of compare-and-branch instructions. ++;; True if we should emit a nop after a cbcond instruction ++(define_attr "emit_cbcond_nop" "false,true" ++ (symbol_ref "(emit_cbcond_nop (insn) ++ ? EMIT_CBCOND_NOP_TRUE : EMIT_CBCOND_NOP_FALSE)")) ++ ++(define_attr "branch_type" "none,icc,fcc,reg" ++ (const_string "none")) ++ ++(define_attr "pic" "false,true" ++ (symbol_ref "(flag_pic != 0 ++ ? PIC_TRUE : PIC_FALSE)")) ++ ++(define_attr "calls_alloca" "false,true" ++ (symbol_ref "(cfun->calls_alloca != 0 ++ ? CALLS_ALLOCA_TRUE : CALLS_ALLOCA_FALSE)")) ++ ++(define_attr "calls_eh_return" "false,true" ++ (symbol_ref "(crtl->calls_eh_return != 0 ++ ? CALLS_EH_RETURN_TRUE : CALLS_EH_RETURN_FALSE)")) ++ ++(define_attr "leaf_function" "false,true" ++ (symbol_ref "(crtl->uses_only_leaf_regs != 0 ++ ? LEAF_FUNCTION_TRUE : LEAF_FUNCTION_FALSE)")) ++ ++(define_attr "delayed_branch" "false,true" ++ (symbol_ref "(flag_delayed_branch != 0 ++ ? DELAYED_BRANCH_TRUE : DELAYED_BRANCH_FALSE)")) ++ ++(define_attr "flat" "false,true" ++ (symbol_ref "(TARGET_FLAT != 0 ++ ? FLAT_TRUE : FLAT_FALSE)")) ++ ++(define_attr "fix_ut699" "false,true" ++ (symbol_ref "(sparc_fix_ut699 != 0 ++ ? FIX_UT699_TRUE : FIX_UT699_FALSE)")) ++ ++(define_attr "fix_b2bst" "false,true" ++ (symbol_ref "(sparc_fix_b2bst != 0 ++ ? FIX_B2BST_TRUE : FIX_B2BST_FALSE)")) ++ ++(define_attr "fix_lost_divsqrt" "false,true" ++ (symbol_ref "(sparc_fix_lost_divsqrt != 0 ++ ? FIX_LOST_DIVSQRT_TRUE : FIX_LOST_DIVSQRT_FALSE)")) ++ ++(define_attr "fix_gr712rc" "false,true" ++ (symbol_ref "(sparc_fix_gr712rc != 0 ++ ? FIX_GR712RC_TRUE : FIX_GR712RC_FALSE)")) ++ ++;; Length (in # of insns). ++;; Beware that setting a length greater or equal to 3 for conditional branches ++;; has a side-effect (see output_cbranch and output_v9branch). ++(define_attr "length" "" ++ (cond [(eq_attr "type" "uncond_branch,call") ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 2) ++ (const_int 1)) ++ (eq_attr "type" "sibcall") ++ (if_then_else (ior (eq_attr "leaf_function" "true") ++ (eq_attr "flat" "true")) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 3) ++ (const_int 2)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 2) ++ (const_int 1))) ++ (eq_attr "branch_type" "icc") ++ (if_then_else (match_operand 0 "v9_comparison_operator" "") ++ (if_then_else (lt (pc) (match_dup 1)) ++ (if_then_else (lt (minus (match_dup 1) (pc)) (const_int 260000)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 2) ++ (const_int 1)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 4) ++ (const_int 3))) ++ (if_then_else (lt (minus (pc) (match_dup 1)) (const_int 260000)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 2) ++ (const_int 1)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 4) ++ (const_int 3)))) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 2) ++ (const_int 1))) ++ (eq_attr "branch_type" "fcc") ++ (if_then_else (match_operand 0 "fcc0_register_operand" "") ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (if_then_else (not (match_test "TARGET_V9")) ++ (const_int 3) ++ (const_int 2)) ++ (if_then_else (not (match_test "TARGET_V9")) ++ (const_int 2) ++ (const_int 1))) ++ (if_then_else (lt (pc) (match_dup 2)) ++ (if_then_else (lt (minus (match_dup 2) (pc)) (const_int 260000)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 2) ++ (const_int 1)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 4) ++ (const_int 3))) ++ (if_then_else (lt (minus (pc) (match_dup 2)) (const_int 260000)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 2) ++ (const_int 1)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 4) ++ (const_int 3))))) ++ (eq_attr "branch_type" "reg") ++ (if_then_else (lt (pc) (match_dup 2)) ++ (if_then_else (lt (minus (match_dup 2) (pc)) (const_int 32000)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 2) ++ (const_int 1)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 4) ++ (const_int 3))) ++ (if_then_else (lt (minus (pc) (match_dup 2)) (const_int 32000)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 2) ++ (const_int 1)) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 4) ++ (const_int 3)))) ++ (eq_attr "type" "cbcond") ++ (if_then_else (lt (pc) (match_dup 3)) ++ (if_then_else (lt (minus (match_dup 3) (pc)) (const_int 500)) ++ (if_then_else (eq_attr "emit_cbcond_nop" "true") ++ (const_int 2) ++ (const_int 1)) ++ (const_int 4)) ++ (if_then_else (lt (minus (pc) (match_dup 3)) (const_int 500)) ++ (if_then_else (eq_attr "emit_cbcond_nop" "true") ++ (const_int 2) ++ (const_int 1)) ++ (const_int 4))) ++ (eq_attr "type" "uncond_cbcond") ++ (if_then_else (lt (pc) (match_dup 0)) ++ (if_then_else (lt (minus (match_dup 0) (pc)) (const_int 500)) ++ (if_then_else (eq_attr "emit_cbcond_nop" "true") ++ (const_int 2) ++ (const_int 1)) ++ (const_int 1)) ++ (if_then_else (lt (minus (pc) (match_dup 0)) (const_int 500)) ++ (if_then_else (eq_attr "emit_cbcond_nop" "true") ++ (const_int 2) ++ (const_int 1)) ++ (const_int 1))) ++ ] (const_int 1))) ++ ++;; FP precision. ++(define_attr "fptype" "single,double" ++ (const_string "single")) ++ ++;; FP precision specific to the UT699. ++(define_attr "fptype_ut699" "none,single" ++ (const_string "none")) ++ ++;; UltraSPARC-III integer load type. ++(define_attr "us3load_type" "2cycle,3cycle" ++ (const_string "2cycle")) ++ ++(define_asm_attributes ++ [(set_attr "length" "2") ++ (set_attr "type" "multi")]) ++ ++;; Attributes for branch scheduling ++(define_attr "tls_delay_slot" "false,true" ++ (symbol_ref "((TARGET_GNU_TLS && HAVE_GNU_LD) != 0 ++ ? TLS_DELAY_SLOT_TRUE : TLS_DELAY_SLOT_FALSE)")) ++ ++(define_attr "in_sibcall_delay" "false,true" ++ (symbol_ref "(eligible_for_sibcall_delay (insn) ++ ? IN_SIBCALL_DELAY_TRUE : IN_SIBCALL_DELAY_FALSE)")) ++ ++(define_attr "in_return_delay" "false,true" ++ (symbol_ref "(eligible_for_return_delay (insn) ++ ? IN_RETURN_DELAY_TRUE : IN_RETURN_DELAY_FALSE)")) ++ ++;; ??? !v9: Should implement the notion of predelay slots for floating-point ++;; branches. This would allow us to remove the nop always inserted before ++;; a floating point branch. ++ ++;; ??? It is OK for fill_simple_delay_slots to put load/store instructions ++;; in a delay slot, but it is not OK for fill_eager_delay_slots to do so. ++;; This is because doing so will add several pipeline stalls to the path ++;; that the load/store did not come from. Unfortunately, there is no way ++;; to prevent fill_eager_delay_slots from using load/store without completely ++;; disabling them. For the SPEC benchmark set, this is a serious lose, ++;; because it prevents us from moving back the final store of inner loops. ++ ++(define_attr "in_branch_delay" "false,true" ++ (cond [(eq_attr "type" "uncond_branch,branch,cbcond,uncond_cbcond,call,sibcall,call_no_delay_slot,multi") ++ (const_string "false") ++ (and (eq_attr "fix_lost_divsqrt" "true") ++ (eq_attr "type" "fpdivs,fpsqrts,fpdivd,fpsqrtd")) ++ (const_string "false") ++ (and (eq_attr "fix_b2bst" "true") (eq_attr "type" "store,fpstore")) ++ (const_string "false") ++ (and (eq_attr "fix_ut699" "true") (eq_attr "type" "load,sload")) ++ (const_string "false") ++ (and (eq_attr "fix_ut699" "true") ++ (and (eq_attr "type" "fpload,fp,fpmove,fpmul,fpdivs,fpsqrts") ++ (ior (eq_attr "fptype" "single") ++ (eq_attr "fptype_ut699" "single")))) ++ (const_string "false") ++ (eq_attr "length" "1") ++ (const_string "true") ++ ] (const_string "false"))) ++ ++(define_attr "in_integer_branch_annul_delay" "false,true" ++ (cond [(and (eq_attr "fix_gr712rc" "true") ++ (eq_attr "type" "fp,fpcmp,fpmove,fpcmove,fpmul, ++ fpdivs,fpsqrts,fpdivd,fpsqrtd")) ++ (const_string "false") ++ (eq_attr "in_branch_delay" "true") ++ (const_string "true") ++ ] (const_string "false"))) ++ ++(define_delay (eq_attr "type" "sibcall") ++ [(eq_attr "in_sibcall_delay" "true") (nil) (nil)]) ++ ++(define_delay (eq_attr "type" "return") ++ [(eq_attr "in_return_delay" "true") (nil) (nil)]) ++ ++(define_delay (ior (eq_attr "type" "call") (eq_attr "type" "uncond_branch")) ++ [(eq_attr "in_branch_delay" "true") (nil) (nil)]) ++ ++(define_delay (and (eq_attr "type" "branch") (not (eq_attr "branch_type" "icc"))) ++ [(eq_attr "in_branch_delay" "true") ++ (nil) ++ (eq_attr "in_branch_delay" "true")]) ++ ++(define_delay (and (eq_attr "type" "branch") (eq_attr "branch_type" "icc")) ++ [(eq_attr "in_branch_delay" "true") ++ (nil) ++ (eq_attr "in_integer_branch_annul_delay" "true")]) ++ ++;; Include SPARC DFA schedulers ++ ++(include "cypress.md") ++(include "supersparc.md") ++(include "hypersparc.md") ++(include "leon.md") ++(include "sparclet.md") ++(include "ultra1_2.md") ++(include "ultra3.md") ++(include "niagara.md") ++(include "niagara2.md") ++(include "niagara4.md") ++(include "niagara7.md") ++(include "m8.md") ++ ++ ++;; Operand and operator predicates and constraints ++ ++(include "predicates.md") ++(include "constraints.md") ++ ++ ++;; Compare instructions. ++ ++;; These are just the DEFINE_INSNs to match the patterns and the ++;; DEFINE_SPLITs for some of the scc insns that actually require ++;; more than one machine instruction. DEFINE_EXPANDs are further down. ++ ++(define_insn "*cmpsi_insn" ++ [(set (reg:CC CC_REG) ++ (compare:CC (match_operand:SI 0 "register_operand" "r") ++ (match_operand:SI 1 "arith_operand" "rI")))] ++ "" ++ "cmp\t%0, %1" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmpdi_sp64" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (match_operand:DI 0 "register_operand" "r") ++ (match_operand:DI 1 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++ "cmp\t%0, %1" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmpsi_sne" ++ [(set (reg:CCC CC_REG) ++ (compare:CCC (not:SI (match_operand:SI 0 "arith_operand" "rI")) ++ (const_int -1)))] ++ "" ++ "cmp\t%%g0, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmpdi_sne" ++ [(set (reg:CCXC CC_REG) ++ (compare:CCXC (not:DI (match_operand:DI 0 "arith_operand" "rI")) ++ (const_int -1)))] ++ "TARGET_ARCH64" ++ "cmp\t%%g0, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmpsf_fpe" ++ [(set (match_operand:CCFPE 0 "fcc_register_operand" "=c") ++ (compare:CCFPE (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f")))] ++ "TARGET_FPU" ++{ ++ if (TARGET_V9) ++ return "fcmpes\t%0, %1, %2"; ++ return "fcmpes\t%1, %2"; ++} ++ [(set_attr "type" "fpcmp")]) ++ ++(define_insn "*cmpdf_fpe" ++ [(set (match_operand:CCFPE 0 "fcc_register_operand" "=c") ++ (compare:CCFPE (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e")))] ++ "TARGET_FPU" ++{ ++ if (TARGET_V9) ++ return "fcmped\t%0, %1, %2"; ++ return "fcmped\t%1, %2"; ++} ++ [(set_attr "type" "fpcmp") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "*cmptf_fpe" ++ [(set (match_operand:CCFPE 0 "fcc_register_operand" "=c") ++ (compare:CCFPE (match_operand:TF 1 "register_operand" "e") ++ (match_operand:TF 2 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++{ ++ if (TARGET_V9) ++ return "fcmpeq\t%0, %1, %2"; ++ return "fcmpeq\t%1, %2"; ++} ++ [(set_attr "type" "fpcmp")]) ++ ++(define_insn "*cmpsf_fp" ++ [(set (match_operand:CCFP 0 "fcc_register_operand" "=c") ++ (compare:CCFP (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f")))] ++ "TARGET_FPU" ++{ ++ if (TARGET_V9) ++ return "fcmps\t%0, %1, %2"; ++ return "fcmps\t%1, %2"; ++} ++ [(set_attr "type" "fpcmp")]) ++ ++(define_insn "*cmpdf_fp" ++ [(set (match_operand:CCFP 0 "fcc_register_operand" "=c") ++ (compare:CCFP (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e")))] ++ "TARGET_FPU" ++{ ++ if (TARGET_V9) ++ return "fcmpd\t%0, %1, %2"; ++ return "fcmpd\t%1, %2"; ++} ++ [(set_attr "type" "fpcmp") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "*cmptf_fp" ++ [(set (match_operand:CCFP 0 "fcc_register_operand" "=c") ++ (compare:CCFP (match_operand:TF 1 "register_operand" "e") ++ (match_operand:TF 2 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++{ ++ if (TARGET_V9) ++ return "fcmpq\t%0, %1, %2"; ++ return "fcmpq\t%1, %2"; ++} ++ [(set_attr "type" "fpcmp")]) ++ ++;; Next come the scc insns. ++ ++;; Note that the boolean result (operand 0) takes on DImode ++;; (not SImode) when TARGET_ARCH64. ++ ++(define_expand "cstoresi4" ++ [(use (match_operator 1 "comparison_operator" ++ [(match_operand:SI 2 "compare_operand" "") ++ (match_operand:SI 3 "arith_operand" "")])) ++ (clobber (match_operand:SI 0 "cstore_result_operand"))] ++ "" ++{ ++ if (GET_CODE (operands[2]) == ZERO_EXTRACT && operands[3] != const0_rtx) ++ operands[2] = force_reg (SImode, operands[2]); ++ if (emit_scc_insn (operands)) DONE; else FAIL; ++}) ++ ++(define_expand "cstoredi4" ++ [(use (match_operator 1 "comparison_operator" ++ [(match_operand:DI 2 "compare_operand" "") ++ (match_operand:DI 3 "arith_operand" "")])) ++ (clobber (match_operand:SI 0 "cstore_result_operand"))] ++ "TARGET_ARCH64" ++{ ++ if (GET_CODE (operands[2]) == ZERO_EXTRACT && operands[3] != const0_rtx) ++ operands[2] = force_reg (DImode, operands[2]); ++ if (emit_scc_insn (operands)) DONE; else FAIL; ++}) ++ ++(define_expand "cstore4" ++ [(use (match_operator 1 "comparison_operator" ++ [(match_operand:F 2 "register_operand" "") ++ (match_operand:F 3 "register_operand" "")])) ++ (clobber (match_operand:SI 0 "cstore_result_operand"))] ++ "TARGET_FPU" ++{ ++ if (emit_scc_insn (operands)) DONE; else FAIL; ++}) ++ ++;; The SNE and SEQ patterns are special because they can be done ++;; without any branching and do not involve a COMPARE. ++ ++(define_insn_and_split "*snesi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (ne:W (match_operand:SI 1 "register_operand" "r") ++ (const_int 0))) ++ (clobber (reg:CC CC_REG))] ++ "" ++ "#" ++ "" ++ [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (ltu:W (reg:CCC CC_REG) (const_int 0)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*neg_snesi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (neg:W (ne:W (match_operand:SI 1 "register_operand" "r") ++ (const_int 0)))) ++ (clobber (reg:CC CC_REG))] ++ "" ++ "#" ++ "" ++ [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (neg:W (ltu:W (reg:CCC CC_REG) (const_int 0))))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*snedi_zero" ++ [(set (match_operand:W 0 "register_operand" "=&r") ++ (ne:W (match_operand:DI 1 "register_operand" "r") ++ (const_int 0)))] ++ "TARGET_ARCH64 && !TARGET_VIS3" ++ "#" ++ "&& !reg_overlap_mentioned_p (operands[1], operands[0])" ++ [(set (match_dup 0) (const_int 0)) ++ (set (match_dup 0) (if_then_else:W (ne:DI (match_dup 1) (const_int 0)) ++ (const_int 1) ++ (match_dup 0)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*snedi_zero_vis3" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (ne:W (match_operand:DI 1 "register_operand" "r") ++ (const_int 0))) ++ (clobber (reg:CCX CC_REG))] ++ "TARGET_ARCH64 && TARGET_VIS3" ++ "#" ++ "" ++ [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (ltu:W (reg:CCXC CC_REG) (const_int 0)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*neg_snedi_zero" ++ [(set (match_operand:W 0 "register_operand" "=&r") ++ (neg:W (ne:W (match_operand:DI 1 "register_operand" "r") ++ (const_int 0))))] ++ "TARGET_ARCH64 && !TARGET_SUBXC" ++ "#" ++ "&& !reg_overlap_mentioned_p (operands[1], operands[0])" ++ [(set (match_dup 0) (const_int 0)) ++ (set (match_dup 0) (if_then_else:W (ne:DI (match_dup 1) (const_int 0)) ++ (const_int -1) ++ (match_dup 0)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*neg_snedi_zero_subxc" ++ [(set (match_operand:W 0 "register_operand" "=&r") ++ (neg:W (ne:W (match_operand:DI 1 "register_operand" "r") ++ (const_int 0)))) ++ (clobber (reg:CCX CC_REG))] ++ "TARGET_ARCH64 && TARGET_SUBXC" ++ "#" ++ "" ++ [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (neg:W (ltu:W (reg:CCXC CC_REG) (const_int 0))))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*seqsi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (eq:W (match_operand:SI 1 "register_operand" "r") ++ (const_int 0))) ++ (clobber (reg:CC CC_REG))] ++ "" ++ "#" ++ "" ++ [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (geu:W (reg:CCC CC_REG) (const_int 0)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*neg_seqsi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (neg:W (eq:W (match_operand:SI 1 "register_operand" "r") ++ (const_int 0)))) ++ (clobber (reg:CC CC_REG))] ++ "" ++ "#" ++ "" ++ [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (neg:W (geu:W (reg:CCC CC_REG) (const_int 0))))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*seqdi_zero" ++ [(set (match_operand:W 0 "register_operand" "=&r") ++ (eq:W (match_operand:DI 1 "register_operand" "r") ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "#" ++ "&& !reg_overlap_mentioned_p (operands[1], operands[0])" ++ [(set (match_dup 0) (const_int 0)) ++ (set (match_dup 0) (if_then_else:W (eq:DI (match_dup 1) (const_int 0)) ++ (const_int 1) ++ (match_dup 0)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*neg_seqdi_zero" ++ [(set (match_operand:W 0 "register_operand" "=&r") ++ (neg:W (eq:W (match_operand:DI 1 "register_operand" "r") ++ (const_int 0))))] ++ "TARGET_ARCH64" ++ "#" ++ "&& !reg_overlap_mentioned_p (operands[1], operands[0])" ++ [(set (match_dup 0) (const_int 0)) ++ (set (match_dup 0) (if_then_else:W (eq:DI (match_dup 1) (const_int 0)) ++ (const_int -1) ++ (match_dup 0)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++;; We can also do (x + (i == 0)) and related, so put them in. ++ ++(define_insn_and_split "*plus_snesi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (ne:W (match_operand:SI 1 "register_operand" "r") ++ (const_int 0)) ++ (match_operand:W 2 "register_operand" "r"))) ++ (clobber (reg:CC CC_REG))] ++ "" ++ "#" ++ "" ++ [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (plus:W (ltu:W (reg:CCC CC_REG) (const_int 0)) ++ (match_dup 2)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*plus_plus_snesi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (plus:W (ne:W (match_operand:SI 1 "register_operand" "r") ++ (const_int 0)) ++ (match_operand:W 2 "register_operand" "r")) ++ (match_operand:W 3 "register_operand" "r"))) ++ (clobber (reg:CC CC_REG))] ++ "" ++ "#" ++ "" ++ [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (plus:W (plus:W (ltu:W (reg:CCC CC_REG) (const_int 0)) ++ (match_dup 2)) ++ (match_dup 3)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*plus_snedi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (ne:W (match_operand:DI 1 "register_operand" "r") ++ (const_int 0)) ++ (match_operand:W 2 "register_operand" "r"))) ++ (clobber (reg:CCX CC_REG))] ++ "TARGET_ARCH64 && TARGET_VIS3" ++ "#" ++ "" ++ [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (plus:W (ltu:W (reg:CCXC CC_REG) (const_int 0)) ++ (match_dup 2)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*plus_plus_snedi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (plus:W (ne:W (match_operand:DI 1 "register_operand" "r") ++ (const_int 0)) ++ (match_operand:W 2 "register_operand" "r")) ++ (match_operand:W 3 "register_operand" "r"))) ++ (clobber (reg:CCX CC_REG))] ++ "TARGET_ARCH64 && TARGET_VIS3" ++ "#" ++ "" ++ [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (plus:W (plus:W (ltu:W (reg:CCXC CC_REG) (const_int 0)) ++ (match_dup 2)) ++ (match_dup 3)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*minus_snesi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (match_operand:W 2 "register_operand" "r") ++ (ne:W (match_operand:SI 1 "register_operand" "r") ++ (const_int 0)))) ++ (clobber (reg:CC CC_REG))] ++ "" ++ "#" ++ "" ++ [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (minus:W (match_dup 2) ++ (ltu:W (reg:CCC CC_REG) (const_int 0))))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*minus_minus_snesi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (minus:W (match_operand:W 2 "register_operand" "r") ++ (ne:W (match_operand:SI 1 "register_operand" "r") ++ (const_int 0))) ++ (match_operand:W 3 "register_operand" "r"))) ++ (clobber (reg:CC CC_REG))] ++ "" ++ "#" ++ "" ++ [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (minus:W (minus:W (match_dup 2) ++ (ltu:W (reg:CCC CC_REG) (const_int 0))) ++ (match_dup 3)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*minus_snedi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (match_operand:W 2 "register_operand" "r") ++ (ne:W (match_operand:DI 1 "register_operand" "r") ++ (const_int 0)))) ++ (clobber (reg:CCX CC_REG))] ++ "TARGET_ARCH64 && TARGET_SUBXC" ++ "#" ++ "" ++ [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (minus:W (match_dup 2) ++ (ltu:W (reg:CCXC CC_REG) (const_int 0))))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*minus_minus_snedi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (minus:W (match_operand:W 2 "register_operand" "r") ++ (ne:W (match_operand:DI 1 "register_operand" "r") ++ (const_int 0))) ++ (match_operand:W 3 "register_operand" "r"))) ++ (clobber (reg:CCX CC_REG))] ++ "TARGET_ARCH64 && TARGET_SUBXC" ++ "#" ++ "" ++ [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (minus:W (minus:W (match_dup 2) ++ (ltu:W (reg:CCXC CC_REG) (const_int 0))) ++ (match_dup 3)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*plus_seqsi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (eq:W (match_operand:SI 1 "register_operand" "r") ++ (const_int 0)) ++ (match_operand:W 2 "register_operand" "r"))) ++ (clobber (reg:CC CC_REG))] ++ "" ++ "#" ++ "" ++ [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (plus:W (geu:W (reg:CCC CC_REG) (const_int 0)) ++ (match_dup 2)))] ++ "" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*minus_seqsi_zero" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (match_operand:W 2 "register_operand" "r") ++ (eq:W (match_operand:SI 1 "register_operand" "r") ++ (const_int 0)))) ++ (clobber (reg:CC CC_REG))] ++ "" ++ "#" ++ "" ++ [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) ++ (set (match_dup 0) (minus:W (match_dup 2) ++ (geu:W (reg:CCC CC_REG) (const_int 0))))] ++ "" ++ [(set_attr "length" "2")]) ++ ++;; We can also do GEU and LTU directly, but these operate after a compare. ++ ++(define_insn "*sltu_insn" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (ltu:W (match_operand 1 "icc_register_operand" "X") (const_int 0)))] ++ "GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode" ++ "addx\t%%g0, 0, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*plus_sltu" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (ltu:W (match_operand 2 "icc_register_operand" "X") ++ (const_int 0)) ++ (match_operand:W 1 "arith_operand" "rI")))] ++ "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" ++ "addx\t%%g0, %1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*plus_plus_sltu" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (plus:W (ltu:W (match_operand 3 "icc_register_operand" "X") ++ (const_int 0)) ++ (match_operand:W 1 "register_operand" "%r")) ++ (match_operand:W 2 "arith_operand" "rI")))] ++ "GET_MODE (operands[3]) == CCmode || GET_MODE (operands[3]) == CCCmode" ++ "addx\t%1, %2, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*neg_sgeu" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (neg:W (geu:W (match_operand 1 "icc_register_operand" "X") ++ (const_int 0))))] ++ "GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode" ++ "addx\t%%g0, -1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*neg_sgeusidi" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extend:DI (neg:SI (geu:SI (match_operand 1 "icc_register_operand" "X") ++ (const_int 0)))))] ++ "TARGET_ARCH64 ++ && (GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode)" ++ "addx\t%%g0, -1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*minus_sgeu" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (match_operand:W 1 "register_operand" "r") ++ (geu:W (match_operand 2 "icc_register_operand" "X") ++ (const_int 0))))] ++ "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" ++ "addx\t%1, -1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*addx" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (plus:W (match_operand:W 1 "register_operand" "%r") ++ (match_operand:W 2 "arith_operand" "rI")) ++ (ltu:W (match_operand 3 "icc_register_operand" "X") ++ (const_int 0))))] ++ "GET_MODE (operands[3]) == CCmode || GET_MODE (operands[3]) == CCCmode" ++ "addx\t%1, %2, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*sltu_insn_vis3" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (ltu:W (match_operand 1 "icc_register_operand" "X") (const_int 0)))] ++ "TARGET_ARCH64 && TARGET_VIS3 ++ && (GET_MODE (operands[1]) == CCXmode || GET_MODE (operands[1]) == CCXCmode)" ++ "addxc\t%%g0, %%g0, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*plus_sltu_vis3" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (ltu:W (match_operand 2 "icc_register_operand" "X") ++ (const_int 0)) ++ (match_operand:W 1 "register_operand" "r")))] ++ "TARGET_ARCH64 && TARGET_VIS3 ++ && (GET_MODE (operands[2]) == CCXmode || GET_MODE (operands[2]) == CCXCmode)" ++ "addxc\t%%g0, %1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*plus_plus_sltu_vis3" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (plus:W (ltu:W (match_operand 3 "icc_register_operand" "X") ++ (const_int 0)) ++ (match_operand:W 1 "register_operand" "%r")) ++ (match_operand:W 2 "register_operand" "r")))] ++ "TARGET_ARCH64 && TARGET_VIS3 ++ && (GET_MODE (operands[3]) == CCXmode || GET_MODE (operands[3]) == CCXCmode)" ++ "addxc\t%1, %2, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*addxc" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (plus:W (match_operand:W 1 "register_operand" "%r") ++ (match_operand:W 2 "register_operand" "r")) ++ (ltu:W (match_operand 3 "icc_register_operand" "X") ++ (const_int 0))))] ++ "TARGET_ARCH64 && TARGET_VIS3 ++ && (GET_MODE (operands[3]) == CCXmode || GET_MODE (operands[3]) == CCXCmode)" ++ "addxc\t%1, %2, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*neg_sltu" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (neg:W (ltu:W (match_operand 1 "icc_register_operand" "X") ++ (const_int 0))))] ++ "GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode" ++ "subx\t%%g0, 0, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*neg_sltusidi" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extend:DI (neg:SI (ltu:SI (match_operand 1 "icc_register_operand" "X") ++ (const_int 0)))))] ++ "TARGET_ARCH64 ++ && (GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode)" ++ "subx\t%%g0, 0, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*minus_neg_sltu" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (neg:W (ltu:W (match_operand 2 "icc_register_operand" "X") ++ (const_int 0))) ++ (match_operand:W 1 "arith_operand" "rI")))] ++ "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" ++ "subx\t%%g0, %1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*neg_plus_sltu" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (neg:W (plus:W (ltu:W (match_operand 2 "icc_register_operand" "X") ++ (const_int 0)) ++ (match_operand:W 1 "arith_operand" "rI"))))] ++ "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" ++ "subx\t%%g0, %1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*minus_sltu" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (match_operand:W 1 "register_operand" "r") ++ (ltu:W (match_operand 2 "icc_register_operand" "X") ++ (const_int 0))))] ++ "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" ++ "subx\t%1, 0, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*minus_minus_sltu" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (minus:W (match_operand:W 1 "register_or_zero_operand" "rJ") ++ (ltu:W (match_operand 3 "icc_register_operand" "X") ++ (const_int 0))) ++ (match_operand:W 2 "arith_operand" "rI")))] ++ "GET_MODE (operands[3]) == CCmode || GET_MODE (operands[3]) == CCCmode" ++ "subx\t%r1, %2, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*sgeu_insn" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (geu:W (match_operand 1 "icc_register_operand" "X") (const_int 0)))] ++ "GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode" ++ "subx\t%%g0, -1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*plus_sgeu" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (plus:W (geu:W (match_operand 2 "icc_register_operand" "X") ++ (const_int 0)) ++ (match_operand:W 1 "register_operand" "r")))] ++ "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" ++ "subx\t%1, -1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*subx" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (minus:W (match_operand:W 1 "register_or_zero_operand" "rJ") ++ (match_operand:W 2 "arith_operand" "rI")) ++ (ltu:W (match_operand 3 "icc_register_operand" "X") ++ (const_int 0))))] ++ "GET_MODE (operands[3]) == CCmode || GET_MODE (operands[3]) == CCCmode" ++ "subx\t%r1, %2, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*neg_sltu_subxc" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (neg:W (ltu:W (match_operand 1 "icc_register_operand" "X") ++ (const_int 0))))] ++ "TARGET_ARCH64 && TARGET_SUBXC ++ && (GET_MODE (operands[1]) == CCXmode || GET_MODE (operands[1]) == CCXCmode)" ++ "subxc\t%%g0, %%g0, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*minus_neg_sltu_subxc" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (neg:W (ltu:W (match_operand 2 "icc_register_operand" "X") ++ (const_int 0))) ++ (match_operand:W 1 "register_operand" "r")))] ++ "TARGET_ARCH64 && TARGET_SUBXC ++ && (GET_MODE (operands[2]) == CCXmode || GET_MODE (operands[2]) == CCXCmode)" ++ "subxc\t%%g0, %1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*neg_plus_sltu_subxc" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (neg:W (plus:W (ltu:W (match_operand 2 "icc_register_operand" "X") ++ (const_int 0)) ++ (match_operand:W 1 "register_operand" "r"))))] ++ "TARGET_ARCH64 && TARGET_SUBXC ++ && (GET_MODE (operands[2]) == CCXmode || GET_MODE (operands[2]) == CCXCmode)" ++ "subxc\t%%g0, %1, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*minus_sltu_subxc" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (match_operand:W 1 "register_operand" "r") ++ (ltu:W (match_operand 2 "icc_register_operand" "X") ++ (const_int 0))))] ++ "TARGET_ARCH64 && TARGET_SUBXC ++ && (GET_MODE (operands[2]) == CCXmode || GET_MODE (operands[2]) == CCXCmode)" ++ "subxc\t%1, %%g0, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*minus_minus_sltu_subxc" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (minus:W (match_operand:W 1 "register_or_zero_operand" "rJ") ++ (ltu:W (match_operand 3 "icc_register_operand" "X") ++ (const_int 0))) ++ (match_operand:W 2 "register_operand" "r")))] ++ "TARGET_ARCH64 && TARGET_SUBXC ++ && (GET_MODE (operands[3]) == CCXmode || GET_MODE (operands[3]) == CCXCmode)" ++ "subxc\t%r1, %2, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_insn "*subxc" ++ [(set (match_operand:W 0 "register_operand" "=r") ++ (minus:W (minus:W (match_operand:W 1 "register_or_zero_operand" "rJ") ++ (match_operand:W 2 "register_operand" "r")) ++ (ltu:W (match_operand 3 "icc_register_operand" "X") ++ (const_int 0))))] ++ "TARGET_ARCH64 && TARGET_SUBXC ++ && (GET_MODE (operands[3]) == CCXmode || GET_MODE (operands[3]) == CCXCmode)" ++ "subxc\t%r1, %2, %0" ++ [(set_attr "type" "ialuX")]) ++ ++(define_split ++ [(set (match_operand:W 0 "register_operand" "") ++ (match_operator:W 1 "icc_comparison_operator" ++ [(match_operand 2 "icc_register_operand" "") (const_int 0)]))] ++ "TARGET_V9 ++ /* 64-bit LTU is better implemented using addxc with VIS3. */ ++ && !(GET_CODE (operands[1]) == LTU ++ && (GET_MODE (operands[2]) == CCXmode ++ || GET_MODE (operands[2]) == CCXCmode) ++ && TARGET_VIS3) ++ /* 32-bit LTU/GEU are better implemented using addx/subx. */ ++ && !((GET_CODE (operands[1]) == LTU || GET_CODE (operands[1]) == GEU) ++ && (GET_MODE (operands[2]) == CCmode ++ || GET_MODE (operands[2]) == CCCmode))" ++ [(set (match_dup 0) (const_int 0)) ++ (set (match_dup 0) ++ (if_then_else:SI (match_op_dup:W 1 [(match_dup 2) (const_int 0)]) ++ (const_int 1) ++ (match_dup 0)))] ++ "") ++ ++;; These control RTL generation for conditional jump insns ++ ++(define_expand "cbranchcc4" ++ [(set (pc) ++ (if_then_else (match_operator 0 "comparison_operator" ++ [(match_operand 1 "compare_operand" "") ++ (match_operand 2 "const_zero_operand" "")]) ++ (label_ref (match_operand 3 "" "")) ++ (pc)))] ++ "" ++ "") ++ ++(define_expand "cbranchsi4" ++ [(use (match_operator 0 "comparison_operator" ++ [(match_operand:SI 1 "compare_operand" "") ++ (match_operand:SI 2 "arith_operand" "")])) ++ (use (match_operand 3 ""))] ++ "" ++{ ++ if (GET_CODE (operands[1]) == ZERO_EXTRACT && operands[2] != const0_rtx) ++ operands[1] = force_reg (SImode, operands[1]); ++ emit_conditional_branch_insn (operands); ++ DONE; ++}) ++ ++(define_expand "cbranchdi4" ++ [(use (match_operator 0 "comparison_operator" ++ [(match_operand:DI 1 "compare_operand" "") ++ (match_operand:DI 2 "arith_operand" "")])) ++ (use (match_operand 3 ""))] ++ "TARGET_ARCH64" ++{ ++ if (GET_CODE (operands[1]) == ZERO_EXTRACT && operands[2] != const0_rtx) ++ operands[1] = force_reg (DImode, operands[1]); ++ emit_conditional_branch_insn (operands); ++ DONE; ++}) ++ ++(define_expand "cbranch4" ++ [(use (match_operator 0 "comparison_operator" ++ [(match_operand:F 1 "register_operand" "") ++ (match_operand:F 2 "register_operand" "")])) ++ (use (match_operand 3 ""))] ++ "TARGET_FPU" ++{ ++ emit_conditional_branch_insn (operands); ++ DONE; ++}) ++ ++ ++;; Now match both normal and inverted jump. ++ ++;; XXX fpcmp nop braindamage ++(define_insn "*normal_branch" ++ [(set (pc) ++ (if_then_else (match_operator 0 "icc_comparison_operator" ++ [(reg CC_REG) (const_int 0)]) ++ (label_ref (match_operand 1 "" "")) ++ (pc)))] ++ "" ++{ ++ return output_cbranch (operands[0], operands[1], 1, 0, ++ final_sequence && INSN_ANNULLED_BRANCH_P (insn), ++ insn); ++} ++ [(set_attr "type" "branch") ++ (set_attr "branch_type" "icc")]) ++ ++;; XXX fpcmp nop braindamage ++(define_insn "*inverted_branch" ++ [(set (pc) ++ (if_then_else (match_operator 0 "icc_comparison_operator" ++ [(reg CC_REG) (const_int 0)]) ++ (pc) ++ (label_ref (match_operand 1 "" ""))))] ++ "" ++{ ++ return output_cbranch (operands[0], operands[1], 1, 1, ++ final_sequence && INSN_ANNULLED_BRANCH_P (insn), ++ insn); ++} ++ [(set_attr "type" "branch") ++ (set_attr "branch_type" "icc")]) ++ ++;; XXX fpcmp nop braindamage ++(define_insn "*normal_fp_branch" ++ [(set (pc) ++ (if_then_else (match_operator 1 "comparison_operator" ++ [(match_operand:CCFP 0 "fcc_register_operand" "c") ++ (const_int 0)]) ++ (label_ref (match_operand 2 "" "")) ++ (pc)))] ++ "" ++{ ++ return output_cbranch (operands[1], operands[2], 2, 0, ++ final_sequence && INSN_ANNULLED_BRANCH_P (insn), ++ insn); ++} ++ [(set_attr "type" "branch") ++ (set_attr "branch_type" "fcc")]) ++ ++;; XXX fpcmp nop braindamage ++(define_insn "*inverted_fp_branch" ++ [(set (pc) ++ (if_then_else (match_operator 1 "comparison_operator" ++ [(match_operand:CCFP 0 "fcc_register_operand" "c") ++ (const_int 0)]) ++ (pc) ++ (label_ref (match_operand 2 "" ""))))] ++ "" ++{ ++ return output_cbranch (operands[1], operands[2], 2, 1, ++ final_sequence && INSN_ANNULLED_BRANCH_P (insn), ++ insn); ++} ++ [(set_attr "type" "branch") ++ (set_attr "branch_type" "fcc")]) ++ ++;; XXX fpcmp nop braindamage ++(define_insn "*normal_fpe_branch" ++ [(set (pc) ++ (if_then_else (match_operator 1 "comparison_operator" ++ [(match_operand:CCFPE 0 "fcc_register_operand" "c") ++ (const_int 0)]) ++ (label_ref (match_operand 2 "" "")) ++ (pc)))] ++ "" ++{ ++ return output_cbranch (operands[1], operands[2], 2, 0, ++ final_sequence && INSN_ANNULLED_BRANCH_P (insn), ++ insn); ++} ++ [(set_attr "type" "branch") ++ (set_attr "branch_type" "fcc")]) ++ ++;; XXX fpcmp nop braindamage ++(define_insn "*inverted_fpe_branch" ++ [(set (pc) ++ (if_then_else (match_operator 1 "comparison_operator" ++ [(match_operand:CCFPE 0 "fcc_register_operand" "c") ++ (const_int 0)]) ++ (pc) ++ (label_ref (match_operand 2 "" ""))))] ++ "" ++{ ++ return output_cbranch (operands[1], operands[2], 2, 1, ++ final_sequence && INSN_ANNULLED_BRANCH_P (insn), ++ insn); ++} ++ [(set_attr "type" "branch") ++ (set_attr "branch_type" "fcc")]) ++ ++;; SPARC V9-specific jump insns. None of these are guaranteed to be ++;; in the architecture. ++ ++(define_insn "*cbcond_sp32" ++ [(set (pc) ++ (if_then_else (match_operator 0 "comparison_operator" ++ [(match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith5_operand" "rA")]) ++ (label_ref (match_operand 3 "" "")) ++ (pc)))] ++ "TARGET_CBCOND" ++{ ++ return output_cbcond (operands[0], operands[3], insn); ++} ++ [(set_attr "type" "cbcond")]) ++ ++(define_insn "*cbcond_sp64" ++ [(set (pc) ++ (if_then_else (match_operator 0 "comparison_operator" ++ [(match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "arith5_operand" "rA")]) ++ (label_ref (match_operand 3 "" "")) ++ (pc)))] ++ "TARGET_ARCH64 && TARGET_CBCOND" ++{ ++ return output_cbcond (operands[0], operands[3], insn); ++} ++ [(set_attr "type" "cbcond")]) ++ ++;; There are no 32-bit brreg insns. ++ ++(define_insn "*normal_int_branch_sp64" ++ [(set (pc) ++ (if_then_else (match_operator 0 "v9_register_comparison_operator" ++ [(match_operand:DI 1 "register_operand" "r") ++ (const_int 0)]) ++ (label_ref (match_operand 2 "" "")) ++ (pc)))] ++ "TARGET_ARCH64" ++{ ++ return output_v9branch (operands[0], operands[2], 1, 2, 0, ++ final_sequence && INSN_ANNULLED_BRANCH_P (insn), ++ insn); ++} ++ [(set_attr "type" "branch") ++ (set_attr "branch_type" "reg")]) ++ ++(define_insn "*inverted_int_branch_sp64" ++ [(set (pc) ++ (if_then_else (match_operator 0 "v9_register_comparison_operator" ++ [(match_operand:DI 1 "register_operand" "r") ++ (const_int 0)]) ++ (pc) ++ (label_ref (match_operand 2 "" ""))))] ++ "TARGET_ARCH64" ++{ ++ return output_v9branch (operands[0], operands[2], 1, 2, 1, ++ final_sequence && INSN_ANNULLED_BRANCH_P (insn), ++ insn); ++} ++ [(set_attr "type" "branch") ++ (set_attr "branch_type" "reg")]) ++ ++ ++;; Load in operand 0 the (absolute) address of operand 1, which is a symbolic ++;; value subject to a PC-relative relocation. Operand 2 is a helper function ++;; that adds the PC value at the call point to register #(operand 3). ++;; ++;; Even on V9 we use this call sequence with a stub, instead of "rd %pc, ..." ++;; because the RDPC instruction is extremely expensive and incurs a complete ++;; instruction pipeline flush. ++ ++(define_insn "load_pcrel_sym" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "symbolic_operand" "") ++ (match_operand:P 2 "call_address_operand" "") ++ (match_operand:P 3 "const_int_operand" "")] ++ UNSPEC_LOAD_PCREL_SYM)) ++ (clobber (reg:P O7_REG))] ++ "REGNO (operands[0]) == INTVAL (operands[3])" ++{ ++ return output_load_pcrel_sym (operands); ++} ++ [(set (attr "type") (const_string "multi")) ++ (set (attr "length") ++ (if_then_else (eq_attr "delayed_branch" "true") ++ (const_int 3) ++ (const_int 4)))]) ++ ++ ++;; Integer move instructions ++ ++(define_expand "movqi" ++ [(set (match_operand:QI 0 "nonimmediate_operand" "") ++ (match_operand:QI 1 "general_operand" ""))] ++ "" ++{ ++ if (sparc_expand_move (QImode, operands)) ++ DONE; ++}) ++ ++(define_insn "*movqi_insn" ++ [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m") ++ (match_operand:QI 1 "input_operand" "rI,m,rJ"))] ++ "(register_operand (operands[0], QImode) ++ || register_or_zero_operand (operands[1], QImode))" ++ "@ ++ mov\t%1, %0 ++ ldub\t%1, %0 ++ stb\t%r1, %0" ++ [(set_attr "type" "*,load,store") ++ (set_attr "subtype" "*,regular,*") ++ (set_attr "us3load_type" "*,3cycle,*")]) ++ ++(define_expand "movhi" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "") ++ (match_operand:HI 1 "general_operand" ""))] ++ "" ++{ ++ if (sparc_expand_move (HImode, operands)) ++ DONE; ++}) ++ ++(define_insn "*movhi_insn" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,m") ++ (match_operand:HI 1 "input_operand" "rI,K,m,rJ"))] ++ "(register_operand (operands[0], HImode) ++ || register_or_zero_operand (operands[1], HImode))" ++ "@ ++ mov\t%1, %0 ++ sethi\t%%hi(%a1), %0 ++ lduh\t%1, %0 ++ sth\t%r1, %0" ++ [(set_attr "type" "*,*,load,store") ++ (set_attr "subtype" "*,*,regular,*") ++ (set_attr "us3load_type" "*,*,3cycle,*")]) ++ ++;; We always work with constants here. ++(define_insn "*movhi_lo_sum" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ior:HI (match_operand:HI 1 "register_operand" "%r") ++ (match_operand:HI 2 "small_int_operand" "I")))] ++ "" ++ "or\t%1, %2, %0") ++ ++(define_expand "movsi" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "general_operand" ""))] ++ "" ++{ ++ if (sparc_expand_move (SImode, operands)) ++ DONE; ++}) ++ ++(define_insn "*movsi_insn" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r, m, r,*f,?*f,?*f, m,d,d") ++ (match_operand:SI 1 "input_operand" "rI,K,m,rJ,*f, r, f, m,?*f,J,P"))] ++ "register_operand (operands[0], SImode) ++ || register_or_zero_or_all_ones_operand (operands[1], SImode)" ++ "@ ++ mov\t%1, %0 ++ sethi\t%%hi(%a1), %0 ++ ld\t%1, %0 ++ st\t%r1, %0 ++ movstouw\t%1, %0 ++ movwtos\t%1, %0 ++ fmovs\t%1, %0 ++ ld\t%1, %0 ++ st\t%1, %0 ++ fzeros\t%0 ++ fones\t%0" ++ [(set_attr "type" "*,*,load,store,vismv,vismv,fpmove,fpload,fpstore,visl,visl") ++ (set_attr "subtype" "*,*,regular,*,movstouw,single,*,*,*,single,single") ++ (set_attr "cpu_feature" "*,*,*,*,vis3,vis3,*,*,*,vis,vis")]) ++ ++(define_insn "*movsi_lo_sum" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (lo_sum:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "in")))] ++ "!flag_pic" ++ "or\t%1, %%lo(%a2), %0") ++ ++(define_insn "*movsi_high" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (high:SI (match_operand:SI 1 "immediate_operand" "in")))] ++ "!flag_pic" ++ "sethi\t%%hi(%a1), %0") ++ ++;; The next two patterns must wrap the SYMBOL_REF in an UNSPEC ++;; so that CSE won't optimize the address computation away. ++(define_insn "movsi_lo_sum_pic" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (lo_sum:SI (match_operand:SI 1 "register_operand" "r") ++ (unspec:SI [(match_operand:SI 2 "immediate_operand" "in")] ++ UNSPEC_MOVE_PIC)))] ++ "flag_pic" ++{ ++#ifdef HAVE_AS_SPARC_GOTDATA_OP ++ return "xor\t%1, %%gdop_lox10(%a2), %0"; ++#else ++ return "or\t%1, %%lo(%a2), %0"; ++#endif ++}) ++ ++(define_insn "movsi_high_pic" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (high:SI (unspec:SI [(match_operand 1 "" "")] UNSPEC_MOVE_PIC)))] ++ "flag_pic && check_pic (1)" ++{ ++#ifdef HAVE_AS_SPARC_GOTDATA_OP ++ return "sethi\t%%gdop_hix22(%a1), %0"; ++#else ++ return "sethi\t%%hi(%a1), %0"; ++#endif ++}) ++ ++(define_insn "movsi_pic_gotdata_op" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r") ++ (match_operand 3 "symbolic_operand" "")] ++ UNSPEC_MOVE_GOTDATA))] ++ "flag_pic && check_pic (1)" ++{ ++#ifdef HAVE_AS_SPARC_GOTDATA_OP ++ return "ld\t[%1 + %2], %0, %%gdop(%a3)"; ++#else ++ return "ld\t[%1 + %2], %0"; ++#endif ++} ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular")]) ++ ++(define_expand "movsi_pic_label_ref" ++ [(set (match_dup 3) (high:SI ++ (unspec:SI [(match_operand:SI 1 "symbolic_operand" "") ++ (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) ++ (set (match_dup 4) (lo_sum:SI (match_dup 3) ++ (unspec:SI [(match_dup 1) (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (minus:SI (match_dup 5) (match_dup 4)))] ++ "flag_pic" ++{ ++ crtl->uses_pic_offset_table = 1; ++ operands[2] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); ++ if (!can_create_pseudo_p ()) ++ { ++ operands[3] = operands[0]; ++ operands[4] = operands[0]; ++ } ++ else ++ { ++ operands[3] = gen_reg_rtx (SImode); ++ operands[4] = gen_reg_rtx (SImode); ++ } ++ operands[5] = pic_offset_table_rtx; ++}) ++ ++(define_insn "*movsi_high_pic_label_ref" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (high:SI ++ (unspec:SI [(match_operand:SI 1 "symbolic_operand" "") ++ (match_operand:SI 2 "" "")] UNSPEC_MOVE_PIC_LABEL)))] ++ "flag_pic" ++ "sethi\t%%hi(%a2-(%a1-.)), %0") ++ ++(define_insn "*movsi_lo_sum_pic_label_ref" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (lo_sum:SI (match_operand:SI 1 "register_operand" "r") ++ (unspec:SI [(match_operand:SI 2 "symbolic_operand" "") ++ (match_operand:SI 3 "" "")] UNSPEC_MOVE_PIC_LABEL)))] ++ "flag_pic" ++ "or\t%1, %%lo(%a3-(%a2-.)), %0") ++ ++;; Set up the PIC register for VxWorks. ++ ++(define_expand "vxworks_load_got" ++ [(set (match_dup 0) ++ (high:SI (match_dup 1))) ++ (set (match_dup 0) ++ (mem:SI (lo_sum:SI (match_dup 0) (match_dup 1)))) ++ (set (match_dup 0) ++ (mem:SI (lo_sum:SI (match_dup 0) (match_dup 2))))] ++ "TARGET_VXWORKS_RTP" ++{ ++ operands[0] = pic_offset_table_rtx; ++ operands[1] = gen_rtx_SYMBOL_REF (SImode, VXWORKS_GOTT_BASE); ++ operands[2] = gen_rtx_SYMBOL_REF (SImode, VXWORKS_GOTT_INDEX); ++}) ++ ++(define_expand "movdi" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "") ++ (match_operand:DI 1 "general_operand" ""))] ++ "" ++{ ++ if (sparc_expand_move (DImode, operands)) ++ DONE; ++}) ++ ++;; Be careful, fmovd does not exist when !v9. ++;; We match MEM moves directly when we have correct even ++;; numbered registers, but fall into splits otherwise. ++;; The constraint ordering here is really important to ++;; avoid insane problems in reload, especially for patterns ++;; of the form: ++;; ++;; (set (mem:DI (plus:SI (reg:SI 30 %fp) ++;; (const_int -5016))) ++;; (reg:DI 2 %g2)) ++;; ++ ++(define_insn "*movdi_insn_sp32" ++ [(set (match_operand:DI 0 "nonimmediate_operand" ++ "=T,o,U,T,r,o,r,r,?*f, T,?*f, o,?*e,?*e, r,?*f,?*e, T,*b,*b") ++ (match_operand:DI 1 "input_operand" ++ " J,J,T,U,o,r,i,r, T,?*f, o,?*f, *e, *e,?*f, r, T,?*e, J, P"))] ++ "TARGET_ARCH32 ++ && (register_operand (operands[0], DImode) ++ || register_or_zero_operand (operands[1], DImode))" ++ "@ ++ stx\t%r1, %0 ++ # ++ ldd\t%1, %0 ++ std\t%1, %0 ++ ldd\t%1, %0 ++ std\t%1, %0 ++ # ++ # ++ ldd\t%1, %0 ++ std\t%1, %0 ++ # ++ # ++ fmovd\t%1, %0 ++ # ++ # ++ # ++ ldd\t%1, %0 ++ std\t%1, %0 ++ fzero\t%0 ++ fone\t%0" ++ [(set_attr "type" "store,*,load,store,load,store,*,*,fpload,fpstore,*,*,fpmove,*,*,*,fpload,fpstore,visl, ++visl") ++ (set_attr "subtype" "*,*,regular,*,regular,*,*,*,*,*,*,*,*,*,*,*,*,*,double,double") ++ (set_attr "length" "*,2,*,*,*,*,2,2,*,*,2,2,*,2,2,2,*,*,*,*") ++ (set_attr "fptype" "*,*,*,*,*,*,*,*,*,*,*,*,double,*,*,*,*,*,double,double") ++ (set_attr "cpu_feature" "v9,*,*,*,*,*,*,*,fpu,fpu,fpu,fpu,v9,fpunotv9,vis3,vis3,fpu,fpu,vis,vis") ++ (set_attr "lra" "*,*,disabled,disabled,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*")]) ++ ++(define_insn "*movdi_insn_sp64" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,r, m, r,*e,?*e,?*e, W,b,b") ++ (match_operand:DI 1 "input_operand" "rI,N,m,rJ,*e, r, *e, W,?*e,J,P"))] ++ "TARGET_ARCH64 ++ && (register_operand (operands[0], DImode) ++ || register_or_zero_or_all_ones_operand (operands[1], DImode))" ++ "@ ++ mov\t%1, %0 ++ sethi\t%%hi(%a1), %0 ++ ldx\t%1, %0 ++ stx\t%r1, %0 ++ movdtox\t%1, %0 ++ movxtod\t%1, %0 ++ fmovd\t%1, %0 ++ ldd\t%1, %0 ++ std\t%1, %0 ++ fzero\t%0 ++ fone\t%0" ++ [(set_attr "type" "*,*,load,store,vismv,vismv,fpmove,fpload,fpstore,visl,visl") ++ (set_attr "subtype" "*,*,regular,*,movdtox,movxtod,*,*,*,double,double") ++ (set_attr "fptype" "*,*,*,*,*,*,double,*,*,double,double") ++ (set_attr "cpu_feature" "*,*,*,*,vis3,vis3,*,*,*,vis,vis")]) ++ ++(define_expand "movdi_pic_label_ref" ++ [(set (match_dup 3) (high:DI ++ (unspec:DI [(match_operand:DI 1 "symbolic_operand" "") ++ (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) ++ (set (match_dup 4) (lo_sum:DI (match_dup 3) ++ (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (minus:DI (match_dup 5) (match_dup 4)))] ++ "TARGET_ARCH64 && flag_pic" ++{ ++ crtl->uses_pic_offset_table = 1; ++ operands[2] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); ++ if (!can_create_pseudo_p ()) ++ { ++ operands[3] = operands[0]; ++ operands[4] = operands[0]; ++ } ++ else ++ { ++ operands[3] = gen_reg_rtx (DImode); ++ operands[4] = gen_reg_rtx (DImode); ++ } ++ operands[5] = pic_offset_table_rtx; ++}) ++ ++(define_insn "*movdi_high_pic_label_ref" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (high:DI ++ (unspec:DI [(match_operand:DI 1 "symbolic_operand" "") ++ (match_operand:DI 2 "" "")] UNSPEC_MOVE_PIC_LABEL)))] ++ "TARGET_ARCH64 && flag_pic" ++ "sethi\t%%hi(%a2-(%a1-.)), %0") ++ ++(define_insn "*movdi_lo_sum_pic_label_ref" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lo_sum:DI (match_operand:DI 1 "register_operand" "r") ++ (unspec:DI [(match_operand:DI 2 "symbolic_operand" "") ++ (match_operand:DI 3 "" "")] UNSPEC_MOVE_PIC_LABEL)))] ++ "TARGET_ARCH64 && flag_pic" ++ "or\t%1, %%lo(%a3-(%a2-.)), %0") ++ ++;; SPARC-v9 code model support insns. See sparc_emit_set_symbolic_const64 ++;; in sparc.c to see what is going on here... PIC stuff comes first. ++ ++(define_insn "movdi_lo_sum_pic" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lo_sum:DI (match_operand:DI 1 "register_operand" "r") ++ (unspec:DI [(match_operand:DI 2 "immediate_operand" "in")] ++ UNSPEC_MOVE_PIC)))] ++ "TARGET_ARCH64 && flag_pic" ++{ ++#ifdef HAVE_AS_SPARC_GOTDATA_OP ++ return "xor\t%1, %%gdop_lox10(%a2), %0"; ++#else ++ return "or\t%1, %%lo(%a2), %0"; ++#endif ++}) ++ ++(define_insn "movdi_high_pic" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (high:DI (unspec:DI [(match_operand 1 "" "")] UNSPEC_MOVE_PIC)))] ++ "TARGET_ARCH64 && flag_pic && check_pic (1)" ++{ ++#ifdef HAVE_AS_SPARC_GOTDATA_OP ++ return "sethi\t%%gdop_hix22(%a1), %0"; ++#else ++ return "sethi\t%%hi(%a1), %0"; ++#endif ++}) ++ ++(define_insn "movdi_pic_gotdata_op" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unspec:DI [(match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "register_operand" "r") ++ (match_operand 3 "symbolic_operand" "")] ++ UNSPEC_MOVE_GOTDATA))] ++ "TARGET_ARCH64 && flag_pic && check_pic (1)" ++{ ++#ifdef HAVE_AS_SPARC_GOTDATA_OP ++ return "ldx\t[%1 + %2], %0, %%gdop(%a3)"; ++#else ++ return "ldx\t[%1 + %2], %0"; ++#endif ++} ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular")]) ++ ++(define_insn "*sethi_di_medlow_embmedany_pic" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (high:DI (match_operand:DI 1 "medium_pic_operand" "")))] ++ "(TARGET_CM_MEDLOW || TARGET_CM_EMBMEDANY) && flag_pic && check_pic (1)" ++ "sethi\t%%hi(%a1), %0") ++ ++(define_insn "*sethi_di_medlow" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (high:DI (match_operand:DI 1 "symbolic_operand" "")))] ++ "TARGET_CM_MEDLOW && !flag_pic" ++ "sethi\t%%hi(%a1), %0") ++ ++(define_insn "*losum_di_medlow" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lo_sum:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "symbolic_operand" "")))] ++ "TARGET_CM_MEDLOW && !flag_pic" ++ "or\t%1, %%lo(%a2), %0") ++ ++(define_insn "seth44" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] ++ UNSPEC_SETH44)))] ++ "TARGET_CM_MEDMID && !flag_pic" ++ "sethi\t%%h44(%a1), %0") ++ ++(define_insn "setm44" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lo_sum:DI (match_operand:DI 1 "register_operand" "r") ++ (unspec:DI [(match_operand:DI 2 "symbolic_operand" "")] ++ UNSPEC_SETM44)))] ++ "TARGET_CM_MEDMID && !flag_pic" ++ "or\t%1, %%m44(%a2), %0") ++ ++(define_insn "setl44" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lo_sum:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "symbolic_operand" "")))] ++ "TARGET_CM_MEDMID && !flag_pic" ++ "or\t%1, %%l44(%a2), %0") ++ ++(define_insn "sethh" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] ++ UNSPEC_SETHH)))] ++ "TARGET_CM_MEDANY && !flag_pic" ++ "sethi\t%%hh(%a1), %0") ++ ++(define_insn "setlm" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] ++ UNSPEC_SETLM)))] ++ "TARGET_CM_MEDANY && !flag_pic" ++ "sethi\t%%lm(%a1), %0") ++ ++(define_insn "sethm" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lo_sum:DI (match_operand:DI 1 "register_operand" "r") ++ (unspec:DI [(match_operand:DI 2 "symbolic_operand" "")] ++ UNSPEC_EMB_SETHM)))] ++ "TARGET_CM_MEDANY && !flag_pic" ++ "or\t%1, %%hm(%a2), %0") ++ ++(define_insn "setlo" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lo_sum:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "symbolic_operand" "")))] ++ "TARGET_CM_MEDANY && !flag_pic" ++ "or\t%1, %%lo(%a2), %0") ++ ++(define_insn "embmedany_sethi" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (high:DI (unspec:DI [(match_operand:DI 1 "data_segment_operand" "")] ++ UNSPEC_EMB_HISUM)))] ++ "TARGET_CM_EMBMEDANY && !flag_pic" ++ "sethi\t%%hi(%a1), %0") ++ ++(define_insn "embmedany_losum" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lo_sum:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "data_segment_operand" "")))] ++ "TARGET_CM_EMBMEDANY && !flag_pic" ++ "add\t%1, %%lo(%a2), %0") ++ ++(define_insn "embmedany_brsum" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unspec:DI [(match_operand:DI 1 "register_operand" "r")] ++ UNSPEC_EMB_HISUM))] ++ "TARGET_CM_EMBMEDANY && !flag_pic" ++ "add\t%1, %_, %0") ++ ++(define_insn "embmedany_textuhi" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (high:DI (unspec:DI [(match_operand:DI 1 "text_segment_operand" "")] ++ UNSPEC_EMB_TEXTUHI)))] ++ "TARGET_CM_EMBMEDANY && !flag_pic" ++ "sethi\t%%uhi(%a1), %0") ++ ++(define_insn "embmedany_texthi" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (high:DI (unspec:DI [(match_operand:DI 1 "text_segment_operand" "")] ++ UNSPEC_EMB_TEXTHI)))] ++ "TARGET_CM_EMBMEDANY && !flag_pic" ++ "sethi\t%%hi(%a1), %0") ++ ++(define_insn "embmedany_textulo" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lo_sum:DI (match_operand:DI 1 "register_operand" "r") ++ (unspec:DI [(match_operand:DI 2 "text_segment_operand" "")] ++ UNSPEC_EMB_TEXTULO)))] ++ "TARGET_CM_EMBMEDANY && !flag_pic" ++ "or\t%1, %%ulo(%a2), %0") ++ ++(define_insn "embmedany_textlo" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lo_sum:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "text_segment_operand" "")))] ++ "TARGET_CM_EMBMEDANY && !flag_pic" ++ "or\t%1, %%lo(%a2), %0") ++ ++;; Now some patterns to help reload out a bit. ++(define_expand "reload_indi" ++ [(parallel [(match_operand:DI 0 "register_operand" "=r") ++ (match_operand:DI 1 "immediate_operand" "") ++ (match_operand:TI 2 "register_operand" "=&r")])] ++ "(TARGET_CM_MEDANY || TARGET_CM_EMBMEDANY) && !flag_pic" ++{ ++ sparc_emit_set_symbolic_const64 (operands[0], operands[1], operands[2]); ++ DONE; ++}) ++ ++(define_expand "reload_outdi" ++ [(parallel [(match_operand:DI 0 "register_operand" "=r") ++ (match_operand:DI 1 "immediate_operand" "") ++ (match_operand:TI 2 "register_operand" "=&r")])] ++ "(TARGET_CM_MEDANY || TARGET_CM_EMBMEDANY) && !flag_pic" ++{ ++ sparc_emit_set_symbolic_const64 (operands[0], operands[1], operands[2]); ++ DONE; ++}) ++ ++;; Split up putting CONSTs and REGs into DI regs when !arch64 ++(define_split ++ [(set (match_operand:DI 0 "register_operand" "") ++ (match_operand:DI 1 "const_int_operand" ""))] ++ "reload_completed ++ && TARGET_ARCH32 ++ && ((GET_CODE (operands[0]) == REG ++ && SPARC_INT_REG_P (REGNO (operands[0]))) ++ || (GET_CODE (operands[0]) == SUBREG ++ && GET_CODE (SUBREG_REG (operands[0])) == REG ++ && SPARC_INT_REG_P (REGNO (SUBREG_REG (operands[0])))))" ++ [(clobber (const_int 0))] ++{ ++ HOST_WIDE_INT low = trunc_int_for_mode (INTVAL (operands[1]), SImode); ++ HOST_WIDE_INT high = trunc_int_for_mode (INTVAL (operands[1]) >> 32, SImode); ++ rtx high_part = gen_highpart (SImode, operands[0]); ++ rtx low_part = gen_lowpart (SImode, operands[0]); ++ ++ emit_move_insn_1 (high_part, GEN_INT (high)); ++ ++ /* Slick... but this loses if the constant can be done in one insn. */ ++ if (low == high && !SPARC_SETHI32_P (high) && !SPARC_SIMM13_P (high)) ++ emit_move_insn_1 (low_part, high_part); ++ else ++ emit_move_insn_1 (low_part, GEN_INT (low)); ++ ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:DI 0 "register_operand" "") ++ (match_operand:DI 1 "register_operand" ""))] ++ "reload_completed ++ && (!TARGET_V9 ++ || (TARGET_ARCH32 ++ && sparc_split_reg_reg_legitimate (operands[0], operands[1])))" ++ [(clobber (const_int 0))] ++{ ++ sparc_split_reg_reg (operands[0], operands[1], SImode); ++ DONE; ++}) ++ ++;; Now handle the cases of memory moves from/to non-even ++;; DI mode register pairs. ++(define_split ++ [(set (match_operand:DI 0 "register_operand" "") ++ (match_operand:DI 1 "memory_operand" ""))] ++ "reload_completed ++ && TARGET_ARCH32 ++ && sparc_split_reg_mem_legitimate (operands[0], operands[1])" ++ [(clobber (const_int 0))] ++{ ++ sparc_split_reg_mem (operands[0], operands[1], SImode); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:DI 0 "memory_operand" "") ++ (match_operand:DI 1 "register_operand" ""))] ++ "reload_completed ++ && TARGET_ARCH32 ++ && sparc_split_reg_mem_legitimate (operands[1], operands[0])" ++ [(clobber (const_int 0))] ++{ ++ sparc_split_mem_reg (operands[0], operands[1], SImode); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:DI 0 "memory_operand" "") ++ (match_operand:DI 1 "const_zero_operand" ""))] ++ "reload_completed ++ && (!TARGET_V9 ++ || (TARGET_ARCH32 ++ && !mem_min_alignment (operands[0], 8))) ++ && offsettable_memref_p (operands[0])" ++ [(clobber (const_int 0))] ++{ ++ emit_move_insn_1 (adjust_address (operands[0], SImode, 0), const0_rtx); ++ emit_move_insn_1 (adjust_address (operands[0], SImode, 4), const0_rtx); ++ DONE; ++}) ++ ++(define_expand "movti" ++ [(set (match_operand:TI 0 "nonimmediate_operand" "") ++ (match_operand:TI 1 "general_operand" ""))] ++ "TARGET_ARCH64" ++{ ++ if (sparc_expand_move (TImode, operands)) ++ DONE; ++}) ++ ++;; We need to prevent reload from splitting TImode moves, because it ++;; might decide to overwrite a pointer with the value it points to. ++;; In that case we have to do the loads in the appropriate order so ++;; that the pointer is not destroyed too early. ++ ++(define_insn "*movti_insn_sp64" ++ [(set (match_operand:TI 0 "nonimmediate_operand" "=r , o,?*e,?o,b") ++ (match_operand:TI 1 "input_operand" "roJ,rJ, eo, e,J"))] ++ "TARGET_ARCH64 ++ && !TARGET_HARD_QUAD ++ && (register_operand (operands[0], TImode) ++ || register_or_zero_operand (operands[1], TImode))" ++ "#" ++ [(set_attr "length" "2,2,2,2,2") ++ (set_attr "cpu_feature" "*,*,fpu,fpu,vis")]) ++ ++(define_insn "*movti_insn_sp64_hq" ++ [(set (match_operand:TI 0 "nonimmediate_operand" "=r , o,?*e,?*e,?m,b") ++ (match_operand:TI 1 "input_operand" "roJ,rJ, e, m, e,J"))] ++ "TARGET_ARCH64 ++ && TARGET_HARD_QUAD ++ && (register_operand (operands[0], TImode) ++ || register_or_zero_operand (operands[1], TImode))" ++ "@ ++ # ++ # ++ fmovq\t%1, %0 ++ ldq\t%1, %0 ++ stq\t%1, %0 ++ #" ++ [(set_attr "type" "*,*,fpmove,fpload,fpstore,*") ++ (set_attr "length" "2,2,*,*,*,2")]) ++ ++;; Now all the splits to handle multi-insn TI mode moves. ++(define_split ++ [(set (match_operand:TI 0 "register_operand" "") ++ (match_operand:TI 1 "register_operand" ""))] ++ "reload_completed ++ && ((TARGET_FPU ++ && !TARGET_HARD_QUAD) ++ || (!fp_register_operand (operands[0], TImode) ++ && !fp_register_operand (operands[1], TImode)))" ++ [(clobber (const_int 0))] ++{ ++ rtx set_dest = operands[0]; ++ rtx set_src = operands[1]; ++ rtx dest1, dest2; ++ rtx src1, src2; ++ ++ dest1 = gen_highpart (DImode, set_dest); ++ dest2 = gen_lowpart (DImode, set_dest); ++ src1 = gen_highpart (DImode, set_src); ++ src2 = gen_lowpart (DImode, set_src); ++ ++ /* Now emit using the real source and destination we found, swapping ++ the order if we detect overlap. */ ++ if (reg_overlap_mentioned_p (dest1, src2)) ++ { ++ emit_insn (gen_movdi (dest2, src2)); ++ emit_insn (gen_movdi (dest1, src1)); ++ } ++ else ++ { ++ emit_insn (gen_movdi (dest1, src1)); ++ emit_insn (gen_movdi (dest2, src2)); ++ } ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:TI 0 "nonimmediate_operand" "") ++ (match_operand:TI 1 "const_zero_operand" ""))] ++ "reload_completed" ++ [(clobber (const_int 0))] ++{ ++ rtx set_dest = operands[0]; ++ rtx dest1, dest2; ++ ++ switch (GET_CODE (set_dest)) ++ { ++ case REG: ++ dest1 = gen_highpart (DImode, set_dest); ++ dest2 = gen_lowpart (DImode, set_dest); ++ break; ++ case MEM: ++ dest1 = adjust_address (set_dest, DImode, 0); ++ dest2 = adjust_address (set_dest, DImode, 8); ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ ++ emit_insn (gen_movdi (dest1, const0_rtx)); ++ emit_insn (gen_movdi (dest2, const0_rtx)); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:TI 0 "register_operand" "") ++ (match_operand:TI 1 "memory_operand" ""))] ++ "reload_completed ++ && offsettable_memref_p (operands[1]) ++ && (!TARGET_HARD_QUAD ++ || !fp_register_operand (operands[0], TImode))" ++ [(clobber (const_int 0))] ++{ ++ rtx word0 = adjust_address (operands[1], DImode, 0); ++ rtx word1 = adjust_address (operands[1], DImode, 8); ++ rtx set_dest, dest1, dest2; ++ ++ set_dest = operands[0]; ++ ++ dest1 = gen_highpart (DImode, set_dest); ++ dest2 = gen_lowpart (DImode, set_dest); ++ ++ /* Now output, ordering such that we don't clobber any registers ++ mentioned in the address. */ ++ if (reg_overlap_mentioned_p (dest1, word1)) ++ ++ { ++ emit_insn (gen_movdi (dest2, word1)); ++ emit_insn (gen_movdi (dest1, word0)); ++ } ++ else ++ { ++ emit_insn (gen_movdi (dest1, word0)); ++ emit_insn (gen_movdi (dest2, word1)); ++ } ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:TI 0 "memory_operand" "") ++ (match_operand:TI 1 "register_operand" ""))] ++ "reload_completed ++ && offsettable_memref_p (operands[0]) ++ && (!TARGET_HARD_QUAD ++ || !fp_register_operand (operands[1], TImode))" ++ [(clobber (const_int 0))] ++{ ++ rtx set_src = operands[1]; ++ ++ emit_insn (gen_movdi (adjust_address (operands[0], DImode, 0), ++ gen_highpart (DImode, set_src))); ++ emit_insn (gen_movdi (adjust_address (operands[0], DImode, 8), ++ gen_lowpart (DImode, set_src))); ++ DONE; ++}) ++ ++ ++;; Floating point move instructions ++ ++(define_expand "movsf" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "") ++ (match_operand:SF 1 "general_operand" ""))] ++ "" ++{ ++ if (sparc_expand_move (SFmode, operands)) ++ DONE; ++}) ++ ++(define_insn "*movsf_insn" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "=d,d,f, *r,*r,*r,*r, f,f,*r,m, m") ++ (match_operand:SF 1 "input_operand" "G,C,f,*rR, Q, S, f,*r,m, m,f,*rG"))] ++ "(register_operand (operands[0], SFmode) ++ || register_or_zero_or_all_ones_operand (operands[1], SFmode))" ++{ ++ if (GET_CODE (operands[1]) == CONST_DOUBLE ++ && (which_alternative == 3 ++ || which_alternative == 4 ++ || which_alternative == 5)) ++ { ++ long i; ++ ++ REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (operands[1]), i); ++ operands[1] = GEN_INT (i); ++ } ++ ++ switch (which_alternative) ++ { ++ case 0: ++ return "fzeros\t%0"; ++ case 1: ++ return "fones\t%0"; ++ case 2: ++ return "fmovs\t%1, %0"; ++ case 3: ++ return "mov\t%1, %0"; ++ case 4: ++ return "sethi\t%%hi(%a1), %0"; ++ case 5: ++ return "#"; ++ case 6: ++ return "movstouw\t%1, %0"; ++ case 7: ++ return "movwtos\t%1, %0"; ++ case 8: ++ case 9: ++ return "ld\t%1, %0"; ++ case 10: ++ case 11: ++ return "st\t%r1, %0"; ++ default: ++ gcc_unreachable (); ++ } ++} ++ [(set_attr "type" "visl,visl,fpmove,*,*,*,vismv,vismv,fpload,load,fpstore,store") ++ (set_attr "subtype" "single,single,*,*,*,*,movstouw,single,*,regular,*,*") ++ (set_attr "cpu_feature" "vis,vis,fpu,*,*,*,vis3,vis3,fpu,*,fpu,*")]) ++ ++;; The following 3 patterns build SFmode constants in integer registers. ++ ++(define_insn "*movsf_lo_sum" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (lo_sum:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "fp_const_high_losum_operand" "S")))] ++ "" ++{ ++ long i; ++ ++ REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (operands[2]), i); ++ operands[2] = GEN_INT (i); ++ return "or\t%1, %%lo(%a2), %0"; ++}) ++ ++(define_insn "*movsf_high" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (high:SF (match_operand:SF 1 "fp_const_high_losum_operand" "S")))] ++ "" ++{ ++ long i; ++ ++ REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (operands[1]), i); ++ operands[1] = GEN_INT (i); ++ return "sethi\t%%hi(%1), %0"; ++}) ++ ++(define_split ++ [(set (match_operand:SF 0 "register_operand" "") ++ (match_operand:SF 1 "fp_const_high_losum_operand" ""))] ++ "REG_P (operands[0]) && SPARC_INT_REG_P (REGNO (operands[0]))" ++ [(set (match_dup 0) (high:SF (match_dup 1))) ++ (set (match_dup 0) (lo_sum:SF (match_dup 0) (match_dup 1)))]) ++ ++(define_expand "movdf" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "") ++ (match_operand:DF 1 "general_operand" ""))] ++ "" ++{ ++ if (sparc_expand_move (DFmode, operands)) ++ DONE; ++}) ++ ++(define_insn "*movdf_insn_sp32" ++ [(set (match_operand:DF 0 "nonimmediate_operand" ++ "=T,o,b,b,e,e,*r, f, e,T,U,T, f,o, *r,*r, o") ++ (match_operand:DF 1 "input_operand" ++ " G,G,G,C,e,e, f,*r,T#F,e,T,U,o#F,f,*rF, o,*r"))] ++ "TARGET_ARCH32 ++ && (register_operand (operands[0], DFmode) ++ || register_or_zero_or_all_ones_operand (operands[1], DFmode))" ++ "@ ++ stx\t%r1, %0 ++ # ++ fzero\t%0 ++ fone\t%0 ++ fmovd\t%1, %0 ++ # ++ # ++ # ++ ldd\t%1, %0 ++ std\t%1, %0 ++ ldd\t%1, %0 ++ std\t%1, %0 ++ # ++ # ++ # ++ ldd\t%1, %0 ++ std\t%1, %0" ++ [(set_attr "type" "store,*,visl,visl,fpmove,*,*,*,fpload,fpstore,load,store,*,*,*,load,store") ++ (set_attr "subtype" "*,*,double,double,*,*,*,*,*,*,regular,*,*,*,*,regular,*") ++ (set_attr "length" "*,2,*,*,*,2,2,2,*,*,*,*,2,2,2,*,*") ++ (set_attr "fptype" "*,*,double,double,double,*,*,*,*,*,*,*,*,*,*,*,*") ++ (set_attr "cpu_feature" "v9,*,vis,vis,v9,fpunotv9,vis3,vis3,fpu,fpu,*,*,fpu,fpu,*,*,*") ++ (set_attr "lra" "*,*,*,*,*,*,*,*,*,*,disabled,disabled,*,*,*,*,*")]) ++ ++(define_insn "*movdf_insn_sp64" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "=b,b,e,*r, e, e,W, *r,*r, m,*r") ++ (match_operand:DF 1 "input_operand" "G,C,e, e,*r,W#F,e,*rG, m,*rG, F"))] ++ "TARGET_ARCH64 ++ && (register_operand (operands[0], DFmode) ++ || register_or_zero_or_all_ones_operand (operands[1], DFmode))" ++ "@ ++ fzero\t%0 ++ fone\t%0 ++ fmovd\t%1, %0 ++ movdtox\t%1, %0 ++ movxtod\t%1, %0 ++ ldd\t%1, %0 ++ std\t%1, %0 ++ mov\t%r1, %0 ++ ldx\t%1, %0 ++ stx\t%r1, %0 ++ #" ++ [(set_attr "type" "visl,visl,fpmove,vismv,vismv,load,store,*,load,store,*") ++ (set_attr "subtype" "double,double,*,movdtox,movxtod,regular,*,*,regular,*,*") ++ (set_attr "length" "*,*,*,*,*,*,*,*,*,*,2") ++ (set_attr "fptype" "double,double,double,double,double,*,*,*,*,*,*") ++ (set_attr "cpu_feature" "vis,vis,fpu,vis3,vis3,fpu,fpu,*,*,*,*")]) ++ ++;; This pattern builds DFmode constants in integer registers. ++(define_split ++ [(set (match_operand:DF 0 "register_operand" "") ++ (match_operand:DF 1 "const_double_operand" ""))] ++ "reload_completed ++ && REG_P (operands[0]) ++ && SPARC_INT_REG_P (REGNO (operands[0])) ++ && !const_zero_operand (operands[1], GET_MODE (operands[0]))" ++ [(clobber (const_int 0))] ++{ ++ operands[0] = gen_raw_REG (DImode, REGNO (operands[0])); ++ ++ if (TARGET_ARCH64) ++ { ++ rtx tem = simplify_subreg (DImode, operands[1], DFmode, 0); ++ emit_insn (gen_movdi (operands[0], tem)); ++ } ++ else ++ { ++ rtx hi = simplify_subreg (SImode, operands[1], DFmode, 0); ++ rtx lo = simplify_subreg (SImode, operands[1], DFmode, 4); ++ rtx high_part = gen_highpart (SImode, operands[0]); ++ rtx low_part = gen_lowpart (SImode, operands[0]); ++ ++ gcc_assert (GET_CODE (hi) == CONST_INT); ++ gcc_assert (GET_CODE (lo) == CONST_INT); ++ ++ emit_move_insn_1 (high_part, hi); ++ ++ /* Slick... but this loses if the constant can be done in one insn. */ ++ if (lo == hi ++ && !SPARC_SETHI32_P (INTVAL (hi)) ++ && !SPARC_SIMM13_P (INTVAL (hi))) ++ emit_move_insn_1 (low_part, high_part); ++ else ++ emit_move_insn_1 (low_part, lo); ++ } ++ DONE; ++}) ++ ++;; Ok, now the splits to handle all the multi insn and ++;; mis-aligned memory address cases. ++;; In these splits please take note that we must be ++;; careful when V9 but not ARCH64 because the integer ++;; register DFmode cases must be handled. ++(define_split ++ [(set (match_operand:DF 0 "register_operand" "") ++ (match_operand:DF 1 "const_zero_operand" ""))] ++ "reload_completed ++ && TARGET_ARCH32 ++ && ((GET_CODE (operands[0]) == REG ++ && SPARC_INT_REG_P (REGNO (operands[0]))) ++ || (GET_CODE (operands[0]) == SUBREG ++ && GET_CODE (SUBREG_REG (operands[0])) == REG ++ && SPARC_INT_REG_P (REGNO (SUBREG_REG (operands[0])))))" ++ [(clobber (const_int 0))] ++{ ++ emit_move_insn_1 (gen_highpart (SFmode, operands[0]), CONST0_RTX (SFmode)); ++ emit_move_insn_1 (gen_lowpart (SFmode, operands[0]), CONST0_RTX (SFmode)); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:DF 0 "register_operand" "") ++ (match_operand:DF 1 "register_operand" ""))] ++ "reload_completed ++ && (!TARGET_V9 ++ || (TARGET_ARCH32 ++ && sparc_split_reg_reg_legitimate (operands[0], operands[1])))" ++ [(clobber (const_int 0))] ++{ ++ sparc_split_reg_reg (operands[0], operands[1], SFmode); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:DF 0 "register_operand" "") ++ (match_operand:DF 1 "memory_operand" ""))] ++ "reload_completed ++ && TARGET_ARCH32 ++ && sparc_split_reg_mem_legitimate (operands[0], operands[1])" ++ [(clobber (const_int 0))] ++{ ++ sparc_split_reg_mem (operands[0], operands[1], SFmode); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:DF 0 "memory_operand" "") ++ (match_operand:DF 1 "register_operand" ""))] ++ "reload_completed ++ && TARGET_ARCH32 ++ && sparc_split_reg_mem_legitimate (operands[1], operands[0])" ++ [(clobber (const_int 0))] ++{ ++ sparc_split_mem_reg (operands[0], operands[1], SFmode); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:DF 0 "memory_operand" "") ++ (match_operand:DF 1 "const_zero_operand" ""))] ++ "reload_completed ++ && (!TARGET_V9 ++ || (TARGET_ARCH32 ++ && !mem_min_alignment (operands[0], 8))) ++ && offsettable_memref_p (operands[0])" ++ [(clobber (const_int 0))] ++{ ++ emit_move_insn_1 (adjust_address (operands[0], SFmode, 0), CONST0_RTX (SFmode)); ++ emit_move_insn_1 (adjust_address (operands[0], SFmode, 4), CONST0_RTX (SFmode)); ++ DONE; ++}) ++ ++(define_expand "movtf" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (match_operand:TF 1 "general_operand" ""))] ++ "" ++{ ++ if (sparc_expand_move (TFmode, operands)) ++ DONE; ++}) ++ ++(define_insn "*movtf_insn_sp32" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "=b, e,o, o, r") ++ (match_operand:TF 1 "input_operand" " G,oe,e,rG,roG"))] ++ "TARGET_ARCH32 ++ && (register_operand (operands[0], TFmode) ++ || register_or_zero_operand (operands[1], TFmode))" ++ "#" ++ [(set_attr "length" "4,4,4,4,4") ++ (set_attr "cpu_feature" "fpu,fpu,fpu,*,*")]) ++ ++(define_insn "*movtf_insn_sp64" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "=b, e,o, o, r") ++ (match_operand:TF 1 "input_operand" "G,oe,e,rG,roG"))] ++ "TARGET_ARCH64 ++ && !TARGET_HARD_QUAD ++ && (register_operand (operands[0], TFmode) ++ || register_or_zero_operand (operands[1], TFmode))" ++ "#" ++ [(set_attr "length" "2,2,2,2,2") ++ (set_attr "cpu_feature" "fpu,fpu,fpu,*,*")]) ++ ++(define_insn "*movtf_insn_sp64_hq" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "=b,e,e,m, o, r") ++ (match_operand:TF 1 "input_operand" "G,e,m,e,rG,roG"))] ++ "TARGET_ARCH64 ++ && TARGET_HARD_QUAD ++ && (register_operand (operands[0], TFmode) ++ || register_or_zero_operand (operands[1], TFmode))" ++ "@ ++ # ++ fmovq\t%1, %0 ++ ldq\t%1, %0 ++ stq\t%1, %0 ++ # ++ #" ++ [(set_attr "type" "*,fpmove,fpload,fpstore,*,*") ++ (set_attr "length" "2,*,*,*,2,2")]) ++ ++;; Now all the splits to handle multi-insn TF mode moves. ++(define_split ++ [(set (match_operand:TF 0 "register_operand" "") ++ (match_operand:TF 1 "register_operand" ""))] ++ "reload_completed ++ && (TARGET_ARCH32 ++ || (TARGET_FPU ++ && !TARGET_HARD_QUAD) ++ || (!fp_register_operand (operands[0], TFmode) ++ && !fp_register_operand (operands[1], TFmode)))" ++ [(clobber (const_int 0))] ++{ ++ rtx set_dest = operands[0]; ++ rtx set_src = operands[1]; ++ rtx dest1, dest2; ++ rtx src1, src2; ++ ++ dest1 = gen_df_reg (set_dest, 0); ++ dest2 = gen_df_reg (set_dest, 1); ++ src1 = gen_df_reg (set_src, 0); ++ src2 = gen_df_reg (set_src, 1); ++ ++ /* Now emit using the real source and destination we found, swapping ++ the order if we detect overlap. */ ++ if (reg_overlap_mentioned_p (dest1, src2)) ++ { ++ emit_insn (gen_movdf (dest2, src2)); ++ emit_insn (gen_movdf (dest1, src1)); ++ } ++ else ++ { ++ emit_insn (gen_movdf (dest1, src1)); ++ emit_insn (gen_movdf (dest2, src2)); ++ } ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (match_operand:TF 1 "const_zero_operand" ""))] ++ "reload_completed" ++ [(clobber (const_int 0))] ++{ ++ rtx set_dest = operands[0]; ++ rtx dest1, dest2; ++ ++ switch (GET_CODE (set_dest)) ++ { ++ case REG: ++ dest1 = gen_df_reg (set_dest, 0); ++ dest2 = gen_df_reg (set_dest, 1); ++ break; ++ case MEM: ++ dest1 = adjust_address (set_dest, DFmode, 0); ++ dest2 = adjust_address (set_dest, DFmode, 8); ++ break; ++ default: ++ gcc_unreachable (); ++ } ++ ++ emit_insn (gen_movdf (dest1, CONST0_RTX (DFmode))); ++ emit_insn (gen_movdf (dest2, CONST0_RTX (DFmode))); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:TF 0 "register_operand" "") ++ (match_operand:TF 1 "memory_operand" ""))] ++ "(reload_completed ++ && offsettable_memref_p (operands[1]) ++ && (TARGET_ARCH32 ++ || !TARGET_HARD_QUAD ++ || !fp_register_operand (operands[0], TFmode)))" ++ [(clobber (const_int 0))] ++{ ++ rtx word0 = adjust_address (operands[1], DFmode, 0); ++ rtx word1 = adjust_address (operands[1], DFmode, 8); ++ rtx set_dest, dest1, dest2; ++ ++ set_dest = operands[0]; ++ ++ dest1 = gen_df_reg (set_dest, 0); ++ dest2 = gen_df_reg (set_dest, 1); ++ ++ /* Now output, ordering such that we don't clobber any registers ++ mentioned in the address. */ ++ if (reg_overlap_mentioned_p (dest1, word1)) ++ ++ { ++ emit_insn (gen_movdf (dest2, word1)); ++ emit_insn (gen_movdf (dest1, word0)); ++ } ++ else ++ { ++ emit_insn (gen_movdf (dest1, word0)); ++ emit_insn (gen_movdf (dest2, word1)); ++ } ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:TF 0 "memory_operand" "") ++ (match_operand:TF 1 "register_operand" ""))] ++ "(reload_completed ++ && offsettable_memref_p (operands[0]) ++ && (TARGET_ARCH32 ++ || !TARGET_HARD_QUAD ++ || !fp_register_operand (operands[1], TFmode)))" ++ [(clobber (const_int 0))] ++{ ++ rtx set_src = operands[1]; ++ ++ emit_insn (gen_movdf (adjust_address (operands[0], DFmode, 0), ++ gen_df_reg (set_src, 0))); ++ emit_insn (gen_movdf (adjust_address (operands[0], DFmode, 8), ++ gen_df_reg (set_src, 1))); ++ DONE; ++}) ++ ++ ++;; SPARC-V9 conditional move instructions ++ ++;; We can handle larger constants here for some flavors, but for now we keep ++;; it simple and only allow those constants supported by all flavors. ++;; Note that emit_conditional_move canonicalizes operands 2,3 so that operand ++;; 3 contains the constant if one is present, but we handle either for ++;; generality (sparc.c puts a constant in operand 2). ++;; ++;; Our instruction patterns, on the other hand, canonicalize such that ++;; operand 3 must be the set destination. ++ ++(define_expand "movcc" ++ [(set (match_operand:I 0 "register_operand" "") ++ (if_then_else:I (match_operand 1 "comparison_operator" "") ++ (match_operand:I 2 "arith10_operand" "") ++ (match_operand:I 3 "arith10_operand" "")))] ++ "TARGET_V9 && !(mode == DImode && TARGET_ARCH32)" ++{ ++ if (!sparc_expand_conditional_move (mode, operands)) ++ FAIL; ++ DONE; ++}) ++ ++(define_expand "movcc" ++ [(set (match_operand:F 0 "register_operand" "") ++ (if_then_else:F (match_operand 1 "comparison_operator" "") ++ (match_operand:F 2 "register_operand" "") ++ (match_operand:F 3 "register_operand" "")))] ++ "TARGET_V9 && TARGET_FPU" ++{ ++ if (!sparc_expand_conditional_move (mode, operands)) ++ FAIL; ++ DONE; ++}) ++ ++(define_insn "*mov_cc_v9" ++ [(set (match_operand:I 0 "register_operand" "=r") ++ (if_then_else:I (match_operator 1 "icc_or_fcc_comparison_operator" ++ [(match_operand 2 "icc_or_fcc_register_operand" "X") ++ (const_int 0)]) ++ (match_operand:I 3 "arith11_operand" "rL") ++ (match_operand:I 4 "register_operand" "0")))] ++ "TARGET_V9 && !(mode == DImode && TARGET_ARCH32)" ++ "mov%C1\t%x2, %3, %0" ++ [(set_attr "type" "cmove")]) ++ ++(define_insn "*mov_cc_reg_sp64" ++ [(set (match_operand:I 0 "register_operand" "=r") ++ (if_then_else:I (match_operator 1 "v9_register_comparison_operator" ++ [(match_operand:DI 2 "register_operand" "r") ++ (const_int 0)]) ++ (match_operand:I 3 "arith10_operand" "rM") ++ (match_operand:I 4 "register_operand" "0")))] ++ "TARGET_ARCH64" ++ "movr%D1\t%2, %r3, %0" ++ [(set_attr "type" "cmove")]) ++ ++(define_insn "*movsf_cc_v9" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (if_then_else:SF (match_operator 1 "icc_or_fcc_comparison_operator" ++ [(match_operand 2 "icc_or_fcc_register_operand" "X") ++ (const_int 0)]) ++ (match_operand:SF 3 "register_operand" "f") ++ (match_operand:SF 4 "register_operand" "0")))] ++ "TARGET_V9 && TARGET_FPU" ++ "fmovs%C1\t%x2, %3, %0" ++ [(set_attr "type" "fpcmove")]) ++ ++(define_insn "*movsf_cc_reg_sp64" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (if_then_else:SF (match_operator 1 "v9_register_comparison_operator" ++ [(match_operand:DI 2 "register_operand" "r") ++ (const_int 0)]) ++ (match_operand:SF 3 "register_operand" "f") ++ (match_operand:SF 4 "register_operand" "0")))] ++ "TARGET_ARCH64 && TARGET_FPU" ++ "fmovrs%D1\t%2, %3, %0" ++ [(set_attr "type" "fpcrmove")]) ++ ++;; Named because invoked by movtf_cc_v9 ++(define_insn "movdf_cc_v9" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (if_then_else:DF (match_operator 1 "icc_or_fcc_comparison_operator" ++ [(match_operand 2 "icc_or_fcc_register_operand" "X") ++ (const_int 0)]) ++ (match_operand:DF 3 "register_operand" "e") ++ (match_operand:DF 4 "register_operand" "0")))] ++ "TARGET_V9 && TARGET_FPU" ++ "fmovd%C1\t%x2, %3, %0" ++ [(set_attr "type" "fpcmove") ++ (set_attr "fptype" "double")]) ++ ++;; Named because invoked by movtf_cc_reg_sp64 ++(define_insn "movdf_cc_reg_sp64" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (if_then_else:DF (match_operator 1 "v9_register_comparison_operator" ++ [(match_operand:DI 2 "register_operand" "r") ++ (const_int 0)]) ++ (match_operand:DF 3 "register_operand" "e") ++ (match_operand:DF 4 "register_operand" "0")))] ++ "TARGET_ARCH64 && TARGET_FPU" ++ "fmovrd%D1\t%2, %3, %0" ++ [(set_attr "type" "fpcrmove") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "*movtf_cc_hq_v9" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (if_then_else:TF (match_operator 1 "icc_or_fcc_comparison_operator" ++ [(match_operand 2 "icc_or_fcc_register_operand" "X") ++ (const_int 0)]) ++ (match_operand:TF 3 "register_operand" "e") ++ (match_operand:TF 4 "register_operand" "0")))] ++ "TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD" ++ "fmovq%C1\t%x2, %3, %0" ++ [(set_attr "type" "fpcmove")]) ++ ++(define_insn "*movtf_cc_reg_hq_sp64" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (if_then_else:TF (match_operator 1 "v9_register_comparison_operator" ++ [(match_operand:DI 2 "register_operand" "r") ++ (const_int 0)]) ++ (match_operand:TF 3 "register_operand" "e") ++ (match_operand:TF 4 "register_operand" "0")))] ++ "TARGET_ARCH64 && TARGET_FPU && TARGET_HARD_QUAD" ++ "fmovrq%D1\t%2, %3, %0" ++ [(set_attr "type" "fpcrmove")]) ++ ++(define_insn_and_split "*movtf_cc_v9" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (if_then_else:TF (match_operator 1 "icc_or_fcc_comparison_operator" ++ [(match_operand 2 "icc_or_fcc_register_operand" "X") ++ (const_int 0)]) ++ (match_operand:TF 3 "register_operand" "e") ++ (match_operand:TF 4 "register_operand" "0")))] ++ "TARGET_V9 && TARGET_FPU && !TARGET_HARD_QUAD" ++ "#" ++ "&& reload_completed" ++ [(clobber (const_int 0))] ++{ ++ rtx set_dest = operands[0]; ++ rtx set_srca = operands[3]; ++ rtx dest1, dest2; ++ rtx srca1, srca2; ++ ++ dest1 = gen_df_reg (set_dest, 0); ++ dest2 = gen_df_reg (set_dest, 1); ++ srca1 = gen_df_reg (set_srca, 0); ++ srca2 = gen_df_reg (set_srca, 1); ++ ++ if (reg_overlap_mentioned_p (dest1, srca2)) ++ { ++ emit_insn (gen_movdf_cc_v9 (dest2, operands[1], operands[2], ++ srca2, dest2)); ++ emit_insn (gen_movdf_cc_v9 (dest1, operands[1], operands[2], ++ srca1, dest1)); ++ } ++ else ++ { ++ emit_insn (gen_movdf_cc_v9 (dest1, operands[1], operands[2], ++ srca1, dest1)); ++ emit_insn (gen_movdf_cc_v9 (dest2, operands[1], operands[2], ++ srca2, dest2)); ++ } ++ DONE; ++} ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*movtf_cc_reg_sp64" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (if_then_else:TF (match_operator 1 "v9_register_comparison_operator" ++ [(match_operand:DI 2 "register_operand" "r") ++ (const_int 0)]) ++ (match_operand:TF 3 "register_operand" "e") ++ (match_operand:TF 4 "register_operand" "0")))] ++ "TARGET_ARCH64 && TARGET_FPU && !TARGET_HARD_QUAD" ++ "#" ++ "&& reload_completed" ++ [(clobber (const_int 0))] ++{ ++ rtx set_dest = operands[0]; ++ rtx set_srca = operands[3]; ++ rtx dest1, dest2; ++ rtx srca1, srca2; ++ ++ dest1 = gen_df_reg (set_dest, 0); ++ dest2 = gen_df_reg (set_dest, 1); ++ srca1 = gen_df_reg (set_srca, 0); ++ srca2 = gen_df_reg (set_srca, 1); ++ ++ if (reg_overlap_mentioned_p (dest1, srca2)) ++ { ++ emit_insn (gen_movdf_cc_reg_sp64 (dest2, operands[1], operands[2], ++ srca2, dest2)); ++ emit_insn (gen_movdf_cc_reg_sp64 (dest1, operands[1], operands[2], ++ srca1, dest1)); ++ } ++ else ++ { ++ emit_insn (gen_movdf_cc_reg_sp64 (dest1, operands[1], operands[2], ++ srca1, dest1)); ++ emit_insn (gen_movdf_cc_reg_sp64 (dest2, operands[1], operands[2], ++ srca2, dest2)); ++ } ++ DONE; ++} ++ [(set_attr "length" "2")]) ++ ++ ++;; Zero-extension instructions ++ ++;; These patterns originally accepted general_operands, however, slightly ++;; better code is generated by only accepting register_operands, and then ++;; letting combine generate the ldu[hb] insns. ++ ++(define_expand "zero_extendhisi2" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:HI 1 "register_operand" "")))] ++ "" ++{ ++ rtx temp = gen_reg_rtx (SImode); ++ rtx shift_16 = GEN_INT (16); ++ int op1_subbyte = 0; ++ ++ if (GET_CODE (operand1) == SUBREG) ++ { ++ op1_subbyte = SUBREG_BYTE (operand1); ++ op1_subbyte /= GET_MODE_SIZE (SImode); ++ op1_subbyte *= GET_MODE_SIZE (SImode); ++ operand1 = XEXP (operand1, 0); ++ } ++ ++ emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), ++ shift_16)); ++ emit_insn (gen_lshrsi3 (operand0, temp, shift_16)); ++ DONE; ++}) ++ ++(define_insn "*zero_extendhisi2_insn" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))] ++ "" ++ "lduh\t%1, %0" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_expand "zero_extendqihi2" ++ [(set (match_operand:HI 0 "register_operand" "") ++ (zero_extend:HI (match_operand:QI 1 "register_operand" "")))] ++ "" ++ "") ++ ++(define_insn "*zero_extendqihi2_insn" ++ [(set (match_operand:HI 0 "register_operand" "=r,r") ++ (zero_extend:HI (match_operand:QI 1 "input_operand" "r,m")))] ++ "GET_CODE (operands[1]) != CONST_INT" ++ "@ ++ and\t%1, 0xff, %0 ++ ldub\t%1, %0" ++ [(set_attr "type" "*,load") ++ (set_attr "subtype" "*,regular") ++ (set_attr "us3load_type" "*,3cycle")]) ++ ++(define_expand "zero_extendqisi2" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:QI 1 "register_operand" "")))] ++ "" ++ "") ++ ++(define_insn "*zero_extendqisi2_insn" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (zero_extend:SI (match_operand:QI 1 "input_operand" "r,m")))] ++ "GET_CODE (operands[1]) != CONST_INT" ++ "@ ++ and\t%1, 0xff, %0 ++ ldub\t%1, %0" ++ [(set_attr "type" "*,load") ++ (set_attr "subtype" "*,regular") ++ (set_attr "us3load_type" "*,3cycle")]) ++ ++(define_expand "zero_extendqidi2" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (zero_extend:DI (match_operand:QI 1 "register_operand" "")))] ++ "TARGET_ARCH64" ++ "") ++ ++(define_insn "*zero_extendqidi2_insn" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (zero_extend:DI (match_operand:QI 1 "input_operand" "r,m")))] ++ "TARGET_ARCH64 && GET_CODE (operands[1]) != CONST_INT" ++ "@ ++ and\t%1, 0xff, %0 ++ ldub\t%1, %0" ++ [(set_attr "type" "*,load") ++ (set_attr "subtype" "*,regular") ++ (set_attr "us3load_type" "*,3cycle")]) ++ ++(define_expand "zero_extendhidi2" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (zero_extend:DI (match_operand:HI 1 "register_operand" "")))] ++ "TARGET_ARCH64" ++{ ++ rtx temp = gen_reg_rtx (DImode); ++ rtx shift_48 = GEN_INT (48); ++ int op1_subbyte = 0; ++ ++ if (GET_CODE (operand1) == SUBREG) ++ { ++ op1_subbyte = SUBREG_BYTE (operand1); ++ op1_subbyte /= GET_MODE_SIZE (DImode); ++ op1_subbyte *= GET_MODE_SIZE (DImode); ++ operand1 = XEXP (operand1, 0); ++ } ++ ++ emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), ++ shift_48)); ++ emit_insn (gen_lshrdi3 (operand0, temp, shift_48)); ++ DONE; ++}) ++ ++(define_insn "*zero_extendhidi2_insn" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI (match_operand:HI 1 "memory_operand" "m")))] ++ "TARGET_ARCH64" ++ "lduh\t%1, %0" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular") ++ (set_attr "us3load_type" "3cycle")]) ++ ++;; ??? Write truncdisi pattern using sra? ++ ++(define_expand "zero_extendsidi2" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (zero_extend:DI (match_operand:SI 1 "register_operand" "")))] ++ "" ++ "") ++ ++(define_insn "*zero_extendsidi2_insn_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r,r,r") ++ (zero_extend:DI (match_operand:SI 1 "input_operand" "r,m,*f")))] ++ "TARGET_ARCH64 ++ && GET_CODE (operands[1]) != CONST_INT" ++ "@ ++ srl\t%1, 0, %0 ++ lduw\t%1, %0 ++ movstouw\t%1, %0" ++ [(set_attr "type" "shift,load,vismv") ++ (set_attr "subtype" "*,regular,movstouw") ++ (set_attr "cpu_feature" "*,*,vis3")]) ++ ++(define_insn_and_split "*zero_extendsidi2_insn_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI (match_operand:SI 1 "register_operand" "r")))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(set (match_dup 2) (match_dup 1)) ++ (set (match_dup 3) (const_int 0))] ++ "operands[2] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_highpart (SImode, operands[0]);" ++ [(set_attr "length" "2")]) ++ ++;; Simplify comparisons of extended values. ++ ++(define_insn "*cmp_zero_extendqisi2" ++ [(set (reg:CC CC_REG) ++ (compare:CC (zero_extend:SI (match_operand:QI 0 "register_operand" "r")) ++ (const_int 0)))] ++ "" ++ "andcc\t%0, 0xff, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_zero_qi" ++ [(set (reg:CC CC_REG) ++ (compare:CC (match_operand:QI 0 "register_operand" "r") ++ (const_int 0)))] ++ "" ++ "andcc\t%0, 0xff, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_zero_extendqisi2_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC (zero_extend:SI (match_operand:QI 1 "register_operand" "r")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (match_dup 1)))] ++ "" ++ "andcc\t%1, 0xff, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_zero_extendqisi2_andcc_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC (and:SI (match_operand:SI 1 "register_operand" "r") ++ (const_int 255)) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (subreg:QI (match_dup 1) 0)))] ++ "" ++ "andcc\t%1, 0xff, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_zero_extendqidi2" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (zero_extend:DI (match_operand:QI 0 "register_operand" "r")) ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "andcc\t%0, 0xff, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_zero_qi_sp64" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (match_operand:QI 0 "register_operand" "r") ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "andcc\t%0, 0xff, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_zero_extendqidi2_set" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (zero_extend:DI (match_operand:QI 1 "register_operand" "r")) ++ (const_int 0))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI (match_dup 1)))] ++ "TARGET_ARCH64" ++ "andcc\t%1, 0xff, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_zero_extendqidi2_andcc_set" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (and:DI (match_operand:DI 1 "register_operand" "r") ++ (const_int 255)) ++ (const_int 0))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI (subreg:QI (match_dup 1) 0)))] ++ "TARGET_ARCH64" ++ "andcc\t%1, 0xff, %0" ++ [(set_attr "type" "compare")]) ++ ++;; Similarly, handle {SI,DI}->QI mode truncation followed by a compare. ++ ++(define_insn "*cmp_siqi_trunc" ++ [(set (reg:CC CC_REG) ++ (compare:CC (subreg:QI (match_operand:SI 0 "register_operand" "r") 3) ++ (const_int 0)))] ++ "" ++ "andcc\t%0, 0xff, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_siqi_trunc_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC (subreg:QI (match_operand:SI 1 "register_operand" "r") 3) ++ (const_int 0))) ++ (set (match_operand:QI 0 "register_operand" "=r") ++ (subreg:QI (match_dup 1) 3))] ++ "" ++ "andcc\t%1, 0xff, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_diqi_trunc" ++ [(set (reg:CC CC_REG) ++ (compare:CC (subreg:QI (match_operand:DI 0 "register_operand" "r") 7) ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "andcc\t%0, 0xff, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_diqi_trunc_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC (subreg:QI (match_operand:DI 1 "register_operand" "r") 7) ++ (const_int 0))) ++ (set (match_operand:QI 0 "register_operand" "=r") ++ (subreg:QI (match_dup 1) 7))] ++ "TARGET_ARCH64" ++ "andcc\t%1, 0xff, %0" ++ [(set_attr "type" "compare")]) ++ ++ ++;; Sign-extension instructions ++ ++;; These patterns originally accepted general_operands, however, slightly ++;; better code is generated by only accepting register_operands, and then ++;; letting combine generate the lds[hb] insns. ++ ++(define_expand "extendhisi2" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (sign_extend:SI (match_operand:HI 1 "register_operand" "")))] ++ "" ++{ ++ rtx temp = gen_reg_rtx (SImode); ++ rtx shift_16 = GEN_INT (16); ++ int op1_subbyte = 0; ++ ++ if (GET_CODE (operand1) == SUBREG) ++ { ++ op1_subbyte = SUBREG_BYTE (operand1); ++ op1_subbyte /= GET_MODE_SIZE (SImode); ++ op1_subbyte *= GET_MODE_SIZE (SImode); ++ operand1 = XEXP (operand1, 0); ++ } ++ ++ emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), ++ shift_16)); ++ emit_insn (gen_ashrsi3 (operand0, temp, shift_16)); ++ DONE; ++}) ++ ++(define_insn "*sign_extendhisi2_insn" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extend:SI (match_operand:HI 1 "memory_operand" "m")))] ++ "" ++ "ldsh\t%1, %0" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_expand "extendqihi2" ++ [(set (match_operand:HI 0 "register_operand" "") ++ (sign_extend:HI (match_operand:QI 1 "register_operand" "")))] ++ "" ++{ ++ rtx temp = gen_reg_rtx (SImode); ++ rtx shift_24 = GEN_INT (24); ++ int op1_subbyte = 0; ++ int op0_subbyte = 0; ++ ++ if (GET_CODE (operand1) == SUBREG) ++ { ++ op1_subbyte = SUBREG_BYTE (operand1); ++ op1_subbyte /= GET_MODE_SIZE (SImode); ++ op1_subbyte *= GET_MODE_SIZE (SImode); ++ operand1 = XEXP (operand1, 0); ++ } ++ if (GET_CODE (operand0) == SUBREG) ++ { ++ op0_subbyte = SUBREG_BYTE (operand0); ++ op0_subbyte /= GET_MODE_SIZE (SImode); ++ op0_subbyte *= GET_MODE_SIZE (SImode); ++ operand0 = XEXP (operand0, 0); ++ } ++ emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), ++ shift_24)); ++ if (GET_MODE (operand0) != SImode) ++ operand0 = gen_rtx_SUBREG (SImode, operand0, op0_subbyte); ++ emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); ++ DONE; ++}) ++ ++(define_insn "*sign_extendqihi2_insn" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (sign_extend:HI (match_operand:QI 1 "memory_operand" "m")))] ++ "" ++ "ldsb\t%1, %0" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_expand "extendqisi2" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (sign_extend:SI (match_operand:QI 1 "register_operand" "")))] ++ "" ++{ ++ rtx temp = gen_reg_rtx (SImode); ++ rtx shift_24 = GEN_INT (24); ++ int op1_subbyte = 0; ++ ++ if (GET_CODE (operand1) == SUBREG) ++ { ++ op1_subbyte = SUBREG_BYTE (operand1); ++ op1_subbyte /= GET_MODE_SIZE (SImode); ++ op1_subbyte *= GET_MODE_SIZE (SImode); ++ operand1 = XEXP (operand1, 0); ++ } ++ ++ emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), ++ shift_24)); ++ emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); ++ DONE; ++}) ++ ++(define_insn "*sign_extendqisi2_insn" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extend:SI (match_operand:QI 1 "memory_operand" "m")))] ++ "" ++ "ldsb\t%1, %0" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_expand "extendqidi2" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (sign_extend:DI (match_operand:QI 1 "register_operand" "")))] ++ "TARGET_ARCH64" ++{ ++ rtx temp = gen_reg_rtx (DImode); ++ rtx shift_56 = GEN_INT (56); ++ int op1_subbyte = 0; ++ ++ if (GET_CODE (operand1) == SUBREG) ++ { ++ op1_subbyte = SUBREG_BYTE (operand1); ++ op1_subbyte /= GET_MODE_SIZE (DImode); ++ op1_subbyte *= GET_MODE_SIZE (DImode); ++ operand1 = XEXP (operand1, 0); ++ } ++ ++ emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), ++ shift_56)); ++ emit_insn (gen_ashrdi3 (operand0, temp, shift_56)); ++ DONE; ++}) ++ ++(define_insn "*sign_extendqidi2_insn" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extend:DI (match_operand:QI 1 "memory_operand" "m")))] ++ "TARGET_ARCH64" ++ "ldsb\t%1, %0" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_expand "extendhidi2" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (sign_extend:DI (match_operand:HI 1 "register_operand" "")))] ++ "TARGET_ARCH64" ++{ ++ rtx temp = gen_reg_rtx (DImode); ++ rtx shift_48 = GEN_INT (48); ++ int op1_subbyte = 0; ++ ++ if (GET_CODE (operand1) == SUBREG) ++ { ++ op1_subbyte = SUBREG_BYTE (operand1); ++ op1_subbyte /= GET_MODE_SIZE (DImode); ++ op1_subbyte *= GET_MODE_SIZE (DImode); ++ operand1 = XEXP (operand1, 0); ++ } ++ ++ emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), ++ shift_48)); ++ emit_insn (gen_ashrdi3 (operand0, temp, shift_48)); ++ DONE; ++}) ++ ++(define_insn "*sign_extendhidi2_insn" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extend:DI (match_operand:HI 1 "memory_operand" "m")))] ++ "TARGET_ARCH64" ++ "ldsh\t%1, %0" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_expand "extendsidi2" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (sign_extend:DI (match_operand:SI 1 "register_operand" "")))] ++ "TARGET_ARCH64" ++ "") ++ ++(define_insn "*sign_extendsidi2_insn" ++ [(set (match_operand:DI 0 "register_operand" "=r,r,r") ++ (sign_extend:DI (match_operand:SI 1 "input_operand" "r,m,*f")))] ++ "TARGET_ARCH64" ++ "@ ++ sra\t%1, 0, %0 ++ ldsw\t%1, %0 ++ movstosw\t%1, %0" ++ [(set_attr "type" "shift,sload,vismv") ++ (set_attr "us3load_type" "*,3cycle,*") ++ (set_attr "cpu_feature" "*,*,vis3")]) ++ ++ ++;; Special pattern for optimizing bit-field compares. This is needed ++;; because combine uses this as a canonical form. ++ ++(define_insn "*cmp_zero_extract" ++ [(set (reg:CC CC_REG) ++ (compare:CC ++ (zero_extract:SI (match_operand:SI 0 "register_operand" "r") ++ (match_operand:SI 1 "small_int_operand" "I") ++ (match_operand:SI 2 "small_int_operand" "I")) ++ (const_int 0)))] ++ "INTVAL (operands[2]) > 19" ++{ ++ int len = INTVAL (operands[1]); ++ int pos = 32 - INTVAL (operands[2]) - len; ++ HOST_WIDE_INT mask = ((1 << len) - 1) << pos; ++ operands[1] = GEN_INT (mask); ++ return "andcc\t%0, %1, %%g0"; ++} ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_zero_extract_sp64" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX ++ (zero_extract:DI (match_operand:DI 0 "register_operand" "r") ++ (match_operand:SI 1 "small_int_operand" "I") ++ (match_operand:SI 2 "small_int_operand" "I")) ++ (const_int 0)))] ++ "TARGET_ARCH64 && INTVAL (operands[2]) > 51" ++{ ++ int len = INTVAL (operands[1]); ++ int pos = 64 - INTVAL (operands[2]) - len; ++ HOST_WIDE_INT mask = (((unsigned HOST_WIDE_INT) 1 << len) - 1) << pos; ++ operands[1] = GEN_INT (mask); ++ return "andcc\t%0, %1, %%g0"; ++} ++ [(set_attr "type" "compare")]) ++ ++ ++;; Conversions between float, double and long double. ++ ++(define_insn "extendsfdf2" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (float_extend:DF (match_operand:SF 1 "register_operand" "f")))] ++ "TARGET_FPU" ++ "fstod\t%1, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_expand "extendsftf2" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (float_extend:TF (match_operand:SF 1 "register_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_cvt (FLOAT_EXTEND, operands); DONE;") ++ ++(define_insn "*extendsftf2_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (float_extend:TF (match_operand:SF 1 "register_operand" "f")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fstoq\t%1, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_expand "extenddftf2" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (float_extend:TF (match_operand:DF 1 "register_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_cvt (FLOAT_EXTEND, operands); DONE;") ++ ++(define_insn "*extenddftf2_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (float_extend:TF (match_operand:DF 1 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fdtoq\t%1, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_insn "truncdfsf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (float_truncate:SF (match_operand:DF 1 "register_operand" "e")))] ++ "TARGET_FPU" ++ "fdtos\t%1, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double") ++ (set_attr "fptype_ut699" "single")]) ++ ++(define_expand "trunctfsf2" ++ [(set (match_operand:SF 0 "register_operand" "") ++ (float_truncate:SF (match_operand:TF 1 "general_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_cvt (FLOAT_TRUNCATE, operands); DONE;") ++ ++(define_insn "*trunctfsf2_hq" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (float_truncate:SF (match_operand:TF 1 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fqtos\t%1, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_expand "trunctfdf2" ++ [(set (match_operand:DF 0 "register_operand" "") ++ (float_truncate:DF (match_operand:TF 1 "general_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_cvt (FLOAT_TRUNCATE, operands); DONE;") ++ ++(define_insn "*trunctfdf2_hq" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (float_truncate:DF (match_operand:TF 1 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fqtod\t%1, %0" ++ [(set_attr "type" "fp")]) ++ ++ ++;; Conversion between fixed point and floating point. ++ ++(define_insn "floatsisf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (float:SF (match_operand:SI 1 "register_operand" "f")))] ++ "TARGET_FPU" ++ "fitos\t%1, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "single")]) ++ ++(define_insn "floatsidf2" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (float:DF (match_operand:SI 1 "register_operand" "f")))] ++ "TARGET_FPU" ++ "fitod\t%1, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_expand "floatsitf2" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (float:TF (match_operand:SI 1 "register_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_cvt (FLOAT, operands); DONE;") ++ ++(define_insn "*floatsitf2_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (float:TF (match_operand:SI 1 "register_operand" "f")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fitoq\t%1, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_expand "floatunssitf2" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (unsigned_float:TF (match_operand:SI 1 "register_operand" "")))] ++ "TARGET_FPU && TARGET_ARCH64 && !TARGET_HARD_QUAD" ++ "emit_tfmode_cvt (UNSIGNED_FLOAT, operands); DONE;") ++ ++;; Now the same for 64 bit sources. ++ ++(define_insn "floatdisf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (float:SF (match_operand:DI 1 "register_operand" "e")))] ++ "TARGET_V9 && TARGET_FPU" ++ "fxtos\t%1, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_expand "floatunsdisf2" ++ [(use (match_operand:SF 0 "register_operand" "")) ++ (use (match_operand:DI 1 "general_operand" ""))] ++ "TARGET_ARCH64 && TARGET_FPU" ++ "sparc_emit_floatunsdi (operands, SFmode); DONE;") ++ ++(define_insn "floatdidf2" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (float:DF (match_operand:DI 1 "register_operand" "e")))] ++ "TARGET_V9 && TARGET_FPU" ++ "fxtod\t%1, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_expand "floatunsdidf2" ++ [(use (match_operand:DF 0 "register_operand" "")) ++ (use (match_operand:DI 1 "general_operand" ""))] ++ "TARGET_ARCH64 && TARGET_FPU" ++ "sparc_emit_floatunsdi (operands, DFmode); DONE;") ++ ++(define_expand "floatditf2" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (float:TF (match_operand:DI 1 "register_operand" "")))] ++ "TARGET_FPU && TARGET_V9 && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_cvt (FLOAT, operands); DONE;") ++ ++(define_insn "*floatditf2_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (float:TF (match_operand:DI 1 "register_operand" "e")))] ++ "TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD" ++ "fxtoq\t%1, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_expand "floatunsditf2" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (unsigned_float:TF (match_operand:DI 1 "register_operand" "")))] ++ "TARGET_FPU && TARGET_ARCH64 && !TARGET_HARD_QUAD" ++ "emit_tfmode_cvt (UNSIGNED_FLOAT, operands); DONE;") ++ ++;; Convert a float to an actual integer. ++;; Truncation is performed as part of the conversion. ++ ++(define_insn "fix_truncsfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=f") ++ (fix:SI (fix:SF (match_operand:SF 1 "register_operand" "f"))))] ++ "TARGET_FPU" ++ "fstoi\t%1, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "single")]) ++ ++(define_insn "fix_truncdfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=f") ++ (fix:SI (fix:DF (match_operand:DF 1 "register_operand" "e"))))] ++ "TARGET_FPU" ++ "fdtoi\t%1, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double") ++ (set_attr "fptype_ut699" "single")]) ++ ++(define_expand "fix_trunctfsi2" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (fix:SI (match_operand:TF 1 "general_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_cvt (FIX, operands); DONE;") ++ ++(define_insn "*fix_trunctfsi2_hq" ++ [(set (match_operand:SI 0 "register_operand" "=f") ++ (fix:SI (match_operand:TF 1 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fqtoi\t%1, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_expand "fixuns_trunctfsi2" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (unsigned_fix:SI (match_operand:TF 1 "general_operand" "")))] ++ "TARGET_FPU && TARGET_ARCH64 && !TARGET_HARD_QUAD" ++ "emit_tfmode_cvt (UNSIGNED_FIX, operands); DONE;") ++ ++;; Now the same, for V9 targets ++ ++(define_insn "fix_truncsfdi2" ++ [(set (match_operand:DI 0 "register_operand" "=e") ++ (fix:DI (fix:SF (match_operand:SF 1 "register_operand" "f"))))] ++ "TARGET_V9 && TARGET_FPU" ++ "fstox\t%1, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_expand "fixuns_truncsfdi2" ++ [(use (match_operand:DI 0 "register_operand" "")) ++ (use (match_operand:SF 1 "general_operand" ""))] ++ "TARGET_ARCH64 && TARGET_FPU" ++ "sparc_emit_fixunsdi (operands, SFmode); DONE;") ++ ++(define_insn "fix_truncdfdi2" ++ [(set (match_operand:DI 0 "register_operand" "=e") ++ (fix:DI (fix:DF (match_operand:DF 1 "register_operand" "e"))))] ++ "TARGET_V9 && TARGET_FPU" ++ "fdtox\t%1, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_expand "fixuns_truncdfdi2" ++ [(use (match_operand:DI 0 "register_operand" "")) ++ (use (match_operand:DF 1 "general_operand" ""))] ++ "TARGET_ARCH64 && TARGET_FPU" ++ "sparc_emit_fixunsdi (operands, DFmode); DONE;") ++ ++(define_expand "fix_trunctfdi2" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (fix:DI (match_operand:TF 1 "general_operand" "")))] ++ "TARGET_V9 && TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_cvt (FIX, operands); DONE;") ++ ++(define_insn "*fix_trunctfdi2_hq" ++ [(set (match_operand:DI 0 "register_operand" "=e") ++ (fix:DI (match_operand:TF 1 "register_operand" "e")))] ++ "TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD" ++ "fqtox\t%1, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_expand "fixuns_trunctfdi2" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (unsigned_fix:DI (match_operand:TF 1 "general_operand" "")))] ++ "TARGET_FPU && TARGET_ARCH64 && !TARGET_HARD_QUAD" ++ "emit_tfmode_cvt (UNSIGNED_FIX, operands); DONE;") ++ ++ ++;; Integer addition/subtraction instructions. ++ ++(define_expand "adddi3" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (plus:DI (match_operand:DI 1 "register_operand" "") ++ (match_operand:DI 2 "arith_double_add_operand" "")))] ++ "" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_adddi3_sp32 (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++;; Turning an add/sub instruction into the other changes the Carry flag ++;; so the 4096 trick cannot be used for operations in CCXCmode. ++ ++(define_expand "uaddvdi4" ++ [(parallel [(set (reg:CCXC CC_REG) ++ (compare:CCXC (plus:DI (match_operand:DI 1 "register_operand") ++ (match_operand:DI 2 "arith_double_operand")) ++ (match_dup 1))) ++ (set (match_operand:DI 0 "register_operand") ++ (plus:DI (match_dup 1) (match_dup 2)))]) ++ (set (pc) (if_then_else (ltu (reg:CCXC CC_REG) (const_int 0)) ++ (label_ref (match_operand 3)) ++ (pc)))] ++ "" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_uaddvdi4_sp32 (operands[0], operands[1], operands[2])); ++ rtx x = gen_rtx_LTU (VOIDmode, gen_rtx_REG (CCCmode, SPARC_ICC_REG), ++ const0_rtx); ++ emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[3])); ++ DONE; ++ } ++}) ++ ++;; Turning an add/sub instruction into the other does not change the Overflow ++;; flag so the 4096 trick can be used for operations in CCXVmode. ++ ++(define_expand "addvdi4" ++ [(parallel [(set (reg:CCXV CC_REG) ++ (compare:CCXV (plus:DI (match_operand:DI 1 "register_operand") ++ (match_operand:DI 2 "arith_double_add_operand")) ++ (unspec:DI [(match_dup 1) (match_dup 2)] ++ UNSPEC_ADDV))) ++ (set (match_operand:DI 0 "register_operand") ++ (plus:DI (match_dup 1) (match_dup 2)))]) ++ (set (pc) (if_then_else (ne (reg:CCXV CC_REG) (const_int 0)) ++ (label_ref (match_operand 3)) ++ (pc)))] ++ "" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_addvdi4_sp32 (operands[0], operands[1], operands[2])); ++ rtx x = gen_rtx_NE (VOIDmode, gen_rtx_REG (CCVmode, SPARC_ICC_REG), ++ const0_rtx); ++ emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[3])); ++ DONE; ++ } ++}) ++ ++(define_insn_and_split "adddi3_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=&r") ++ (plus:DI (match_operand:DI 1 "register_operand" "%r") ++ (match_operand:DI 2 "arith_double_operand" "rHI"))) ++ (clobber (reg:CC CC_REG))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (plus:SI (match_dup 4) (match_dup 5)) ++ (match_dup 4))) ++ (set (match_dup 3) ++ (plus:SI (match_dup 4) (match_dup 5)))]) ++ (set (match_dup 6) ++ (plus:SI (plus:SI (match_dup 7) (match_dup 8)) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0))))] ++{ ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++} ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "uaddvdi4_sp32" ++ [(set (reg:CCC CC_REG) ++ (compare:CCC (plus:DI (match_operand:DI 1 "register_operand" "%r") ++ (match_operand:DI 2 "arith_double_operand" "rHI")) ++ (match_dup 1))) ++ (set (match_operand:DI 0 "register_operand" "=&r") ++ (plus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (plus:SI (match_dup 4) (match_dup 5)) ++ (match_dup 4))) ++ (set (match_dup 3) ++ (plus:SI (match_dup 4) (match_dup 5)))]) ++ (parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (zero_extend:DI ++ (plus:SI (plus:SI (match_dup 7) (match_dup 8)) ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0)))) ++ (plus:DI (plus:DI (zero_extend:DI (match_dup 7)) ++ (zero_extend:DI (match_dup 8))) ++ (ltu:DI (reg:CCC CC_REG) ++ (const_int 0))))) ++ (set (match_dup 6) ++ (plus:SI (plus:SI (match_dup 7) (match_dup 8)) ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0))))])] ++{ ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++} ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "addvdi4_sp32" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (plus:DI (match_operand:DI 1 "register_operand" "%r") ++ (match_operand:DI 2 "arith_double_operand" "rHI")) ++ (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_ADDV))) ++ (set (match_operand:DI 0 "register_operand" "=&r") ++ (plus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (plus:SI (match_dup 4) (match_dup 5)) ++ (match_dup 4))) ++ (set (match_dup 3) ++ (plus:SI (match_dup 4) (match_dup 5)))]) ++ (parallel [(set (reg:CCV CC_REG) ++ (compare:CCV (plus:SI (plus:SI (match_dup 7) (match_dup 8)) ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0))) ++ (unspec:SI [(plus:SI (match_dup 7) (match_dup 8)) ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0))] ++ UNSPEC_ADDV))) ++ (set (match_dup 6) ++ (plus:SI (plus:SI (match_dup 7) (match_dup 8)) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0))))])] ++{ ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++} ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*addx_extend_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI (plus:SI (plus:SI ++ (match_operand:SI 1 "register_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0)))))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(set (match_dup 3) (plus:SI (plus:SI (match_dup 1) (match_dup 2)) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0)))) ++ (set (match_dup 4) (const_int 0))] ++ "operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_highpart (SImode, operands[0]);" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*adddi3_extend_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=&r") ++ (plus:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (match_operand:DI 2 "register_operand" "r"))) ++ (clobber (reg:CC CC_REG))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (plus:SI (match_dup 3) (match_dup 1)) ++ (match_dup 3))) ++ (set (match_dup 5) (plus:SI (match_dup 3) (match_dup 1)))]) ++ (set (match_dup 6) ++ (plus:SI (plus:SI (match_dup 4) (const_int 0)) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0))))] ++ "operands[3] = gen_lowpart (SImode, operands[2]); ++ operands[4] = gen_highpart (SImode, operands[2]); ++ operands[5] = gen_lowpart (SImode, operands[0]); ++ operands[6] = gen_highpart (SImode, operands[0]);" ++ [(set_attr "length" "2")]) ++ ++(define_insn "*adddi3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (plus:DI (match_operand:DI 1 "register_operand" "%r,r") ++ (match_operand:DI 2 "arith_add_operand" "rI,O")))] ++ "TARGET_ARCH64" ++ "@ ++ add\t%1, %2, %0 ++ sub\t%1, -%2, %0") ++ ++(define_insn "addsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (plus:SI (match_operand:SI 1 "register_operand" "%r,r") ++ (match_operand:SI 2 "arith_add_operand" "rI,O")))] ++ "" ++ "@ ++ add\t%1, %2, %0 ++ sub\t%1, -%2, %0") ++ ++;; Turning an add/sub instruction into the other changes the Carry flag ++;; so the 4096 trick cannot be used for operations in CCCmode. ++ ++(define_expand "uaddvsi4" ++ [(parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (plus:SI (match_operand:SI 1 "register_operand") ++ (match_operand:SI 2 "arith_operand")) ++ (match_dup 1))) ++ (set (match_operand:SI 0 "register_operand") ++ (plus:SI (match_dup 1) (match_dup 2)))]) ++ (set (pc) (if_then_else (ltu (reg:CCC CC_REG) (const_int 0)) ++ (label_ref (match_operand 3)) ++ (pc)))] ++ "") ++ ++;; Turning an add/sub instruction into the other does not change the Overflow ++;; flag so the 4096 trick can be used for operations in CCVmode. ++ ++(define_expand "addvsi4" ++ [(parallel [(set (reg:CCV CC_REG) ++ (compare:CCV (plus:SI (match_operand:SI 1 "register_operand") ++ (match_operand:SI 2 "arith_add_operand")) ++ (unspec:SI [(match_dup 1) (match_dup 2)] ++ UNSPEC_ADDV))) ++ (set (match_operand:SI 0 "register_operand") ++ (plus:SI (match_dup 1) (match_dup 2)))]) ++ (set (pc) (if_then_else (ne (reg:CCV CC_REG) (const_int 0)) ++ (label_ref (match_operand 3)) ++ (pc)))] ++ "") ++ ++(define_insn "*cmp_ccnz_plus" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (plus:SI (match_operand:SI 0 "register_operand" "%r") ++ (match_operand:SI 1 "arith_operand" "rI")) ++ (const_int 0)))] ++ "" ++ "addcc\t%0, %1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxnz_plus" ++ [(set (reg:CCXNZ CC_REG) ++ (compare:CCXNZ (plus:DI (match_operand:DI 0 "register_operand" "%r") ++ (match_operand:DI 1 "arith_operand" "rI")) ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "addcc\t%0, %1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccnz_plus_set" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (plus:SI (match_operand:SI 1 "register_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_dup 1) (match_dup 2)))] ++ "" ++ "addcc\t%1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxnz_plus_set" ++ [(set (reg:CCXNZ CC_REG) ++ (compare:CCXNZ (plus:DI (match_operand:DI 1 "register_operand" "%r") ++ (match_operand:DI 2 "arith_operand" "rI")) ++ (const_int 0))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (plus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_ARCH64" ++ "addcc\t%1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccc_plus" ++ [(set (reg:CCC CC_REG) ++ (compare:CCC (plus:SI (match_operand:SI 0 "register_operand" "%r") ++ (match_operand:SI 1 "arith_operand" "rI")) ++ (match_dup 0)))] ++ "" ++ "addcc\t%0, %1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxc_plus" ++ [(set (reg:CCXC CC_REG) ++ (compare:CCXC (plus:DI (match_operand:DI 0 "register_operand" "%r") ++ (match_operand:DI 1 "arith_operand" "rI")) ++ (match_dup 0)))] ++ "TARGET_ARCH64" ++ "addcc\t%0, %1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccc_plus_set" ++ [(set (reg:CCC CC_REG) ++ (compare:CCC (plus:SI (match_operand:SI 1 "register_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (match_dup 1))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_dup 1) (match_dup 2)))] ++ "" ++ "addcc\t%1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxc_plus_set" ++ [(set (reg:CCXC CC_REG) ++ (compare:CCXC (plus:DI (match_operand:DI 1 "register_operand" "%r") ++ (match_operand:DI 2 "arith_operand" "rI")) ++ (match_dup 1))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (plus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_ARCH64" ++ "addcc\t%1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccc_plus_sltu_set" ++ [(set (reg:CCC CC_REG) ++ (compare:CCC (zero_extend:DI ++ (plus:SI ++ (plus:SI (match_operand:SI 1 "register_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0)))) ++ (plus:DI (plus:DI (zero_extend:DI (match_dup 1)) ++ (zero_extend:DI (match_dup 2))) ++ (ltu:DI (reg:CCC CC_REG) (const_int 0))))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (plus:SI (match_dup 1) (match_dup 2)) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0))))] ++ "" ++ "addxcc\t%1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccv_plus" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (plus:SI (match_operand:SI 0 "register_operand" "%r,r") ++ (match_operand:SI 1 "arith_add_operand" "rI,O")) ++ (unspec:SI [(match_dup 0) (match_dup 1)] UNSPEC_ADDV)))] ++ "" ++ "@ ++ addcc\t%0, %1, %%g0 ++ subcc\t%0, -%1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxv_plus" ++ [(set (reg:CCXV CC_REG) ++ (compare:CCXV (plus:DI (match_operand:DI 0 "register_operand" "%r,r") ++ (match_operand:DI 1 "arith_add_operand" "rI,O")) ++ (unspec:DI [(match_dup 0) (match_dup 1)] UNSPEC_ADDV)))] ++ "TARGET_ARCH64" ++ "@ ++ addcc\t%0, %1, %%g0 ++ subcc\t%0, -%1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccv_plus_set" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (plus:SI (match_operand:SI 1 "register_operand" "%r,r") ++ (match_operand:SI 2 "arith_add_operand" "rI,O")) ++ (unspec:SI [(match_dup 1) (match_dup 2)] UNSPEC_ADDV))) ++ (set (match_operand:SI 0 "register_operand" "=r,r") ++ (plus:SI (match_dup 1) (match_dup 2)))] ++ "" ++ "@ ++ addcc\t%1, %2, %0 ++ subcc\t%1, -%2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxv_plus_set" ++ [(set (reg:CCXV CC_REG) ++ (compare:CCXV (plus:DI (match_operand:DI 1 "register_operand" "%r,r") ++ (match_operand:DI 2 "arith_add_operand" "rI,O")) ++ (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_ADDV))) ++ (set (match_operand:DI 0 "register_operand" "=r,r") ++ (plus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_ARCH64" ++ "@ ++ addcc\t%1, %2, %0 ++ subcc\t%1, -%2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccv_plus_sltu_set" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (plus:SI (plus:SI (match_operand:SI 1 "register_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0))) ++ (unspec:SI [(plus:SI (match_dup 1) (match_dup 2)) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0))] ++ UNSPEC_ADDV))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (plus:SI (match_dup 1) (match_dup 2)) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0))))] ++ "" ++ "addxcc\t%1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++ ++(define_expand "subdi3" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (minus:DI (match_operand:DI 1 "register_operand" "") ++ (match_operand:DI 2 "arith_double_add_operand" "")))] ++ "" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_subdi3_sp32 (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++;; Turning an add/sub instruction into the other changes the Carry flag ++;; so the 4096 trick cannot be used for operations in CCXmode. ++ ++(define_expand "usubvdi4" ++ [(parallel [(set (reg:CCX CC_REG) ++ (compare:CCX (match_operand:DI 1 "register_or_zero_operand") ++ (match_operand:DI 2 "arith_double_operand"))) ++ (set (match_operand:DI 0 "register_operand") ++ (minus:DI (match_dup 1) (match_dup 2)))]) ++ (set (pc) (if_then_else (ltu (reg:CCX CC_REG) (const_int 0)) ++ (label_ref (match_operand 3)) ++ (pc)))] ++ "" ++{ ++ if (operands[1] == const0_rtx) ++ { ++ emit_insn (gen_unegvdi3 (operands[0], operands[2], operands[3])); ++ DONE; ++ } ++ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_usubvdi4_sp32 (operands[0], operands[1], operands[2])); ++ rtx x = gen_rtx_LTU (VOIDmode, gen_rtx_REG (CCCmode, SPARC_ICC_REG), ++ const0_rtx); ++ emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[3])); ++ DONE; ++ } ++}) ++ ++;; Turning an add/sub instruction into the other does not change the Overflow ++;; flag so the 4096 trick can be used for operations in CCXVmode. ++ ++(define_expand "subvdi4" ++ [(parallel [(set (reg:CCXV CC_REG) ++ (compare:CCXV (minus:DI (match_operand:DI 1 "register_operand") ++ (match_operand:DI 2 "arith_double_add_operand")) ++ (unspec:DI [(match_dup 1) (match_dup 2)] ++ UNSPEC_SUBV))) ++ (set (match_operand:DI 0 "register_operand") ++ (minus:DI (match_dup 1) (match_dup 2)))]) ++ (set (pc) (if_then_else (ne (reg:CCXV CC_REG) (const_int 0)) ++ (label_ref (match_operand 3)) ++ (pc)))] ++ "" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_subvdi4_sp32 (operands[0], operands[1], operands[2])); ++ rtx x = gen_rtx_NE (VOIDmode, gen_rtx_REG (CCVmode, SPARC_ICC_REG), ++ const0_rtx); ++ emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[3])); ++ DONE; ++ } ++}) ++ ++(define_insn_and_split "subdi3_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=&r") ++ (minus:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "arith_double_operand" "rHI"))) ++ (clobber (reg:CC CC_REG))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CC CC_REG) ++ (compare:CC (match_dup 4) (match_dup 5))) ++ (set (match_dup 3) ++ (minus:SI (match_dup 4) (match_dup 5)))]) ++ (set (match_dup 6) ++ (minus:SI (minus:SI (match_dup 7) (match_dup 8)) ++ (ltu:SI (reg:CC CC_REG) (const_int 0))))] ++{ ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart (SImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++} ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "usubvdi4_sp32" ++ [(set (reg:CCC CC_REG) ++ (compare:CCC (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "arith_double_operand" "rHI"))) ++ (set (match_operand:DI 0 "register_operand" "=&r") ++ (minus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CC CC_REG) ++ (compare:CC (match_dup 4) (match_dup 5))) ++ (set (match_dup 3) ++ (minus:SI (match_dup 4) (match_dup 5)))]) ++ (parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (zero_extend:DI ++ (minus:SI (minus:SI (match_dup 7) ++ (ltu:SI (reg:CC CC_REG) ++ (const_int 0))) ++ (match_dup 8))) ++ (minus:DI ++ (minus:DI (zero_extend:DI (match_dup 7)) ++ (ltu:DI (reg:CC CC_REG) ++ (const_int 0))) ++ (zero_extend:DI (match_dup 8))))) ++ (set (match_dup 6) ++ (minus:SI (minus:SI (match_dup 7) ++ (ltu:SI (reg:CC CC_REG) ++ (const_int 0))) ++ (match_dup 8)))])] ++{ ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++} ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "subvdi4_sp32" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (minus:DI (match_operand:DI 1 "register_operand" "%r") ++ (match_operand:DI 2 "arith_double_operand" "rHI")) ++ (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_SUBV))) ++ (set (match_operand:DI 0 "register_operand" "=&r") ++ (minus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CC CC_REG) ++ (compare:CC (match_dup 4) (match_dup 5))) ++ (set (match_dup 3) ++ (minus:SI (match_dup 4) (match_dup 5)))]) ++ (parallel [(set (reg:CCV CC_REG) ++ (compare:CCV (minus:SI (minus:SI (match_dup 7) (match_dup 8)) ++ (ltu:SI (reg:CC CC_REG) ++ (const_int 0))) ++ (unspec:SI [(minus:SI (match_dup 7) (match_dup 8)) ++ (ltu:SI (reg:CC CC_REG) ++ (const_int 0))] ++ UNSPEC_SUBV))) ++ (set (match_dup 6) ++ (minus:SI (minus:SI (match_dup 7) (match_dup 8)) ++ (ltu:SI (reg:CC CC_REG) (const_int 0))))])] ++{ ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++} ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*subx_extend_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI (minus:SI (minus:SI ++ (match_operand:SI 1 "register_or_zero_operand" "rJ") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0)))))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(set (match_dup 3) (minus:SI (minus:SI (match_dup 1) (match_dup 2)) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0)))) ++ (set (match_dup 4) (const_int 0))] ++ "operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_highpart (SImode, operands[0]);" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "*subdi3_extend_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=&r") ++ (minus:DI (match_operand:DI 1 "register_operand" "r") ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r")))) ++ (clobber (reg:CC CC_REG))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CC CC_REG) ++ (compare:CC (match_dup 3) (match_dup 2))) ++ (set (match_dup 5) (minus:SI (match_dup 3) (match_dup 2)))]) ++ (set (match_dup 6) ++ (minus:SI (minus:SI (match_dup 4) (const_int 0)) ++ (ltu:SI (reg:CC CC_REG) (const_int 0))))] ++ "operands[3] = gen_lowpart (SImode, operands[1]); ++ operands[4] = gen_highpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[0]); ++ operands[6] = gen_highpart (SImode, operands[0]);" ++ [(set_attr "length" "2")]) ++ ++(define_insn "*subdi3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (minus:DI (match_operand:DI 1 "register_operand" "r,r") ++ (match_operand:DI 2 "arith_add_operand" "rI,O")))] ++ "TARGET_ARCH64" ++ "@ ++ sub\t%1, %2, %0 ++ add\t%1, -%2, %0") ++ ++(define_insn "subsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (minus:SI (match_operand:SI 1 "register_operand" "r,r") ++ (match_operand:SI 2 "arith_add_operand" "rI,O")))] ++ "" ++ "@ ++ sub\t%1, %2, %0 ++ add\t%1, -%2, %0") ++ ++;; Turning an add/sub instruction into the other changes the Carry flag ++;; so the 4096 trick cannot be used for operations in CCmode. ++ ++(define_expand "usubvsi4" ++ [(parallel [(set (reg:CC CC_REG) ++ (compare:CC (match_operand:SI 1 "register_or_zero_operand") ++ (match_operand:SI 2 "arith_operand"))) ++ (set (match_operand:SI 0 "register_operand") ++ (minus:SI (match_dup 1) (match_dup 2)))]) ++ (set (pc) (if_then_else (ltu (reg:CC CC_REG) (const_int 0)) ++ (label_ref (match_operand 3)) ++ (pc)))] ++ "" ++{ ++ if (operands[1] == const0_rtx) ++ { ++ emit_insn (gen_unegvsi3 (operands[0], operands[2], operands[3])); ++ DONE; ++ } ++}) ++ ++;; Turning an add/sub instruction into the other does not change the Overflow ++;; flag so the 4096 trick can be used for operations in CCVmode. ++ ++(define_expand "subvsi4" ++ [(parallel [(set (reg:CCV CC_REG) ++ (compare:CCV (minus:SI (match_operand:SI 1 "register_operand") ++ (match_operand:SI 2 "arith_add_operand")) ++ (unspec:SI [(match_dup 1) (match_dup 2)] ++ UNSPEC_SUBV))) ++ (set (match_operand:SI 0 "register_operand") ++ (minus:SI (match_dup 1) (match_dup 2)))]) ++ (set (pc) (if_then_else (ne (reg:CCV CC_REG) (const_int 0)) ++ (label_ref (match_operand 3)) ++ (pc)))] ++ "") ++ ++(define_insn "*cmp_ccnz_minus" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (minus:SI (match_operand:SI 0 "register_or_zero_operand" "rJ") ++ (match_operand:SI 1 "arith_operand" "rI")) ++ (const_int 0)))] ++ "" ++ "subcc\t%r0, %1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxnz_minus" ++ [(set (reg:CCXNZ CC_REG) ++ (compare:CCXNZ (minus:DI (match_operand:DI 0 "register_or_zero_operand" "rJ") ++ (match_operand:DI 1 "arith_operand" "rI")) ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "subcc\t%r0, %1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccnz_minus_set" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (minus:SI (match_dup 1) (match_dup 2)))] ++ "" ++ "subcc\t%r1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxnz_minus_set" ++ [(set (reg:CCXNZ CC_REG) ++ (compare:CCXNZ (minus:DI (match_operand:DI 1 "register_or_zero_operand" "rJ") ++ (match_operand:DI 2 "arith_operand" "rI")) ++ (const_int 0))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (minus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_ARCH64" ++ "subcc\t%r1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmpsi_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC (match_operand:SI 1 "register_or_zero_operand" "rJ") ++ (match_operand:SI 2 "arith_operand" "rI"))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (minus:SI (match_dup 1) (match_dup 2)))] ++ "" ++ "subcc\t%r1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmpdi_set" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (match_operand:DI 1 "register_or_zero_operand" "rJ") ++ (match_operand:DI 2 "arith_operand" "rI"))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (minus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_ARCH64" ++ "subcc\t%r1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccc_minus_sltu_set" ++ [(set (reg:CCC CC_REG) ++ (compare:CCC (zero_extend:DI ++ (minus:SI ++ (minus:SI ++ (match_operand:SI 1 "register_or_zero_operand" "rJ") ++ (ltu:SI (reg:CC CC_REG) (const_int 0))) ++ (match_operand:SI 2 "arith_operand" "rI"))) ++ (minus:DI ++ (minus:DI ++ (zero_extend:DI (match_dup 1)) ++ (ltu:DI (reg:CC CC_REG) (const_int 0))) ++ (zero_extend:DI (match_dup 2))))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (minus:SI (minus:SI (match_dup 1) ++ (ltu:SI (reg:CC CC_REG) (const_int 0))) ++ (match_dup 2)))] ++ "" ++ "subxcc\t%r1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccv_minus" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (minus:SI (match_operand:SI 0 "register_or_zero_operand" "rJ,rJ") ++ (match_operand:SI 1 "arith_add_operand" "rI,O")) ++ (unspec:SI [(match_dup 0) (match_dup 1)] UNSPEC_SUBV)))] ++ "" ++ "@ ++ subcc\t%r0, %1, %%g0 ++ addcc\t%r0, -%1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxv_minus" ++ [(set (reg:CCXV CC_REG) ++ (compare:CCXV (minus:DI (match_operand:DI 0 "register_or_zero_operand" "rJ,rJ") ++ (match_operand:DI 1 "arith_add_operand" "rI,O")) ++ (unspec:DI [(match_dup 0) (match_dup 1)] UNSPEC_SUBV)))] ++ "TARGET_ARCH64" ++ "@ ++ subcc\t%r0, %1, %%g0 ++ addcc\t%r0, -%1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccv_minus_set" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ,rJ") ++ (match_operand:SI 2 "arith_add_operand" "rI,O")) ++ (unspec:SI [(match_dup 1) (match_dup 2)] UNSPEC_SUBV))) ++ (set (match_operand:SI 0 "register_operand" "=r,r") ++ (minus:SI (match_dup 1) (match_dup 2)))] ++ "" ++ "@ ++ subcc\t%r1, %2, %0 ++ addcc\t%r1, -%2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxv_minus_set" ++ [(set (reg:CCXV CC_REG) ++ (compare:CCXV (minus:DI (match_operand:DI 1 "register_or_zero_operand" "rJ,rJ") ++ (match_operand:DI 2 "arith_add_operand" "rI,O")) ++ (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_SUBV))) ++ (set (match_operand:DI 0 "register_operand" "=r,r") ++ (minus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_ARCH64" ++ "@ ++ subcc\t%r1, %2, %0 ++ addcc\t%r1, -%2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccv_minus_sltu_set" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV ++ (minus:SI (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (ltu:SI (reg:CC CC_REG) (const_int 0))) ++ (unspec:SI [(minus:SI (match_dup 1) (match_dup 2)) ++ (ltu:SI (reg:CC CC_REG) (const_int 0))] ++ UNSPEC_SUBV))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (minus:SI (minus:SI (match_dup 1) (match_dup 2)) ++ (ltu:SI (reg:CC CC_REG) (const_int 0))))] ++ "" ++ "subxcc\t%1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++ ++;; Integer multiply/divide instructions. ++ ++;; The 32-bit multiply/divide instructions are deprecated on v9, but at ++;; least in UltraSPARC I, II and IIi it is a win tick-wise. ++ ++(define_expand "mulsi3" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mult:SI (match_operand:SI 1 "arith_operand" "") ++ (match_operand:SI 2 "arith_operand" "")))] ++ "TARGET_HARD_MUL || TARGET_ARCH64" ++ "") ++ ++(define_insn "*mulsi3_sp32" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI (match_operand:SI 1 "arith_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "TARGET_HARD_MUL" ++ "smul\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++(define_insn "*mulsi3_sp64" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI (match_operand:SI 1 "arith_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++ "mulx\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++(define_expand "muldi3" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (mult:DI (match_operand:DI 1 "arith_operand" "") ++ (match_operand:DI 2 "arith_operand" "")))] ++ "TARGET_ARCH64 || TARGET_V8PLUS" ++{ ++ if (TARGET_V8PLUS) ++ { ++ emit_insn (gen_muldi3_v8plus (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++(define_insn "*muldi3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (match_operand:DI 1 "arith_operand" "%r") ++ (match_operand:DI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++ "mulx\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++;; V8plus wide multiply. ++(define_insn "muldi3_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=r,h") ++ (mult:DI (match_operand:DI 1 "arith_operand" "%r,0") ++ (match_operand:DI 2 "arith_operand" "rI,rI"))) ++ (clobber (match_scratch:SI 3 "=&h,X")) ++ (clobber (match_scratch:SI 4 "=&h,X"))] ++ "TARGET_V8PLUS" ++{ ++ return output_v8plus_mult (insn, operands, \"mulx\"); ++} ++ [(set_attr "type" "multi") ++ (set_attr "length" "9,8")]) ++ ++(define_insn "*cmp_mul_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC (mult:SI (match_operand:SI 1 "arith_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI (match_dup 1) (match_dup 2)))] ++ "TARGET_V8 || TARGET_SPARCLITE || TARGET_DEPRECATED_V8_INSNS" ++ "smulcc\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++(define_expand "mulsidi3" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "")) ++ (sign_extend:DI (match_operand:SI 2 "arith_operand" ""))))] ++ "TARGET_HARD_MUL" ++{ ++ if (CONSTANT_P (operands[2])) ++ { ++ if (TARGET_V8PLUS) ++ emit_insn (gen_const_mulsidi3_v8plus (operands[0], operands[1], ++ operands[2])); ++ else if (TARGET_ARCH32) ++ emit_insn (gen_const_mulsidi3_sp32 (operands[0], operands[1], ++ operands[2])); ++ else ++ emit_insn (gen_const_mulsidi3_sp64 (operands[0], operands[1], ++ operands[2])); ++ DONE; ++ } ++ if (TARGET_V8PLUS) ++ { ++ emit_insn (gen_mulsidi3_v8plus (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++;; V9 puts the 64-bit product in a 64-bit register. Only out or global ++;; registers can hold 64-bit values in the V8plus environment. ++(define_insn "mulsidi3_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=h,r") ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r,r")))) ++ (clobber (match_scratch:SI 3 "=X,&h"))] ++ "TARGET_V8PLUS" ++ "@ ++ smul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 ++ smul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2,3")]) ++ ++(define_insn "const_mulsidi3_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=h,r") ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) ++ (match_operand:DI 2 "small_int_operand" "I,I"))) ++ (clobber (match_scratch:SI 3 "=X,&h"))] ++ "TARGET_V8PLUS" ++ "@ ++ smul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 ++ smul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2,3")]) ++ ++(define_insn "*mulsidi3_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] ++ "TARGET_HARD_MUL32" ++{ ++ return TARGET_SPARCLET ++ ? "smuld\t%1, %2, %L0" ++ : "smul\t%1, %2, %L0\n\trd\t%%y, %H0"; ++} ++ [(set (attr "type") ++ (if_then_else (eq_attr "isa" "sparclet") ++ (const_string "imul") (const_string "multi"))) ++ (set (attr "length") ++ (if_then_else (eq_attr "isa" "sparclet") ++ (const_int 1) (const_int 2)))]) ++ ++(define_insn "*mulsidi3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] ++ "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" ++ "smul\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++;; Extra pattern, because sign_extend of a constant isn't valid. ++ ++(define_insn "const_mulsidi3_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (match_operand:DI 2 "small_int_operand" "I")))] ++ "TARGET_HARD_MUL32" ++{ ++ return TARGET_SPARCLET ++ ? "smuld\t%1, %2, %L0" ++ : "smul\t%1, %2, %L0\n\trd\t%%y, %H0"; ++} ++ [(set (attr "type") ++ (if_then_else (eq_attr "isa" "sparclet") ++ (const_string "imul") (const_string "multi"))) ++ (set (attr "length") ++ (if_then_else (eq_attr "isa" "sparclet") ++ (const_int 1) (const_int 2)))]) ++ ++(define_insn "const_mulsidi3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (match_operand:DI 2 "small_int_operand" "I")))] ++ "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" ++ "smul\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++(define_expand "smulsi3_highpart" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "")) ++ (sign_extend:DI (match_operand:SI 2 "arith_operand" ""))) ++ (const_int 32))))] ++ "TARGET_HARD_MUL && TARGET_ARCH32" ++{ ++ if (CONSTANT_P (operands[2])) ++ { ++ if (TARGET_V8PLUS) ++ { ++ emit_insn (gen_const_smulsi3_highpart_v8plus (operands[0], ++ operands[1], ++ operands[2], ++ GEN_INT (32))); ++ DONE; ++ } ++ emit_insn (gen_const_smulsi3_highpart (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++ if (TARGET_V8PLUS) ++ { ++ emit_insn (gen_smulsi3_highpart_v8plus (operands[0], operands[1], ++ operands[2], GEN_INT (32))); ++ DONE; ++ } ++}) ++ ++(define_insn "smulsi3_highpart_v8plus" ++ [(set (match_operand:SI 0 "register_operand" "=h,r") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r,r"))) ++ (match_operand:SI 3 "small_int_operand" "I,I")))) ++ (clobber (match_scratch:SI 4 "=X,&h"))] ++ "TARGET_V8PLUS" ++ "@ ++ smul\t%1, %2, %0\;srlx\t%0, %3, %0 ++ smul\t%1, %2, %4\;srlx\t%4, %3, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++;; The combiner changes TRUNCATE in the previous pattern to SUBREG. ++(define_insn "" ++ [(set (match_operand:SI 0 "register_operand" "=h,r") ++ (subreg:SI ++ (lshiftrt:DI ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r,r"))) ++ (match_operand:SI 3 "small_int_operand" "I,I")) 4)) ++ (clobber (match_scratch:SI 4 "=X,&h"))] ++ "TARGET_V8PLUS" ++ "@ ++ smul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 ++ smul\t%1, %2, %4\n\tsrlx\t%4, %3, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++(define_insn "const_smulsi3_highpart_v8plus" ++ [(set (match_operand:SI 0 "register_operand" "=h,r") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) ++ (match_operand:DI 2 "small_int_operand" "I,I")) ++ (match_operand:SI 3 "small_int_operand" "I,I")))) ++ (clobber (match_scratch:SI 4 "=X,&h"))] ++ "TARGET_V8PLUS" ++ "@ ++ smul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 ++ smul\t%1, %2, %4\n\tsrlx\t%4, %3, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++(define_insn "*smulsi3_highpart_sp32" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))) ++ (const_int 32))))] ++ "TARGET_HARD_MUL32" ++ "smul\t%1, %2, %%g0\n\trd\t%%y, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++(define_insn "const_smulsi3_highpart" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (match_operand:DI 2 "small_int_operand" "i")) ++ (const_int 32))))] ++ "TARGET_HARD_MUL32" ++ "smul\t%1, %2, %%g0\n\trd\t%%y, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++(define_expand "umulsidi3" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "")) ++ (zero_extend:DI (match_operand:SI 2 "uns_arith_operand" ""))))] ++ "TARGET_HARD_MUL" ++{ ++ if (CONSTANT_P (operands[2])) ++ { ++ if (TARGET_V8PLUS) ++ emit_insn (gen_const_umulsidi3_v8plus (operands[0], operands[1], ++ operands[2])); ++ else if (TARGET_ARCH32) ++ emit_insn (gen_const_umulsidi3_sp32 (operands[0], operands[1], ++ operands[2])); ++ else ++ emit_insn (gen_const_umulsidi3_sp64 (operands[0], operands[1], ++ operands[2])); ++ DONE; ++ } ++ if (TARGET_V8PLUS) ++ { ++ emit_insn (gen_umulsidi3_v8plus (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++(define_insn "umulsidi3_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=h,r") ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r,r")))) ++ (clobber (match_scratch:SI 3 "=X,&h"))] ++ "TARGET_V8PLUS" ++ "@ ++ umul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 ++ umul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2,3")]) ++ ++(define_insn "*umulsidi3_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] ++ "TARGET_HARD_MUL32" ++{ ++ return TARGET_SPARCLET ++ ? "umuld\t%1, %2, %L0" ++ : "umul\t%1, %2, %L0\n\trd\t%%y, %H0"; ++} ++ [(set (attr "type") ++ (if_then_else (eq_attr "isa" "sparclet") ++ (const_string "imul") (const_string "multi"))) ++ (set (attr "length") ++ (if_then_else (eq_attr "isa" "sparclet") ++ (const_int 1) (const_int 2)))]) ++ ++(define_insn "*umulsidi3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] ++ "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" ++ "umul\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++;; Extra pattern, because sign_extend of a constant isn't valid. ++ ++(define_insn "const_umulsidi3_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (match_operand:DI 2 "uns_small_int_operand" "")))] ++ "TARGET_HARD_MUL32" ++{ ++ return TARGET_SPARCLET ++ ? "umuld\t%1, %s2, %L0" ++ : "umul\t%1, %s2, %L0\n\trd\t%%y, %H0"; ++} ++ [(set (attr "type") ++ (if_then_else (eq_attr "isa" "sparclet") ++ (const_string "imul") (const_string "multi"))) ++ (set (attr "length") ++ (if_then_else (eq_attr "isa" "sparclet") ++ (const_int 1) (const_int 2)))]) ++ ++(define_insn "const_umulsidi3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (match_operand:DI 2 "uns_small_int_operand" "")))] ++ "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" ++ "umul\t%1, %s2, %0" ++ [(set_attr "type" "imul")]) ++ ++(define_insn "const_umulsidi3_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=h,r") ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) ++ (match_operand:DI 2 "uns_small_int_operand" ""))) ++ (clobber (match_scratch:SI 3 "=X,h"))] ++ "TARGET_V8PLUS" ++ "@ ++ umul\t%1, %s2, %L0\n\tsrlx\t%L0, 32, %H0 ++ umul\t%1, %s2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2,3")]) ++ ++(define_expand "umulsi3_highpart" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "")) ++ (zero_extend:DI (match_operand:SI 2 "uns_arith_operand" ""))) ++ (const_int 32))))] ++ "TARGET_HARD_MUL && TARGET_ARCH32" ++{ ++ if (CONSTANT_P (operands[2])) ++ { ++ if (TARGET_V8PLUS) ++ { ++ emit_insn (gen_const_umulsi3_highpart_v8plus (operands[0], ++ operands[1], ++ operands[2], ++ GEN_INT (32))); ++ DONE; ++ } ++ emit_insn (gen_const_umulsi3_highpart (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++ if (TARGET_V8PLUS) ++ { ++ emit_insn (gen_umulsi3_highpart_v8plus (operands[0], operands[1], ++ operands[2], GEN_INT (32))); ++ DONE; ++ } ++}) ++ ++(define_insn "umulsi3_highpart_v8plus" ++ [(set (match_operand:SI 0 "register_operand" "=h,r") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r,r"))) ++ (match_operand:SI 3 "small_int_operand" "I,I")))) ++ (clobber (match_scratch:SI 4 "=X,h"))] ++ "TARGET_V8PLUS" ++ "@ ++ umul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 ++ umul\t%1, %2, %4\n\tsrlx\t%4, %3, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++(define_insn "const_umulsi3_highpart_v8plus" ++ [(set (match_operand:SI 0 "register_operand" "=h,r") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) ++ (match_operand:DI 2 "uns_small_int_operand" "")) ++ (match_operand:SI 3 "small_int_operand" "I,I")))) ++ (clobber (match_scratch:SI 4 "=X,h"))] ++ "TARGET_V8PLUS" ++ "@ ++ umul\t%1, %s2, %0\n\tsrlx\t%0, %3, %0 ++ umul\t%1, %s2, %4\n\tsrlx\t%4, %3, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++(define_insn "*umulsi3_highpart_sp32" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))) ++ (const_int 32))))] ++ "TARGET_HARD_MUL32" ++ "umul\t%1, %2, %%g0\n\trd\t%%y, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++(define_insn "const_umulsi3_highpart" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (match_operand:DI 2 "uns_small_int_operand" "")) ++ (const_int 32))))] ++ "TARGET_HARD_MUL32" ++ "umul\t%1, %s2, %%g0\n\trd\t%%y, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++ ++(define_expand "umulxhi_vis" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (truncate:DI ++ (lshiftrt:TI ++ (mult:TI (zero_extend:TI (match_operand:DI 1 "arith_operand" "")) ++ (zero_extend:TI (match_operand:DI 2 "arith_operand" ""))) ++ (const_int 64))))] ++ "TARGET_VIS3" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_umulxhi_v8plus (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++(define_insn "*umulxhi_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (truncate:DI ++ (lshiftrt:TI ++ (mult:TI (zero_extend:TI (match_operand:DI 1 "arith_operand" "%r")) ++ (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI"))) ++ (const_int 64))))] ++ "TARGET_VIS3 && TARGET_ARCH64" ++ "umulxhi\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++(define_insn "umulxhi_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=r,h") ++ (truncate:DI ++ (lshiftrt:TI ++ (mult:TI (zero_extend:TI (match_operand:DI 1 "arith_operand" "%r,0")) ++ (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI,rI"))) ++ (const_int 64)))) ++ (clobber (match_scratch:SI 3 "=&h,X")) ++ (clobber (match_scratch:SI 4 "=&h,X"))] ++ "TARGET_VIS3 && TARGET_ARCH32" ++{ ++ return output_v8plus_mult (insn, operands, \"umulxhi\"); ++} ++ [(set_attr "type" "imul") ++ (set_attr "length" "9,8")]) ++ ++(define_expand "xmulx_vis" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (truncate:DI ++ (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "")) ++ (zero_extend:TI (match_operand:DI 2 "arith_operand" ""))] ++ UNSPEC_XMUL)))] ++ "TARGET_VIS3" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_xmulx_v8plus (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++(define_insn "*xmulx_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (truncate:DI ++ (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "%r")) ++ (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI"))] ++ UNSPEC_XMUL)))] ++ "TARGET_VIS3 && TARGET_ARCH64" ++ "xmulx\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++(define_insn "xmulx_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=r,h") ++ (truncate:DI ++ (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "%r,0")) ++ (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI,rI"))] ++ UNSPEC_XMUL))) ++ (clobber (match_scratch:SI 3 "=&h,X")) ++ (clobber (match_scratch:SI 4 "=&h,X"))] ++ "TARGET_VIS3 && TARGET_ARCH32" ++{ ++ return output_v8plus_mult (insn, operands, \"xmulx\"); ++} ++ [(set_attr "type" "imul") ++ (set_attr "length" "9,8")]) ++ ++(define_expand "xmulxhi_vis" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (truncate:DI ++ (lshiftrt:TI ++ (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "")) ++ (zero_extend:TI (match_operand:DI 2 "arith_operand" ""))] ++ UNSPEC_XMUL) ++ (const_int 64))))] ++ "TARGET_VIS3" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_xmulxhi_v8plus (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++(define_insn "*xmulxhi_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (truncate:DI ++ (lshiftrt:TI ++ (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "%r")) ++ (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI"))] ++ UNSPEC_XMUL) ++ (const_int 64))))] ++ "TARGET_VIS3 && TARGET_ARCH64" ++ "xmulxhi\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++(define_insn "xmulxhi_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=r,h") ++ (truncate:DI ++ (lshiftrt:TI ++ (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "%r,0")) ++ (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI,rI"))] ++ UNSPEC_XMUL) ++ (const_int 64)))) ++ (clobber (match_scratch:SI 3 "=&h,X")) ++ (clobber (match_scratch:SI 4 "=&h,X"))] ++ "TARGET_VIS3 && TARGET_ARCH32" ++{ ++ return output_v8plus_mult (insn, operands, \"xmulxhi\"); ++} ++ [(set_attr "type" "imul") ++ (set_attr "length" "9,8")]) ++ ++(define_expand "divsi3" ++ [(parallel [(set (match_operand:SI 0 "register_operand" "") ++ (div:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "input_operand" ""))) ++ (clobber (match_scratch:SI 3 ""))])] ++ "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" ++{ ++ if (TARGET_ARCH64) ++ { ++ operands[3] = gen_reg_rtx(SImode); ++ emit_insn (gen_ashrsi3 (operands[3], operands[1], GEN_INT (31))); ++ emit_insn (gen_divsi3_sp64 (operands[0], operands[1], operands[2], ++ operands[3])); ++ DONE; ++ } ++}) ++ ++;; The V8 architecture specifies that there must be at least 3 instructions ++;; between a write to the Y register and a use of it for correct results. ++;; We try to fill one of them with a simple constant or a memory load. ++ ++(define_insn "divsi3_sp32" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (div:SI (match_operand:SI 1 "register_operand" "r,r,r") ++ (match_operand:SI 2 "input_operand" "rI,K,m"))) ++ (clobber (match_scratch:SI 3 "=&r,&r,&r"))] ++ "(TARGET_V8 || TARGET_DEPRECATED_V8_INSNS) && TARGET_ARCH32" ++{ ++ output_asm_insn ("sra\t%1, 31, %3", operands); ++ output_asm_insn ("wr\t%3, 0, %%y", operands); ++ ++ switch (which_alternative) ++ { ++ case 0: ++ if (TARGET_V9) ++ return "sdiv\t%1, %2, %0"; ++ else ++ return "nop\n\tnop\n\tnop\n\tsdiv\t%1, %2, %0"; ++ case 1: ++ if (TARGET_V9) ++ return "sethi\t%%hi(%a2), %3\n\tsdiv\t%1, %3, %0"; ++ else ++ return "sethi\t%%hi(%a2), %3\n\tnop\n\tnop\n\tsdiv\t%1, %3, %0"; ++ case 2: ++ if (TARGET_V9) ++ return "ld\t%2, %3\n\tsdiv\t%1, %3, %0"; ++ else ++ return "ld\t%2, %3\n\tnop\n\tnop\n\tsdiv\t%1, %3, %0"; ++ default: ++ gcc_unreachable (); ++ } ++} ++ [(set_attr "type" "multi") ++ (set (attr "length") ++ (if_then_else (eq_attr "isa" "v9") ++ (const_int 4) (const_int 6)))]) ++ ++(define_insn "divsi3_sp64" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (div:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "input_operand" "rI"))) ++ (use (match_operand:SI 3 "register_operand" "r"))] ++ "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" ++ "wr\t%%g0, %3, %%y\n\tsdiv\t%1, %2, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++(define_insn "divdi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (div:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++ "sdivx\t%1, %2, %0" ++ [(set_attr "type" "idiv")]) ++ ++(define_insn "*cmp_sdiv_cc_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC (div:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (div:SI (match_dup 1) (match_dup 2))) ++ (clobber (match_scratch:SI 3 "=&r"))] ++ "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" ++{ ++ output_asm_insn ("sra\t%1, 31, %3", operands); ++ output_asm_insn ("wr\t%3, 0, %%y", operands); ++ ++ if (TARGET_V9) ++ return "sdivcc\t%1, %2, %0"; ++ else ++ return "nop\n\tnop\n\tnop\n\tsdivcc\t%1, %2, %0"; ++} ++ [(set_attr "type" "multi") ++ (set (attr "length") ++ (if_then_else (eq_attr "isa" "v9") ++ (const_int 3) (const_int 6)))]) ++ ++(define_expand "udivsi3" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "") ++ (match_operand:SI 2 "input_operand" "")))] ++ "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" ++ "") ++ ++;; The V8 architecture specifies that there must be at least 3 instructions ++;; between a write to the Y register and a use of it for correct results. ++;; We try to fill one of them with a simple constant or a memory load. ++ ++(define_insn "udivsi3_sp32" ++ [(set (match_operand:SI 0 "register_operand" "=r,&r,&r,&r") ++ (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "r,r,r,m") ++ (match_operand:SI 2 "input_operand" "rI,K,m,r")))] ++ "(TARGET_V8 || TARGET_DEPRECATED_V8_INSNS) && TARGET_ARCH32" ++{ ++ output_asm_insn ("wr\t%%g0, 0, %%y", operands); ++ ++ switch (which_alternative) ++ { ++ case 0: ++ if (TARGET_V9) ++ return "udiv\t%1, %2, %0"; ++ else ++ return "nop\n\tnop\n\tnop\n\tudiv\t%1, %2, %0"; ++ case 1: ++ if (TARGET_V9) ++ return "sethi\t%%hi(%a2), %0\n\tudiv\t%1, %0, %0"; ++ else ++ return "sethi\t%%hi(%a2), %0\n\tnop\n\tnop\n\tudiv\t%1, %0, %0"; ++ case 2: ++ if (TARGET_V9) ++ return "ld\t%2, %0\n\tudiv\t%1, %0, %0"; ++ else ++ return "ld\t%2, %0\n\tnop\n\tnop\n\tudiv\t%1, %0, %0"; ++ case 3: ++ if (TARGET_V9) ++ return "ld\t%1, %0\n\tudiv\t%0, %2, %0"; ++ else ++ return "ld\t%1, %0\n\tnop\n\tnop\n\tudiv\t%0, %2, %0"; ++ default: ++ gcc_unreachable (); ++ } ++} ++ [(set_attr "type" "multi") ++ (set (attr "length") ++ (if_then_else (eq_attr "isa" "v9") ++ (const_int 3) (const_int 5)))]) ++ ++(define_insn "udivsi3_sp64" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "r") ++ (match_operand:SI 2 "input_operand" "rI")))] ++ "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" ++ "wr\t%%g0, 0, %%y\n\tudiv\t%1, %2, %0" ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++(define_insn "udivdi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (udiv:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++ "udivx\t%1, %2, %0" ++ [(set_attr "type" "idiv")]) ++ ++(define_insn "*cmp_udiv_cc_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC (udiv:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (udiv:SI (match_dup 1) (match_dup 2)))] ++ "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" ++{ ++ output_asm_insn ("wr\t%%g0, 0, %%y", operands); ++ ++ if (TARGET_V9) ++ return "udivcc\t%1, %2, %0"; ++ else ++ return "nop\n\tnop\n\tnop\n\tudivcc\t%1, %2, %0"; ++} ++ [(set_attr "type" "multi") ++ (set (attr "length") ++ (if_then_else (eq_attr "isa" "v9") ++ (const_int 2) (const_int 5)))]) ++ ++ ++;; SPARClet multiply/accumulate insns ++ ++(define_insn "*smacsi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")) ++ (match_operand:SI 3 "register_operand" "0")))] ++ "TARGET_SPARCLET" ++ "smac\t%1, %2, %0" ++ [(set_attr "type" "imul")]) ++ ++(define_insn "*smacdi" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (plus:DI (mult:DI (sign_extend:DI ++ (match_operand:SI 1 "register_operand" "%r")) ++ (sign_extend:DI ++ (match_operand:SI 2 "register_operand" "r"))) ++ (match_operand:DI 3 "register_operand" "0")))] ++ "TARGET_SPARCLET" ++ "smacd\t%1, %2, %L0" ++ [(set_attr "type" "imul")]) ++ ++(define_insn "*umacdi" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (plus:DI (mult:DI (zero_extend:DI ++ (match_operand:SI 1 "register_operand" "%r")) ++ (zero_extend:DI ++ (match_operand:SI 2 "register_operand" "r"))) ++ (match_operand:DI 3 "register_operand" "0")))] ++ "TARGET_SPARCLET" ++ "umacd\t%1, %2, %L0" ++ [(set_attr "type" "imul")]) ++ ++ ++;; Boolean instructions. ++ ++(define_insn "anddi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (and:DI (match_operand:DI 1 "arith_operand" "%r") ++ (match_operand:DI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++ "and\t%1, %2, %0") ++ ++(define_insn "andsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (and:SI (match_operand:SI 1 "arith_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "" ++ "and\t%1, %2, %0") ++ ++(define_split ++ [(set (match_operand:SI 0 "register_operand" "") ++ (and:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "const_compl_high_operand" ""))) ++ (clobber (match_operand:SI 3 "register_operand" ""))] ++ "" ++ [(set (match_dup 3) (match_dup 4)) ++ (set (match_dup 0) (and:SI (not:SI (match_dup 3)) (match_dup 1)))] ++{ ++ operands[4] = GEN_INT (~INTVAL (operands[2])); ++}) ++ ++(define_insn "*and_not_di_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (and:DI (not:DI (match_operand:DI 1 "register_operand" "%r")) ++ (match_operand:DI 2 "register_operand" "r")))] ++ "TARGET_ARCH64" ++ "andn\t%2, %1, %0") ++ ++(define_insn "*and_not_si" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (and:SI (not:SI (match_operand:SI 1 "register_operand" "%r")) ++ (match_operand:SI 2 "register_operand" "r")))] ++ "" ++ "andn\t%2, %1, %0") ++ ++(define_insn "iordi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ior:DI (match_operand:DI 1 "arith_operand" "%r") ++ (match_operand:DI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++ "or\t%1, %2, %0") ++ ++(define_insn "iorsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ior:SI (match_operand:SI 1 "arith_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "" ++ "or\t%1, %2, %0") ++ ++(define_split ++ [(set (match_operand:SI 0 "register_operand" "") ++ (ior:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "const_compl_high_operand" ""))) ++ (clobber (match_operand:SI 3 "register_operand" ""))] ++ "" ++ [(set (match_dup 3) (match_dup 4)) ++ (set (match_dup 0) (ior:SI (not:SI (match_dup 3)) (match_dup 1)))] ++{ ++ operands[4] = gen_int_mode (~INTVAL (operands[2]), SImode); ++}) ++ ++(define_insn "*or_not_di_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ior:DI (not:DI (match_operand:DI 1 "register_operand" "r")) ++ (match_operand:DI 2 "register_operand" "r")))] ++ "TARGET_ARCH64" ++ "orn\t%2, %1, %0") ++ ++(define_insn "*or_not_si" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ior:SI (not:SI (match_operand:SI 1 "register_operand" "r")) ++ (match_operand:SI 2 "register_operand" "r")))] ++ "" ++ "orn\t%2, %1, %0") ++ ++(define_insn "xordi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (xor:DI (match_operand:DI 1 "arith_operand" "%rJ") ++ (match_operand:DI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++ "xor\t%r1, %2, %0") ++ ++(define_insn "xorsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (xor:SI (match_operand:SI 1 "arith_operand" "%rJ") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "" ++ "xor\t%r1, %2, %0") ++ ++(define_split ++ [(set (match_operand:SI 0 "register_operand" "") ++ (xor:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "const_compl_high_operand" ""))) ++ (clobber (match_operand:SI 3 "register_operand" ""))] ++ "" ++ [(set (match_dup 3) (match_dup 4)) ++ (set (match_dup 0) (not:SI (xor:SI (match_dup 3) (match_dup 1))))] ++{ ++ operands[4] = gen_int_mode (~INTVAL (operands[2]), SImode); ++}) ++ ++(define_split ++ [(set (match_operand:SI 0 "register_operand" "") ++ (not:SI (xor:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "const_compl_high_operand" "")))) ++ (clobber (match_operand:SI 3 "register_operand" ""))] ++ "" ++ [(set (match_dup 3) (match_dup 4)) ++ (set (match_dup 0) (xor:SI (match_dup 3) (match_dup 1)))] ++{ ++ operands[4] = gen_int_mode (~INTVAL (operands[2]), SImode); ++}) ++ ++(define_insn "*xor_not_di_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (not:DI (xor:DI (match_operand:DI 1 "register_or_zero_operand" "rJ") ++ (match_operand:DI 2 "arith_operand" "rI"))))] ++ "TARGET_ARCH64" ++ "xnor\t%r1, %2, %0") ++ ++(define_insn "*xor_not_si" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (not:SI (xor:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") ++ (match_operand:SI 2 "arith_operand" "rI"))))] ++ "" ++ "xnor\t%r1, %2, %0") ++ ++;; These correspond to the above in the case where we also (or only) ++;; want to set the condition code. ++ ++(define_insn "*cmp_cc_arith_op" ++ [(set (reg:CC CC_REG) ++ (compare:CC (match_operator:SI 2 "cc_arith_operator" ++ [(match_operand:SI 0 "arith_operand" "%r") ++ (match_operand:SI 1 "arith_operand" "rI")]) ++ (const_int 0)))] ++ "" ++ "%A2cc\t%0, %1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccx_arith_op" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (match_operator:DI 2 "cc_arith_operator" ++ [(match_operand:DI 0 "arith_operand" "%r") ++ (match_operand:DI 1 "arith_operand" "rI")]) ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "%A2cc\t%0, %1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_cc_arith_op_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC (match_operator:SI 3 "cc_arith_operator" ++ [(match_operand:SI 1 "arith_operand" "%r") ++ (match_operand:SI 2 "arith_operand" "rI")]) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (match_operator:SI 4 "cc_arith_operator" ++ [(match_dup 1) (match_dup 2)]))] ++ "GET_CODE (operands[3]) == GET_CODE (operands[4])" ++ "%A3cc\t%1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccx_arith_op_set" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (match_operator:DI 3 "cc_arith_operator" ++ [(match_operand:DI 1 "arith_operand" "%r") ++ (match_operand:DI 2 "arith_operand" "rI")]) ++ (const_int 0))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (match_operator:DI 4 "cc_arith_operator" ++ [(match_dup 1) (match_dup 2)]))] ++ "TARGET_ARCH64 && GET_CODE (operands[3]) == GET_CODE (operands[4])" ++ "%A3cc\t%1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_cc_xor_not" ++ [(set (reg:CC CC_REG) ++ (compare:CC ++ (not:SI (xor:SI (match_operand:SI 0 "register_or_zero_operand" "%rJ") ++ (match_operand:SI 1 "arith_operand" "rI"))) ++ (const_int 0)))] ++ "" ++ "xnorcc\t%r0, %1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccx_xor_not" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX ++ (not:DI (xor:DI (match_operand:DI 0 "register_or_zero_operand" "%rJ") ++ (match_operand:DI 1 "arith_operand" "rI"))) ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "xnorcc\t%r0, %1, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_cc_xor_not_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC ++ (not:SI (xor:SI (match_operand:SI 1 "register_or_zero_operand" "%rJ") ++ (match_operand:SI 2 "arith_operand" "rI"))) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (not:SI (xor:SI (match_dup 1) (match_dup 2))))] ++ "" ++ "xnorcc\t%r1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccx_xor_not_set" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX ++ (not:DI (xor:DI (match_operand:DI 1 "register_or_zero_operand" "%rJ") ++ (match_operand:DI 2 "arith_operand" "rI"))) ++ (const_int 0))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (not:DI (xor:DI (match_dup 1) (match_dup 2))))] ++ "TARGET_ARCH64" ++ "xnorcc\t%r1, %2, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_cc_arith_op_not" ++ [(set (reg:CC CC_REG) ++ (compare:CC (match_operator:SI 2 "cc_arith_not_operator" ++ [(not:SI (match_operand:SI 0 "arith_operand" "rI")) ++ (match_operand:SI 1 "register_or_zero_operand" "rJ")]) ++ (const_int 0)))] ++ "" ++ "%B2cc\t%r1, %0, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccx_arith_op_not" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (match_operator:DI 2 "cc_arith_not_operator" ++ [(not:DI (match_operand:DI 0 "arith_operand" "rI")) ++ (match_operand:DI 1 "register_or_zero_operand" "rJ")]) ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "%B2cc\t%r1, %0, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_cc_arith_op_not_set" ++ [(set (reg:CC CC_REG) ++ (compare:CC (match_operator:SI 3 "cc_arith_not_operator" ++ [(not:SI (match_operand:SI 1 "arith_operand" "rI")) ++ (match_operand:SI 2 "register_or_zero_operand" "rJ")]) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (match_operator:SI 4 "cc_arith_not_operator" ++ [(not:SI (match_dup 1)) (match_dup 2)]))] ++ "GET_CODE (operands[3]) == GET_CODE (operands[4])" ++ "%B3cc\t%r2, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccx_arith_op_not_set" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (match_operator:DI 3 "cc_arith_not_operator" ++ [(not:DI (match_operand:DI 1 "arith_operand" "rI")) ++ (match_operand:DI 2 "register_or_zero_operand" "rJ")]) ++ (const_int 0))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (match_operator:DI 4 "cc_arith_not_operator" ++ [(not:DI (match_dup 1)) (match_dup 2)]))] ++ "TARGET_ARCH64 && GET_CODE (operands[3]) == GET_CODE (operands[4])" ++ "%B3cc\t%r2, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++;; We cannot use the "neg" pseudo insn because the Sun assembler ++;; does not know how to make it work for constants. ++ ++(define_expand "negdi2" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (neg:DI (match_operand:DI 1 "register_operand" "r")))] ++ "" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_negdi2_sp32 (operands[0], operands[1])); ++ DONE; ++ } ++}) ++ ++(define_expand "unegvdi3" ++ [(parallel [(set (reg:CCXC CC_REG) ++ (compare:CCXC (not:DI (match_operand:DI 1 "register_operand" "")) ++ (const_int -1))) ++ (set (match_operand:DI 0 "register_operand" "") ++ (neg:DI (match_dup 1)))]) ++ (set (pc) ++ (if_then_else (ltu (reg:CCXC CC_REG) (const_int 0)) ++ (label_ref (match_operand 2 "")) ++ (pc)))] ++ "" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_unegvdi3_sp32 (operands[0], operands[1])); ++ rtx x = gen_rtx_LTU (VOIDmode, gen_rtx_REG (CCCmode, SPARC_ICC_REG), ++ const0_rtx); ++ emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[2])); ++ DONE; ++ } ++}) ++ ++(define_expand "negvdi3" ++ [(parallel [(set (reg:CCXV CC_REG) ++ (compare:CCXV (neg:DI (match_operand:DI 1 "register_operand" "")) ++ (unspec:DI [(match_dup 1)] UNSPEC_NEGV))) ++ (set (match_operand:DI 0 "register_operand" "") ++ (neg:DI (match_dup 1)))]) ++ (set (pc) ++ (if_then_else (ne (reg:CCXV CC_REG) (const_int 0)) ++ (label_ref (match_operand 2 "")) ++ (pc)))] ++ "" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_negvdi3_sp32 (operands[0], operands[1])); ++ rtx x = gen_rtx_NE (VOIDmode, gen_rtx_REG (CCVmode, SPARC_ICC_REG), ++ const0_rtx); ++ emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[2])); ++ DONE; ++ } ++}) ++ ++(define_insn_and_split "negdi2_sp32" ++ [(set (match_operand:DI 0 "register_operand" "=&r") ++ (neg:DI (match_operand:DI 1 "register_operand" "r"))) ++ (clobber (reg:CC CC_REG))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (not:SI (match_dup 5)) (const_int -1))) ++ (set (match_dup 4) (neg:SI (match_dup 5)))]) ++ (set (match_dup 2) (minus:SI (minus:SI (const_int 0) (match_dup 3)) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0))))] ++ "operands[2] = gen_highpart (SImode, operands[0]); ++ operands[3] = gen_highpart (SImode, operands[1]); ++ operands[4] = gen_lowpart (SImode, operands[0]); ++ operands[5] = gen_lowpart (SImode, operands[1]);" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "unegvdi3_sp32" ++ [(set (reg:CCC CC_REG) ++ (compare:CCC (not:DI (match_operand:DI 1 "register_operand" "r")) ++ (const_int -1))) ++ (set (match_operand:DI 0 "register_operand" "=&r") ++ (neg:DI (match_dup 1)))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (not:SI (match_dup 5)) (const_int -1))) ++ (set (match_dup 4) (neg:SI (match_dup 5)))]) ++ (parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (zero_extend:DI ++ (neg:SI (plus:SI (match_dup 3) ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0))))) ++ (neg:DI (plus:DI (zero_extend:DI (match_dup 3)) ++ (ltu:DI (reg:CCC CC_REG) ++ (const_int 0)))))) ++ (set (match_dup 2) (neg:SI (plus:SI (match_dup 3) ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0)))))])] ++ "operands[2] = gen_highpart (SImode, operands[0]); ++ operands[3] = gen_highpart (SImode, operands[1]); ++ operands[4] = gen_lowpart (SImode, operands[0]); ++ operands[5] = gen_lowpart (SImode, operands[1]);" ++ [(set_attr "length" "2")]) ++ ++(define_insn_and_split "negvdi3_sp32" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (neg:DI (match_operand:DI 1 "register_operand" "r")) ++ (unspec:DI [(match_dup 1)] UNSPEC_NEGV))) ++ (set (match_operand:DI 0 "register_operand" "=&r") ++ (neg:DI (match_dup 1)))] ++ "TARGET_ARCH32" ++ "#" ++ "&& reload_completed" ++ [(parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (not:SI (match_dup 5)) (const_int -1))) ++ (set (match_dup 4) (neg:SI (match_dup 5)))]) ++ (parallel [(set (reg:CCV CC_REG) ++ (compare:CCV (neg:SI (plus:SI (match_dup 3) ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0)))) ++ (unspec:SI [(plus:SI (match_dup 3) ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0)))] ++ UNSPEC_NEGV))) ++ (set (match_dup 2) (neg:SI (plus:SI (match_dup 3) ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0)))))])] ++ "operands[2] = gen_highpart (SImode, operands[0]); ++ operands[3] = gen_highpart (SImode, operands[1]); ++ operands[4] = gen_lowpart (SImode, operands[0]); ++ operands[5] = gen_lowpart (SImode, operands[1]);" ++ [(set_attr "length" "2")]) ++ ++(define_insn "*negdi2_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (neg:DI (match_operand:DI 1 "register_operand" "r")))] ++ "TARGET_ARCH64" ++ "sub\t%%g0, %1, %0") ++ ++(define_insn "negsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (neg:SI (match_operand:SI 1 "register_operand" "r")))] ++ "" ++ "sub\t%%g0, %1, %0") ++ ++(define_expand "unegvsi3" ++ [(parallel [(set (reg:CCC CC_REG) ++ (compare:CCC (not:SI (match_operand:SI 1 "register_operand" "")) ++ (const_int -1))) ++ (set (match_operand:SI 0 "register_operand" "") ++ (neg:SI (match_dup 1)))]) ++ (set (pc) ++ (if_then_else (ltu (reg:CCC CC_REG) (const_int 0)) ++ (label_ref (match_operand 2 "")) ++ (pc)))] ++ "") ++ ++(define_expand "negvsi3" ++ [(parallel [(set (reg:CCV CC_REG) ++ (compare:CCV (neg:SI (match_operand:SI 1 "register_operand" "")) ++ (unspec:SI [(match_dup 1)] UNSPEC_NEGV))) ++ (set (match_operand:SI 0 "register_operand" "") ++ (neg:SI (match_dup 1)))]) ++ (set (pc) ++ (if_then_else (ne (reg:CCV CC_REG) (const_int 0)) ++ (label_ref (match_operand 2 "")) ++ (pc)))] ++"") ++ ++(define_insn "*cmp_ccnz_neg" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (neg:SI (match_operand:SI 0 "register_operand" "r")) ++ (const_int 0)))] ++ "" ++ "subcc\t%%g0, %0, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxnz_neg" ++ [(set (reg:CCXNZ CC_REG) ++ (compare:CCXNZ (neg:DI (match_operand:DI 0 "register_operand" "r")) ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "subcc\t%%g0, %0, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccnz_neg_set" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (neg:SI (match_operand:SI 1 "register_operand" "r")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (neg:SI (match_dup 1)))] ++ "" ++ "subcc\t%%g0, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxnz_neg_set" ++ [(set (reg:CCXNZ CC_REG) ++ (compare:CCXNZ (neg:DI (match_operand:DI 1 "register_operand" "r")) ++ (const_int 0))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (neg:DI (match_dup 1)))] ++ "TARGET_ARCH64" ++ "subcc\t%%g0, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccc_neg_set" ++ [(set (reg:CCC CC_REG) ++ (compare:CCC (not:SI (match_operand:SI 1 "register_operand" "r")) ++ (const_int -1))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (neg:SI (match_dup 1)))] ++ "" ++ "subcc\t%%g0, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxc_neg_set" ++ [(set (reg:CCXC CC_REG) ++ (compare:CCXC (not:DI (match_operand:DI 1 "register_operand" "r")) ++ (const_int -1))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (neg:DI (match_dup 1)))] ++ "TARGET_ARCH64" ++ "subcc\t%%g0, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccc_neg_sltu_set" ++ [(set (reg:CCC CC_REG) ++ (compare:CCC (zero_extend:DI ++ (neg:SI (plus:SI (match_operand:SI 1 "register_operand" "r") ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0))))) ++ (neg:DI (plus:DI (zero_extend:DI (match_dup 1)) ++ (ltu:DI (reg:CCC CC_REG) ++ (const_int 0)))))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (neg:SI (plus:SI (match_dup 1) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0)))))] ++ "" ++ "subxcc\t%%g0, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccv_neg" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (neg:SI (match_operand:SI 0 "register_operand" "r")) ++ (unspec:SI [(match_dup 0)] UNSPEC_NEGV)))] ++ "" ++ "subcc\t%%g0, %0, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxv_neg" ++ [(set (reg:CCXV CC_REG) ++ (compare:CCXV (neg:DI (match_operand:DI 0 "register_operand" "r")) ++ (unspec:DI [(match_dup 0)] UNSPEC_NEGV)))] ++ "TARGET_ARCH64" ++ "subcc\t%%g0, %0, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccv_neg_set" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (neg:SI (match_operand:SI 1 "register_operand" "r")) ++ (unspec:SI [(match_dup 1)] UNSPEC_NEGV))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (neg:SI (match_dup 1)))] ++ "" ++ "subcc\t%%g0, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccxv_neg_set" ++ [(set (reg:CCXV CC_REG) ++ (compare:CCXV (neg:DI (match_operand:DI 1 "register_operand" "r")) ++ (unspec:DI [(match_dup 1)] UNSPEC_NEGV))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (neg:DI (match_dup 1)))] ++ "TARGET_ARCH64" ++ "subcc\t%%g0, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccv_neg_sltu_set" ++ [(set (reg:CCV CC_REG) ++ (compare:CCV (neg:SI (plus:SI (match_operand:SI 1 "register_operand" "r") ++ (ltu:SI (reg:CCC CC_REG) (const_int 0)))) ++ (unspec:SI [(plus:SI (match_dup 1) ++ (ltu:SI (reg:CCC CC_REG) ++ (const_int 0)))] ++ UNSPEC_NEGV))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (neg:SI (plus:SI (match_dup 1) ++ (ltu:SI (reg:CCC CC_REG) (const_int 0)))))] ++ "" ++ "subxcc\t%%g0, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++ ++(define_insn "one_cmpldi2" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (not:DI (match_operand:DI 1 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++ "xnor\t%%g0, %1, %0") ++ ++(define_insn "one_cmplsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (not:SI (match_operand:SI 1 "arith_operand" "rI")))] ++ "" ++ "xnor\t%%g0, %1, %0") ++ ++(define_insn "*cmp_cc_not" ++ [(set (reg:CC CC_REG) ++ (compare:CC (not:SI (match_operand:SI 0 "arith_operand" "rI")) ++ (const_int 0)))] ++ "" ++ "xnorcc\t%%g0, %0, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccx_not" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (not:DI (match_operand:DI 0 "arith_operand" "rI")) ++ (const_int 0)))] ++ "TARGET_ARCH64" ++ "xnorcc\t%%g0, %0, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_cc_set_not" ++ [(set (reg:CC CC_REG) ++ (compare:CC (not:SI (match_operand:SI 1 "arith_operand" "rI")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (not:SI (match_dup 1)))] ++ "" ++ "xnorcc\t%%g0, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccx_set_not" ++ [(set (reg:CCX CC_REG) ++ (compare:CCX (not:DI (match_operand:DI 1 "arith_operand" "rI")) ++ (const_int 0))) ++ (set (match_operand:DI 0 "register_operand" "=r") ++ (not:DI (match_dup 1)))] ++ "TARGET_ARCH64" ++ "xnorcc\t%%g0, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_cc_set" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (match_operand:SI 1 "register_operand" "r")) ++ (set (reg:CC CC_REG) ++ (compare:CC (match_dup 1) (const_int 0)))] ++ "" ++ "orcc\t%1, 0, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccx_set64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (match_operand:DI 1 "register_operand" "r")) ++ (set (reg:CCX CC_REG) ++ (compare:CCX (match_dup 1) (const_int 0)))] ++ "TARGET_ARCH64" ++ "orcc\t%1, 0, %0" ++ [(set_attr "type" "compare")]) ++ ++ ++;; Floating point arithmetic instructions. ++ ++(define_expand "addtf3" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (plus:TF (match_operand:TF 1 "general_operand" "") ++ (match_operand:TF 2 "general_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_binop (PLUS, operands); DONE;") ++ ++(define_insn "*addtf3_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (plus:TF (match_operand:TF 1 "register_operand" "e") ++ (match_operand:TF 2 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "faddq\t%1, %2, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_insn "adddf3" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (plus:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e")))] ++ "TARGET_FPU" ++ "faddd\t%1, %2, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "addsf3" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (plus:SF (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f")))] ++ "TARGET_FPU" ++ "fadds\t%1, %2, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_expand "subtf3" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (minus:TF (match_operand:TF 1 "general_operand" "") ++ (match_operand:TF 2 "general_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_binop (MINUS, operands); DONE;") ++ ++(define_insn "*subtf3_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (minus:TF (match_operand:TF 1 "register_operand" "e") ++ (match_operand:TF 2 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fsubq\t%1, %2, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_insn "subdf3" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (minus:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e")))] ++ "TARGET_FPU" ++ "fsubd\t%1, %2, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "subsf3" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (minus:SF (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f")))] ++ "TARGET_FPU" ++ "fsubs\t%1, %2, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_expand "multf3" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (mult:TF (match_operand:TF 1 "general_operand" "") ++ (match_operand:TF 2 "general_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_binop (MULT, operands); DONE;") ++ ++(define_insn "*multf3_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (mult:TF (match_operand:TF 1 "register_operand" "e") ++ (match_operand:TF 2 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fmulq\t%1, %2, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "muldf3" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (mult:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e")))] ++ "TARGET_FPU" ++ "fmuld\t%1, %2, %0" ++ [(set_attr "type" "fpmul") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "mulsf3" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (mult:SF (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f")))] ++ "TARGET_FPU" ++ "fmuls\t%1, %2, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "fmadf4" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (fma:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e") ++ (match_operand:DF 3 "register_operand" "e")))] ++ "TARGET_FMAF" ++ "fmaddd\t%1, %2, %3, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "fmsdf4" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (fma:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e") ++ (neg:DF (match_operand:DF 3 "register_operand" "e"))))] ++ "TARGET_FMAF" ++ "fmsubd\t%1, %2, %3, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "*nfmadf4" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (neg:DF (fma:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e") ++ (match_operand:DF 3 "register_operand" "e"))))] ++ "TARGET_FMAF" ++ "fnmaddd\t%1, %2, %3, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "*nfmsdf4" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (neg:DF (fma:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e") ++ (neg:DF (match_operand:DF 3 "register_operand" "e")))))] ++ "TARGET_FMAF" ++ "fnmsubd\t%1, %2, %3, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "fmasf4" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (fma:SF (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f") ++ (match_operand:SF 3 "register_operand" "f")))] ++ "TARGET_FMAF" ++ "fmadds\t%1, %2, %3, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "fmssf4" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (fma:SF (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f") ++ (neg:SF (match_operand:SF 3 "register_operand" "f"))))] ++ "TARGET_FMAF" ++ "fmsubs\t%1, %2, %3, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "*nfmasf4" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (neg:SF (fma:SF (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f") ++ (match_operand:SF 3 "register_operand" "f"))))] ++ "TARGET_FMAF" ++ "fnmadds\t%1, %2, %3, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "*nfmssf4" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (neg:SF (fma:SF (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f") ++ (neg:SF (match_operand:SF 3 "register_operand" "f")))))] ++ "TARGET_FMAF" ++ "fnmsubs\t%1, %2, %3, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "*muldf3_extend" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (mult:DF (float_extend:DF (match_operand:SF 1 "register_operand" "f")) ++ (float_extend:DF (match_operand:SF 2 "register_operand" "f"))))] ++ "TARGET_FSMULD" ++ "fsmuld\t%1, %2, %0" ++ [(set_attr "type" "fpmul") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "*multf3_extend" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (mult:TF (float_extend:TF (match_operand:DF 1 "register_operand" "e")) ++ (float_extend:TF (match_operand:DF 2 "register_operand" "e"))))] ++ "(TARGET_V8 || TARGET_V9) && TARGET_FPU && TARGET_HARD_QUAD" ++ "fdmulq\t%1, %2, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_expand "divtf3" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (div:TF (match_operand:TF 1 "general_operand" "") ++ (match_operand:TF 2 "general_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_binop (DIV, operands); DONE;") ++ ++;; don't have timing for quad-prec. divide. ++(define_insn "*divtf3_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (div:TF (match_operand:TF 1 "register_operand" "e") ++ (match_operand:TF 2 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fdivq\t%1, %2, %0" ++ [(set_attr "type" "fpdivs")]) ++ ++(define_expand "divdf3" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (div:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e")))] ++ "TARGET_FPU" ++ "") ++ ++(define_insn "*divdf3_nofix" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (div:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e")))] ++ "TARGET_FPU && !sparc_fix_ut699" ++ "fdivd\t%1, %2, %0" ++ [(set_attr "type" "fpdivd") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "*divdf3_fix" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (div:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e")))] ++ "TARGET_FPU && sparc_fix_ut699" ++ "fdivd\t%1, %2, %0\n\tstd\t%0, [%%sp-8]\n\tnop" ++ [(set_attr "type" "fpdivd") ++ (set_attr "fptype" "double") ++ (set_attr "length" "3")]) ++ ++(define_insn "divsf3" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (div:SF (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f")))] ++ "TARGET_FPU && !sparc_fix_ut699" ++ "fdivs\t%1, %2, %0" ++ [(set_attr "type" "fpdivs")]) ++ ++(define_expand "negtf2" ++ [(set (match_operand:TF 0 "register_operand" "") ++ (neg:TF (match_operand:TF 1 "register_operand" "")))] ++ "TARGET_FPU" ++ "") ++ ++(define_insn "*negtf2_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (neg:TF (match_operand:TF 1 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fnegq\t%1, %0" ++ [(set_attr "type" "fpmove")]) ++ ++(define_insn_and_split "*negtf2" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (neg:TF (match_operand:TF 1 "register_operand" "e")))] ++ "TARGET_FPU && !TARGET_HARD_QUAD" ++ "#" ++ "&& reload_completed" ++ [(clobber (const_int 0))] ++{ ++ rtx set_dest = operands[0]; ++ rtx set_src = operands[1]; ++ rtx dest1, dest2; ++ rtx src1, src2; ++ ++ dest1 = gen_df_reg (set_dest, 0); ++ dest2 = gen_df_reg (set_dest, 1); ++ src1 = gen_df_reg (set_src, 0); ++ src2 = gen_df_reg (set_src, 1); ++ ++ /* Now emit using the real source and destination we found, swapping ++ the order if we detect overlap. */ ++ if (reg_overlap_mentioned_p (dest1, src2)) ++ { ++ emit_insn (gen_movdf (dest2, src2)); ++ emit_insn (gen_negdf2 (dest1, src1)); ++ } ++ else ++ { ++ emit_insn (gen_negdf2 (dest1, src1)); ++ if (REGNO (dest2) != REGNO (src2)) ++ emit_insn (gen_movdf (dest2, src2)); ++ } ++ DONE; ++} ++ [(set_attr "length" "2")]) ++ ++(define_expand "negdf2" ++ [(set (match_operand:DF 0 "register_operand" "") ++ (neg:DF (match_operand:DF 1 "register_operand" "")))] ++ "TARGET_FPU" ++ "") ++ ++(define_insn_and_split "*negdf2_notv9" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (neg:DF (match_operand:DF 1 "register_operand" "e")))] ++ "TARGET_FPU && !TARGET_V9" ++ "#" ++ "&& reload_completed" ++ [(clobber (const_int 0))] ++{ ++ rtx set_dest = operands[0]; ++ rtx set_src = operands[1]; ++ rtx dest1, dest2; ++ rtx src1, src2; ++ ++ dest1 = gen_highpart (SFmode, set_dest); ++ dest2 = gen_lowpart (SFmode, set_dest); ++ src1 = gen_highpart (SFmode, set_src); ++ src2 = gen_lowpart (SFmode, set_src); ++ ++ /* Now emit using the real source and destination we found, swapping ++ the order if we detect overlap. */ ++ if (reg_overlap_mentioned_p (dest1, src2)) ++ { ++ emit_insn (gen_movsf (dest2, src2)); ++ emit_insn (gen_negsf2 (dest1, src1)); ++ } ++ else ++ { ++ emit_insn (gen_negsf2 (dest1, src1)); ++ if (REGNO (dest2) != REGNO (src2)) ++ emit_insn (gen_movsf (dest2, src2)); ++ } ++ DONE; ++} ++ [(set_attr "length" "2")]) ++ ++(define_insn "*negdf2_v9" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (neg:DF (match_operand:DF 1 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_V9" ++ "fnegd\t%1, %0" ++ [(set_attr "type" "fpmove") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "negsf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (neg:SF (match_operand:SF 1 "register_operand" "f")))] ++ "TARGET_FPU" ++ "fnegs\t%1, %0" ++ [(set_attr "type" "fpmove")]) ++ ++(define_expand "abstf2" ++ [(set (match_operand:TF 0 "register_operand" "") ++ (abs:TF (match_operand:TF 1 "register_operand" "")))] ++ "TARGET_FPU" ++ "") ++ ++(define_insn "*abstf2_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (abs:TF (match_operand:TF 1 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fabsq\t%1, %0" ++ [(set_attr "type" "fpmove")]) ++ ++(define_insn_and_split "*abstf2" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (abs:TF (match_operand:TF 1 "register_operand" "e")))] ++ "TARGET_FPU && !TARGET_HARD_QUAD" ++ "#" ++ "&& reload_completed" ++ [(clobber (const_int 0))] ++{ ++ rtx set_dest = operands[0]; ++ rtx set_src = operands[1]; ++ rtx dest1, dest2; ++ rtx src1, src2; ++ ++ dest1 = gen_df_reg (set_dest, 0); ++ dest2 = gen_df_reg (set_dest, 1); ++ src1 = gen_df_reg (set_src, 0); ++ src2 = gen_df_reg (set_src, 1); ++ ++ /* Now emit using the real source and destination we found, swapping ++ the order if we detect overlap. */ ++ if (reg_overlap_mentioned_p (dest1, src2)) ++ { ++ emit_insn (gen_movdf (dest2, src2)); ++ emit_insn (gen_absdf2 (dest1, src1)); ++ } ++ else ++ { ++ emit_insn (gen_absdf2 (dest1, src1)); ++ if (REGNO (dest2) != REGNO (src2)) ++ emit_insn (gen_movdf (dest2, src2)); ++ } ++ DONE; ++} ++ [(set_attr "length" "2")]) ++ ++(define_expand "absdf2" ++ [(set (match_operand:DF 0 "register_operand" "") ++ (abs:DF (match_operand:DF 1 "register_operand" "")))] ++ "TARGET_FPU" ++ "") ++ ++(define_insn_and_split "*absdf2_notv9" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (abs:DF (match_operand:DF 1 "register_operand" "e")))] ++ "TARGET_FPU && !TARGET_V9" ++ "#" ++ "&& reload_completed" ++ [(clobber (const_int 0))] ++{ ++ rtx set_dest = operands[0]; ++ rtx set_src = operands[1]; ++ rtx dest1, dest2; ++ rtx src1, src2; ++ ++ dest1 = gen_highpart (SFmode, set_dest); ++ dest2 = gen_lowpart (SFmode, set_dest); ++ src1 = gen_highpart (SFmode, set_src); ++ src2 = gen_lowpart (SFmode, set_src); ++ ++ /* Now emit using the real source and destination we found, swapping ++ the order if we detect overlap. */ ++ if (reg_overlap_mentioned_p (dest1, src2)) ++ { ++ emit_insn (gen_movsf (dest2, src2)); ++ emit_insn (gen_abssf2 (dest1, src1)); ++ } ++ else ++ { ++ emit_insn (gen_abssf2 (dest1, src1)); ++ if (REGNO (dest2) != REGNO (src2)) ++ emit_insn (gen_movsf (dest2, src2)); ++ } ++ DONE; ++} ++ [(set_attr "length" "2")]) ++ ++(define_insn "*absdf2_v9" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (abs:DF (match_operand:DF 1 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_V9" ++ "fabsd\t%1, %0" ++ [(set_attr "type" "fpmove") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "abssf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (abs:SF (match_operand:SF 1 "register_operand" "f")))] ++ "TARGET_FPU" ++ "fabss\t%1, %0" ++ [(set_attr "type" "fpmove")]) ++ ++(define_expand "sqrttf2" ++ [(set (match_operand:TF 0 "nonimmediate_operand" "") ++ (sqrt:TF (match_operand:TF 1 "general_operand" "")))] ++ "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" ++ "emit_tfmode_unop (SQRT, operands); DONE;") ++ ++(define_insn "*sqrttf2_hq" ++ [(set (match_operand:TF 0 "register_operand" "=e") ++ (sqrt:TF (match_operand:TF 1 "register_operand" "e")))] ++ "TARGET_FPU && TARGET_HARD_QUAD" ++ "fsqrtq\t%1, %0" ++ [(set_attr "type" "fpsqrts")]) ++ ++(define_expand "sqrtdf2" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (sqrt:DF (match_operand:DF 1 "register_operand" "e")))] ++ "TARGET_FPU" ++ "") ++ ++(define_insn "*sqrtdf2_nofix" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (sqrt:DF (match_operand:DF 1 "register_operand" "e")))] ++ "TARGET_FPU && !sparc_fix_ut699" ++ "fsqrtd\t%1, %0" ++ [(set_attr "type" "fpsqrtd") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "*sqrtdf2_fix" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (sqrt:DF (match_operand:DF 1 "register_operand" "e")))] ++ "TARGET_FPU && sparc_fix_ut699" ++ "fsqrtd\t%1, %0\n\tstd\t%0, [%%sp-8]\n\tnop" ++ [(set_attr "type" "fpsqrtd") ++ (set_attr "fptype" "double") ++ (set_attr "length" "3")]) ++ ++(define_insn "sqrtsf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (sqrt:SF (match_operand:SF 1 "register_operand" "f")))] ++ "TARGET_FPU && !sparc_fix_ut699" ++ "fsqrts\t%1, %0" ++ [(set_attr "type" "fpsqrts")]) ++ ++ ++;; Arithmetic shift instructions. ++ ++(define_insn "ashlsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ashift:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); ++ return "sll\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_expand "ashldi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashift:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64 || TARGET_V8PLUS" ++{ ++ if (TARGET_ARCH32) ++ { ++ if (GET_CODE (operands[2]) == CONST_INT) ++ FAIL; ++ emit_insn (gen_ashldi3_v8plus (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++(define_insn "*ashldi3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashift:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); ++ return "sllx\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_insn "ashldi3_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=&h,&h,r") ++ (ashift:DI (match_operand:DI 1 "arith_operand" "rI,0,rI") ++ (match_operand:SI 2 "arith_operand" "rI,rI,rI"))) ++ (clobber (match_scratch:SI 3 "=X,X,&h"))] ++ "TARGET_V8PLUS" ++{ ++ return output_v8plus_shift (insn ,operands, \"sllx\"); ++} ++ [(set_attr "type" "multi") ++ (set_attr "length" "5,5,6")]) ++ ++(define_insn "*cmp_ccnz_ashift_1" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (ashift:SI (match_operand:SI 0 "register_operand" "r") ++ (const_int 1)) ++ (const_int 0)))] ++ "" ++ "addcc\t%0, %0, %%g0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "*cmp_ccnz_set_ashift_1" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (ashift:SI (match_operand:SI 1 "register_operand" "r") ++ (const_int 1)) ++ (const_int 0))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (ashift:SI (match_dup 1) (const_int 1)))] ++ "" ++ "addcc\t%1, %1, %0" ++ [(set_attr "type" "compare")]) ++ ++(define_insn "ashrsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ashiftrt:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); ++ return "sra\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_insn "*ashrsi3_extend0" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extend:DI (ashiftrt:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI"))))] ++ "TARGET_ARCH64" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); ++ return "sra\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++;; This handles the case where ++;; (sign_extend:DI (ashiftrt:SI (match_operand:SI) (match_operand:SI))) ++;; but combiner "simplifies" it for us. ++(define_insn "*ashrsi3_extend1" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashiftrt:DI (ashift:DI (subreg:DI (match_operand:SI 1 "register_operand" "r") 0) ++ (const_int 32)) ++ (match_operand:SI 2 "small_int_operand" "I")))] ++ "TARGET_ARCH64 && INTVAL (operands[2]) >= 32 && INTVAL (operands[2]) < 64" ++{ ++ operands[2] = GEN_INT (INTVAL (operands[2]) - 32); ++ return "sra\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++;; This handles the case where ++;; (ashiftrt:DI (sign_extend:DI (match_operand:SI)) (const_int)) ++;; but combiner "simplifies" it for us. ++(define_insn "*ashrsi3_extend2" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extract:DI (subreg:DI (match_operand:SI 1 "register_operand" "r") 0) ++ (match_operand 2 "small_int_operand" "I") ++ (const_int 32)))] ++ "TARGET_ARCH64 && INTVAL (operands[2]) > 0 && INTVAL (operands[2]) <= 32" ++{ ++ operands[2] = GEN_INT (32 - INTVAL (operands[2])); ++ return "sra\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_expand "ashrdi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64 || TARGET_V8PLUS" ++{ ++ if (TARGET_ARCH32) ++ { ++ if (GET_CODE (operands[2]) == CONST_INT) ++ FAIL; /* prefer generic code in this case */ ++ emit_insn (gen_ashrdi3_v8plus (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++(define_insn "*ashrdi3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); ++ return "srax\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_insn "ashrdi3_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=&h,&h,r") ++ (ashiftrt:DI (match_operand:DI 1 "arith_operand" "rI,0,rI") ++ (match_operand:SI 2 "arith_operand" "rI,rI,rI"))) ++ (clobber (match_scratch:SI 3 "=X,X,&h"))] ++ "TARGET_V8PLUS" ++{ ++ return output_v8plus_shift (insn, operands, \"srax\"); ++} ++ [(set_attr "type" "multi") ++ (set_attr "length" "5,5,6")]) ++ ++(define_insn "lshrsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (lshiftrt:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); ++ return "srl\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_insn "*lshrsi3_extend0" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI ++ (lshiftrt:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI"))))] ++ "TARGET_ARCH64" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); ++ return "srl\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++;; This handles the case where ++;; (zero_extend:DI (lshiftrt:SI (match_operand:SI) (match_operand:SI))) ++;; but combiner "simplifies" it for us. ++(define_insn "*lshrsi3_extend1" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (and:DI (subreg:DI (lshiftrt:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")) 0) ++ (match_operand 3 "const_int_operand" "")))] ++ "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) == 0xffffffff" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); ++ return "srl\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++;; This handles the case where ++;; (lshiftrt:DI (zero_extend:DI (match_operand:SI)) (const_int)) ++;; but combiner "simplifies" it for us. ++(define_insn "*lshrsi3_extend2" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extract:DI (subreg:DI (match_operand:SI 1 "register_operand" "r") 0) ++ (match_operand 2 "small_int_operand" "I") ++ (const_int 32)))] ++ "TARGET_ARCH64 && INTVAL (operands[2]) > 0 && INTVAL (operands[2]) <= 32" ++{ ++ operands[2] = GEN_INT (32 - INTVAL (operands[2])); ++ return "srl\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_expand "lshrdi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64 || TARGET_V8PLUS" ++{ ++ if (TARGET_ARCH32) ++ { ++ if (GET_CODE (operands[2]) == CONST_INT) ++ FAIL; ++ emit_insn (gen_lshrdi3_v8plus (operands[0], operands[1], operands[2])); ++ DONE; ++ } ++}) ++ ++(define_insn "*lshrdi3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "TARGET_ARCH64" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); ++ return "srlx\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_insn "lshrdi3_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=&h,&h,r") ++ (lshiftrt:DI (match_operand:DI 1 "arith_operand" "rI,0,rI") ++ (match_operand:SI 2 "arith_operand" "rI,rI,rI"))) ++ (clobber (match_scratch:SI 3 "=X,X,&h"))] ++ "TARGET_V8PLUS" ++{ ++ return output_v8plus_shift (insn, operands, \"srlx\"); ++} ++ [(set_attr "type" "multi") ++ (set_attr "length" "5,5,6")]) ++ ++(define_insn "" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ashiftrt:SI (subreg:SI (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") ++ (const_int 32)) 4) ++ (match_operand:SI 2 "small_int_operand" "I")))] ++ "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32" ++{ ++ operands[2] = GEN_INT (INTVAL (operands[2]) + 32); ++ return "srax\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_insn "" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (lshiftrt:SI (subreg:SI (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") ++ (const_int 32)) 4) ++ (match_operand:SI 2 "small_int_operand" "I")))] ++ "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32" ++{ ++ operands[2] = GEN_INT (INTVAL (operands[2]) + 32); ++ return "srlx\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_insn "" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ashiftrt:SI (subreg:SI (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:SI 2 "small_int_operand" "I")) 4) ++ (match_operand:SI 3 "small_int_operand" "I")))] ++ "TARGET_ARCH64 ++ && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 32 ++ && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) < 32 ++ && (unsigned HOST_WIDE_INT) (INTVAL (operands[2]) + INTVAL (operands[3])) < 64" ++{ ++ operands[2] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[3])); ++ ++ return "srax\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++(define_insn "" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (lshiftrt:SI (subreg:SI (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:SI 2 "small_int_operand" "I")) 4) ++ (match_operand:SI 3 "small_int_operand" "I")))] ++ "TARGET_ARCH64 ++ && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 32 ++ && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) < 32 ++ && (unsigned HOST_WIDE_INT) (INTVAL (operands[2]) + INTVAL (operands[3])) < 64" ++{ ++ operands[2] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[3])); ++ ++ return "srlx\t%1, %2, %0"; ++} ++ [(set_attr "type" "shift")]) ++ ++ ++;; Unconditional and other jump instructions. ++ ++(define_expand "jump" ++ [(set (pc) (label_ref (match_operand 0 "" "")))] ++ "") ++ ++(define_insn "*jump_ubranch" ++ [(set (pc) (label_ref (match_operand 0 "" "")))] ++ "!TARGET_CBCOND" ++{ ++ return output_ubranch (operands[0], insn); ++} ++ [(set_attr "type" "uncond_branch")]) ++ ++(define_insn "*jump_cbcond" ++ [(set (pc) (label_ref (match_operand 0 "" "")))] ++ "TARGET_CBCOND" ++{ ++ return output_ubranch (operands[0], insn); ++} ++ [(set_attr "type" "uncond_cbcond")]) ++ ++(define_expand "tablejump" ++ [(parallel [(set (pc) (match_operand 0 "register_operand" "r")) ++ (use (label_ref (match_operand 1 "" "")))])] ++ "" ++{ ++ gcc_assert (GET_MODE (operands[0]) == CASE_VECTOR_MODE); ++ ++ /* In pic mode, our address differences are against the base of the ++ table. Add that base value back in; CSE ought to be able to combine ++ the two address loads. */ ++ if (flag_pic) ++ { ++ rtx tmp, tmp2; ++ tmp = gen_rtx_LABEL_REF (Pmode, operands[1]); ++ tmp2 = operands[0]; ++ if (CASE_VECTOR_MODE != Pmode) ++ tmp2 = gen_rtx_SIGN_EXTEND (Pmode, tmp2); ++ tmp = gen_rtx_PLUS (Pmode, tmp2, tmp); ++ operands[0] = memory_address (Pmode, tmp); ++ } ++}) ++ ++(define_insn "*tablejump" ++ [(set (pc) (match_operand:P 0 "address_operand" "p")) ++ (use (label_ref (match_operand 1 "" "")))] ++ "" ++ "jmp\t%a0%#" ++ [(set_attr "type" "uncond_branch")]) ++ ++ ++;; Jump to subroutine instructions. ++ ++(define_expand "call" ++ ;; Note that this expression is not used for generating RTL. ++ ;; All the RTL is generated explicitly below. ++ [(call (match_operand 0 "call_operand" "") ++ (match_operand 3 "" "i"))] ++ ;; operands[2] is next_arg_register ++ ;; operands[3] is struct_value_size_rtx. ++ "" ++{ ++ rtx fn_rtx; ++ ++ gcc_assert (MEM_P (operands[0]) && GET_MODE (operands[0]) == FUNCTION_MODE); ++ ++ gcc_assert (GET_CODE (operands[3]) == CONST_INT); ++ ++ if (GET_CODE (XEXP (operands[0], 0)) == LABEL_REF) ++ { ++ /* This is really a PIC sequence. We want to represent ++ it as a funny jump so its delay slots can be filled. ++ ++ ??? But if this really *is* a CALL, will not it clobber the ++ call-clobbered registers? We lose this if it is a JUMP_INSN. ++ Why cannot we have delay slots filled if it were a CALL? */ ++ ++ /* We accept negative sizes for untyped calls. */ ++ if (TARGET_ARCH32 && INTVAL (operands[3]) != 0) ++ emit_jump_insn ++ (gen_rtx_PARALLEL ++ (VOIDmode, ++ gen_rtvec (3, ++ gen_rtx_SET (pc_rtx, XEXP (operands[0], 0)), ++ operands[3], ++ gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))))); ++ else ++ emit_jump_insn ++ (gen_rtx_PARALLEL ++ (VOIDmode, ++ gen_rtvec (2, ++ gen_rtx_SET (pc_rtx, XEXP (operands[0], 0)), ++ gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))))); ++ goto finish_call; ++ } ++ ++ fn_rtx = operands[0]; ++ ++ /* We accept negative sizes for untyped calls. */ ++ if (TARGET_ARCH32 && INTVAL (operands[3]) != 0) ++ sparc_emit_call_insn ++ (gen_rtx_PARALLEL ++ (VOIDmode, ++ gen_rtvec (3, gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx), ++ operands[3], ++ gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))), ++ XEXP (fn_rtx, 0)); ++ else ++ sparc_emit_call_insn ++ (gen_rtx_PARALLEL ++ (VOIDmode, ++ gen_rtvec (2, gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx), ++ gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))), ++ XEXP (fn_rtx, 0)); ++ ++ finish_call: ++ ++ DONE; ++}) ++ ++;; We can't use the same pattern for these two insns, because then registers ++;; in the address may not be properly reloaded. ++ ++(define_insn "*call_address" ++ [(call (mem:P (match_operand:P 0 "address_operand" "p")) ++ (match_operand 1 "" "")) ++ (clobber (reg:P O7_REG))] ++ ;;- Do not use operand 1 for most machines. ++ "" ++ "call\t%a0, %1%#" ++ [(set_attr "type" "call")]) ++ ++(define_insn "*call_symbolic" ++ [(call (mem:P (match_operand:P 0 "symbolic_operand" "s")) ++ (match_operand 1 "" "")) ++ (clobber (reg:P O7_REG))] ++ ;;- Do not use operand 1 for most machines. ++ "" ++ "call\t%a0, %1%#" ++ [(set_attr "type" "call")]) ++ ++;; This is a call that wants a structure value. ++;; There is no such critter for v9 (??? we may need one anyway). ++(define_insn "*call_address_struct_value_sp32" ++ [(call (mem:SI (match_operand:SI 0 "address_operand" "p")) ++ (match_operand 1 "" "")) ++ (match_operand 2 "immediate_operand" "") ++ (clobber (reg:SI O7_REG))] ++ ;;- Do not use operand 1 for most machines. ++ "TARGET_ARCH32 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0" ++{ ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0xfff); ++ return "call\t%a0, %1\n\t nop\n\tunimp\t%2"; ++} ++ [(set_attr "type" "call_no_delay_slot") ++ (set_attr "length" "3")]) ++ ++;; This is a call that wants a structure value. ++;; There is no such critter for v9 (??? we may need one anyway). ++(define_insn "*call_symbolic_struct_value_sp32" ++ [(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s")) ++ (match_operand 1 "" "")) ++ (match_operand 2 "immediate_operand" "") ++ (clobber (reg:SI O7_REG))] ++ ;;- Do not use operand 1 for most machines. ++ "TARGET_ARCH32 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0" ++{ ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0xfff); ++ return "call\t%a0, %1\n\t nop\n\tunimp\t%2"; ++} ++ [(set_attr "type" "call_no_delay_slot") ++ (set_attr "length" "3")]) ++ ++;; This is a call that may want a structure value. This is used for ++;; untyped_calls. ++(define_insn "*call_address_untyped_struct_value_sp32" ++ [(call (mem:SI (match_operand:SI 0 "address_operand" "p")) ++ (match_operand 1 "" "")) ++ (match_operand 2 "immediate_operand" "") ++ (clobber (reg:SI O7_REG))] ++ ;;- Do not use operand 1 for most machines. ++ "TARGET_ARCH32 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0" ++ "call\t%a0, %1\n\t nop\n\tnop" ++ [(set_attr "type" "call_no_delay_slot") ++ (set_attr "length" "3")]) ++ ++;; This is a call that may want a structure value. This is used for ++;; untyped_calls. ++(define_insn "*call_symbolic_untyped_struct_value_sp32" ++ [(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s")) ++ (match_operand 1 "" "")) ++ (match_operand 2 "immediate_operand" "") ++ (clobber (reg:SI O7_REG))] ++ ;;- Do not use operand 1 for most machines. ++ "TARGET_ARCH32 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0" ++ "call\t%a0, %1\n\t nop\n\tnop" ++ [(set_attr "type" "call_no_delay_slot") ++ (set_attr "length" "3")]) ++ ++(define_expand "call_value" ++ ;; Note that this expression is not used for generating RTL. ++ ;; All the RTL is generated explicitly below. ++ [(set (match_operand 0 "register_operand" "") ++ (call (match_operand 1 "call_operand" "") ++ (match_operand 4 "" "")))] ++ ;; operand 2 is stack_size_rtx ++ ;; operand 3 is next_arg_register ++ "" ++{ ++ rtx fn_rtx; ++ rtvec vec; ++ ++ gcc_assert (MEM_P (operands[1]) && GET_MODE (operands[1]) == FUNCTION_MODE); ++ ++ fn_rtx = operands[1]; ++ ++ vec = gen_rtvec (2, ++ gen_rtx_SET (operands[0], ++ gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx)), ++ gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))); ++ ++ sparc_emit_call_insn (gen_rtx_PARALLEL (VOIDmode, vec), XEXP (fn_rtx, 0)); ++ ++ DONE; ++}) ++ ++(define_insn "*call_value_address" ++ [(set (match_operand 0 "" "") ++ (call (mem:P (match_operand:P 1 "address_operand" "p")) ++ (match_operand 2 "" ""))) ++ (clobber (reg:P O7_REG))] ++ ;;- Do not use operand 2 for most machines. ++ "" ++ "call\t%a1, %2%#" ++ [(set_attr "type" "call")]) ++ ++(define_insn "*call_value_symbolic" ++ [(set (match_operand 0 "" "") ++ (call (mem:P (match_operand:P 1 "symbolic_operand" "s")) ++ (match_operand 2 "" ""))) ++ (clobber (reg:P O7_REG))] ++ ;;- Do not use operand 2 for most machines. ++ "" ++ "call\t%a1, %2%#" ++ [(set_attr "type" "call")]) ++ ++(define_expand "untyped_call" ++ [(parallel [(call (match_operand 0 "" "") ++ (const_int 0)) ++ (match_operand:BLK 1 "memory_operand" "") ++ (match_operand 2 "" "")])] ++ "" ++{ ++ rtx valreg1 = gen_rtx_REG (DImode, 8); ++ rtx result = operands[1]; ++ ++ /* Pass constm1 to indicate that it may expect a structure value, but ++ we don't know what size it is. */ ++ emit_call_insn (gen_call (operands[0], const0_rtx, NULL, constm1_rtx)); ++ ++ /* Save the function value registers. */ ++ emit_move_insn (adjust_address (result, DImode, 0), valreg1); ++ if (TARGET_FPU) ++ { ++ rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); ++ emit_move_insn (adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8), ++ valreg2); ++ } ++ ++ /* The optimizer does not know that the call sets the function value ++ registers we stored in the result block. We avoid problems by ++ claiming that all hard registers are used and clobbered at this ++ point. */ ++ emit_insn (gen_blockage ()); ++ ++ DONE; ++}) ++ ++ ++;; Tail call instructions. ++ ++(define_expand "sibcall" ++ [(parallel [(call (match_operand 0 "call_operand" "") (const_int 0)) ++ (return)])] ++ "" ++ "") ++ ++(define_insn "*sibcall_symbolic" ++ [(call (mem:P (match_operand:P 0 "symbolic_operand" "s")) ++ (match_operand 1 "" "")) ++ (return)] ++ "" ++{ ++ return output_sibcall (insn, operands[0]); ++} ++ [(set_attr "type" "sibcall")]) ++ ++(define_expand "sibcall_value" ++ [(parallel [(set (match_operand 0 "register_operand") ++ (call (match_operand 1 "call_operand" "") (const_int 0))) ++ (return)])] ++ "" ++ "") ++ ++(define_insn "*sibcall_value_symbolic" ++ [(set (match_operand 0 "" "") ++ (call (mem:P (match_operand:P 1 "symbolic_operand" "s")) ++ (match_operand 2 "" ""))) ++ (return)] ++ "" ++{ ++ return output_sibcall (insn, operands[1]); ++} ++ [(set_attr "type" "sibcall")]) ++ ++ ++;; Special instructions. ++ ++(define_expand "prologue" ++ [(const_int 0)] ++ "" ++{ ++ if (TARGET_FLAT) ++ sparc_flat_expand_prologue (); ++ else ++ sparc_expand_prologue (); ++ DONE; ++}) ++ ++;; The "register window save" insn is modelled as follows. The dwarf2 ++;; information is manually added in emit_window_save. ++ ++(define_insn "window_save" ++ [(unspec_volatile [(match_operand 0 "arith_operand" "rI")] UNSPECV_SAVEW)] ++ "!TARGET_FLAT" ++ "save\t%%sp, %0, %%sp" ++ [(set_attr "type" "savew")]) ++ ++(define_expand "epilogue" ++ [(return)] ++ "" ++{ ++ if (TARGET_FLAT) ++ sparc_flat_expand_epilogue (false); ++ else ++ sparc_expand_epilogue (false); ++}) ++ ++(define_expand "sibcall_epilogue" ++ [(return)] ++ "" ++{ ++ if (TARGET_FLAT) ++ sparc_flat_expand_epilogue (false); ++ else ++ sparc_expand_epilogue (false); ++ DONE; ++}) ++ ++(define_expand "eh_return" ++ [(use (match_operand 0 "general_operand" ""))] ++ "" ++{ ++ emit_move_insn (gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM), operands[0]); ++ emit_jump_insn (gen_eh_return_internal ()); ++ emit_barrier (); ++ DONE; ++}) ++ ++(define_insn_and_split "eh_return_internal" ++ [(eh_return)] ++ "" ++ "#" ++ "epilogue_completed" ++ [(return)] ++{ ++ if (TARGET_FLAT) ++ sparc_flat_expand_epilogue (true); ++ else ++ sparc_expand_epilogue (true); ++}) ++ ++(define_expand "return" ++ [(return)] ++ "sparc_can_use_return_insn_p ()" ++{ ++ if (cfun->calls_alloca) ++ emit_insn (gen_frame_blockage ()); ++}) ++ ++(define_insn "*return_internal" ++ [(return)] ++ "" ++{ ++ return output_return (insn); ++} ++ [(set_attr "type" "return") ++ (set (attr "length") ++ (cond [(eq_attr "calls_eh_return" "true") ++ (if_then_else (eq_attr "delayed_branch" "true") ++ (if_then_else (ior (eq_attr "isa" "v9") ++ (eq_attr "flat" "true")) ++ (const_int 2) ++ (const_int 3)) ++ (if_then_else (eq_attr "flat" "true") ++ (const_int 3) ++ (const_int 4))) ++ (ior (eq_attr "leaf_function" "true") (eq_attr "flat" "true")) ++ (if_then_else (eq_attr "empty_delay_slot" "true") ++ (const_int 2) ++ (const_int 1)) ++ (eq_attr "empty_delay_slot" "true") ++ (if_then_else (eq_attr "delayed_branch" "true") ++ (const_int 2) ++ (const_int 3)) ++ ] (const_int 1)))]) ++ ++;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ++;; all of memory. This blocks insns from being moved across this point. ++ ++(define_insn "blockage" ++ [(unspec_volatile [(const_int 0)] UNSPECV_BLOCKAGE)] ++ "" ++ "" ++ [(set_attr "length" "0")]) ++ ++;; Do not schedule instructions accessing memory before this point. ++ ++(define_expand "frame_blockage" ++ [(set (match_dup 0) ++ (unspec:BLK [(match_dup 1)] UNSPEC_FRAME_BLOCKAGE))] ++ "" ++{ ++ operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ++ MEM_VOLATILE_P (operands[0]) = 1; ++ operands[1] = stack_pointer_rtx; ++}) ++ ++(define_insn "*frame_blockage" ++ [(set (match_operand:BLK 0 "" "") ++ (unspec:BLK [(match_operand:P 1 "" "")] UNSPEC_FRAME_BLOCKAGE))] ++ "" ++ "" ++ [(set_attr "length" "0")]) ++ ++;; We use membar #Sync for the speculation barrier on V9. ++ ++(define_insn "speculation_barrier" ++ [(unspec_volatile [(const_int 0)] UNSPECV_SPECULATION_BARRIER)] ++ "TARGET_V9" ++ "membar\t64" ++ [(set_attr "type" "multi")]) ++ ++(define_expand "probe_stack" ++ [(set (match_operand 0 "memory_operand" "") (const_int 0))] ++ "" ++{ ++ operands[0] ++ = adjust_address (operands[0], GET_MODE (operands[0]), SPARC_STACK_BIAS); ++}) ++ ++(define_insn "probe_stack_range" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec_volatile:P [(match_operand:P 1 "register_operand" "0") ++ (match_operand:P 2 "register_operand" "r")] ++ UNSPECV_PROBE_STACK_RANGE))] ++ "" ++{ ++ return output_probe_stack_range (operands[0], operands[2]); ++} ++ [(set_attr "type" "multi")]) ++ ++;; Prepare to return any type including a structure value. ++ ++(define_expand "untyped_return" ++ [(match_operand:BLK 0 "memory_operand" "") ++ (match_operand 1 "" "")] ++ "" ++{ ++ rtx valreg1 = gen_rtx_REG (DImode, 24); ++ rtx result = operands[0]; ++ ++ if (TARGET_ARCH32) ++ { ++ rtx rtnreg = gen_rtx_REG (SImode, RETURN_ADDR_REGNUM); ++ rtx value = gen_reg_rtx (SImode); ++ ++ /* Fetch the instruction where we will return to and see if it's an unimp ++ instruction (the most significant 10 bits will be zero). If so, ++ update the return address to skip the unimp instruction. */ ++ emit_move_insn (value, ++ gen_rtx_MEM (SImode, plus_constant (SImode, rtnreg, 8))); ++ emit_insn (gen_lshrsi3 (value, value, GEN_INT (22))); ++ emit_insn (gen_update_return (rtnreg, value)); ++ } ++ ++ /* Reload the function value registers. ++ Put USE insns before the return. */ ++ emit_move_insn (valreg1, adjust_address (result, DImode, 0)); ++ emit_use (valreg1); ++ ++ if (TARGET_FPU) ++ { ++ rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); ++ emit_move_insn (valreg2, ++ adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8)); ++ emit_use (valreg2); ++ } ++ ++ /* Construct the return. */ ++ expand_naked_return (); ++ ++ DONE; ++}) ++ ++;; Adjust the return address conditionally. If the value of op1 is equal ++;; to all zero then adjust the return address i.e. op0 = op0 + 4. ++;; This is technically *half* the check required by the 32-bit SPARC ++;; psABI. This check only ensures that an "unimp" insn was written by ++;; the caller, but doesn't check to see if the expected size matches ++;; (this is encoded in the 12 lower bits). This check is obsolete and ++;; only used by the above code "untyped_return". ++ ++(define_insn "update_return" ++ [(unspec:SI [(match_operand:SI 0 "register_operand" "r") ++ (match_operand:SI 1 "register_operand" "r")] UNSPEC_UPDATE_RETURN)] ++ "TARGET_ARCH32" ++{ ++ if (flag_delayed_branch) ++ return "cmp\t%1, 0\n\tbe,a\t.+8\n\t add\t%0, 4, %0"; ++ else ++ return "cmp\t%1, 0\n\tbne\t.+12\n\t nop\n\tadd\t%0, 4, %0"; ++} ++ [(set (attr "type") (const_string "multi")) ++ (set (attr "length") ++ (if_then_else (eq_attr "delayed_branch" "true") ++ (const_int 3) ++ (const_int 4)))]) ++ ++(define_insn "nop" ++ [(const_int 0)] ++ "" ++ "nop") ++ ++(define_expand "indirect_jump" ++ [(set (pc) (match_operand 0 "address_operand" "p"))] ++ "" ++ "") ++ ++(define_insn "*branch" ++ [(set (pc) (match_operand:P 0 "address_operand" "p"))] ++ "" ++ "jmp\t%a0%#" ++ [(set_attr "type" "uncond_branch")]) ++ ++(define_expand "save_stack_nonlocal" ++ [(set (match_operand 0 "memory_operand" "") ++ (match_operand 1 "register_operand" "")) ++ (set (match_dup 2) (match_dup 3))] ++ "" ++{ ++ operands[0] = adjust_address (operands[0], Pmode, 0); ++ operands[2] = adjust_address (operands[0], Pmode, GET_MODE_SIZE (Pmode)); ++ operands[3] = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); ++}) ++ ++(define_expand "restore_stack_nonlocal" ++ [(set (match_operand 0 "register_operand" "") ++ (match_operand 1 "memory_operand" ""))] ++ "" ++{ ++ operands[1] = adjust_address (operands[1], Pmode, 0); ++}) ++ ++(define_expand "nonlocal_goto" ++ [(match_operand 0 "general_operand" "") ++ (match_operand 1 "general_operand" "") ++ (match_operand 2 "memory_operand" "") ++ (match_operand 3 "memory_operand" "")] ++ "" ++{ ++ rtx i7 = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); ++ rtx r_label = operands[1]; ++ rtx r_sp = adjust_address (operands[2], Pmode, 0); ++ rtx r_fp = operands[3]; ++ rtx r_i7 = adjust_address (operands[2], Pmode, GET_MODE_SIZE (Pmode)); ++ ++ /* We need to flush all the register windows so that their contents will ++ be re-synchronized by the restore insn of the target function. */ ++ if (!TARGET_FLAT) ++ emit_insn (gen_flush_register_windows ()); ++ ++ emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))); ++ emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx)); ++ ++ r_label = copy_to_reg (r_label); ++ ++ /* Restore the frame pointer and stack pointer. We must use a ++ temporary since the setjmp buffer may be a local. */ ++ r_fp = copy_to_reg (r_fp); ++ emit_stack_restore (SAVE_NONLOCAL, r_sp); ++ r_i7 = copy_to_reg (r_i7); ++ ++ /* Ensure the frame pointer move is not optimized. */ ++ emit_insn (gen_blockage ()); ++ emit_clobber (hard_frame_pointer_rtx); ++ emit_move_insn (hard_frame_pointer_rtx, r_fp); ++ emit_move_insn (i7, r_i7); ++ ++ /* USE of hard_frame_pointer_rtx added for consistency; ++ not clear if really needed. */ ++ emit_use (hard_frame_pointer_rtx); ++ emit_use (stack_pointer_rtx); ++ emit_use (i7); ++ ++ emit_indirect_jump (r_label); ++ DONE; ++}) ++ ++(define_expand "builtin_setjmp_receiver" ++ [(label_ref (match_operand 0 "" ""))] ++ "TARGET_VXWORKS_RTP && flag_pic" ++{ ++ load_got_register (); ++ DONE; ++}) ++ ++;; Special insn to flush register windows. ++ ++(define_insn "flush_register_windows" ++ [(unspec_volatile [(const_int 0)] UNSPECV_FLUSHW)] ++ "" ++{ ++ return TARGET_V9 ? "flushw" : "ta\t3"; ++} ++ [(set_attr "type" "flushw")]) ++ ++;; Special pattern for the FLUSH instruction. ++ ++(define_insn "flush" ++ [(unspec_volatile [(match_operand:P 0 "memory_operand" "m")] UNSPECV_FLUSH)] ++ "" ++{ ++ return TARGET_V9 ? "flush\t%f0" : "iflush\t%f0"; ++} ++ [(set_attr "type" "iflush")]) ++ ++;; Special insns to load and store the 32-bit FP Status Register. ++ ++(define_insn "ldfsr" ++ [(unspec_volatile [(match_operand:SI 0 "memory_operand" "m")] UNSPECV_LDFSR)] ++ "TARGET_FPU" ++ "ld\t%0, %%fsr" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular")]) ++ ++(define_insn "stfsr" ++ [(set (match_operand:SI 0 "memory_operand" "=m") ++ (unspec_volatile:SI [(const_int 0)] UNSPECV_STFSR))] ++ "TARGET_FPU" ++ "st\t%%fsr, %0" ++ [(set_attr "type" "store")]) ++ ++ ++;; Find first set instructions. ++ ++(define_expand "popcountdi2" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (popcount:DI (match_operand:DI 1 "register_operand" "")))] ++ "TARGET_POPC" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_popcountdi_v8plus (operands[0], operands[1])); ++ DONE; ++ } ++}) ++ ++(define_insn "*popcountdi_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (popcount:DI (match_operand:DI 1 "register_operand" "r")))] ++ "TARGET_POPC && TARGET_ARCH64" ++ "popc\t%1, %0") ++ ++(define_insn "popcountdi_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (popcount:DI (match_operand:DI 1 "register_operand" "r"))) ++ (clobber (match_scratch:SI 2 "=&h"))] ++ "TARGET_POPC && TARGET_ARCH32" ++{ ++ if (sparc_check_64 (operands[1], insn) <= 0) ++ output_asm_insn ("srl\t%L1, 0, %L1", operands); ++ return "sllx\t%H1, 32, %2\n\tor\t%L1, %2, %2\n\tpopc\t%2, %L0\n\tclr\t%H0"; ++} ++ [(set_attr "type" "multi") ++ (set_attr "length" "5")]) ++ ++(define_expand "popcountsi2" ++ [(set (match_dup 2) ++ (zero_extend:DI (match_operand:SI 1 "register_operand" ""))) ++ (set (match_operand:SI 0 "register_operand" "") ++ (truncate:SI (popcount:DI (match_dup 2))))] ++ "TARGET_POPC" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_popcountsi_v8plus (operands[0], operands[1])); ++ DONE; ++ } ++ else ++ operands[2] = gen_reg_rtx (DImode); ++}) ++ ++(define_insn "*popcountsi_sp64" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (truncate:SI ++ (popcount:DI (match_operand:DI 1 "register_operand" "r"))))] ++ "TARGET_POPC && TARGET_ARCH64" ++ "popc\t%1, %0") ++ ++(define_insn "popcountsi_v8plus" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (popcount:SI (match_operand:SI 1 "register_operand" "r")))] ++ "TARGET_POPC && TARGET_ARCH32" ++{ ++ if (sparc_check_64 (operands[1], insn) <= 0) ++ output_asm_insn ("srl\t%1, 0, %1", operands); ++ return "popc\t%1, %0"; ++} ++ [(set_attr "type" "multi") ++ (set_attr "length" "2")]) ++ ++(define_expand "clzdi2" ++ [(set (match_operand:DI 0 "register_operand" "") ++ (clz:DI (match_operand:DI 1 "register_operand" "")))] ++ "TARGET_VIS3" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_clzdi_v8plus (operands[0], operands[1])); ++ DONE; ++ } ++}) ++ ++(define_insn "*clzdi_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (clz:DI (match_operand:DI 1 "register_operand" "r")))] ++ "TARGET_VIS3 && TARGET_ARCH64" ++ "lzd\t%1, %0" ++ [(set_attr "type" "lzd")]) ++ ++(define_insn "clzdi_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (clz:DI (match_operand:DI 1 "register_operand" "r"))) ++ (clobber (match_scratch:SI 2 "=&h"))] ++ "TARGET_VIS3 && TARGET_ARCH32" ++{ ++ if (sparc_check_64 (operands[1], insn) <= 0) ++ output_asm_insn ("srl\t%L1, 0, %L1", operands); ++ return "sllx\t%H1, 32, %2\n\tor\t%L1, %2, %2\n\tlzd\t%2, %L0\n\tclr\t%H0"; ++} ++ [(set_attr "type" "multi") ++ (set_attr "length" "5")]) ++ ++(define_expand "clzsi2" ++ [(set (match_dup 2) ++ (zero_extend:DI (match_operand:SI 1 "register_operand" ""))) ++ (set (match_dup 3) ++ (truncate:SI (clz:DI (match_dup 2)))) ++ (set (match_operand:SI 0 "register_operand" "") ++ (minus:SI (match_dup 3) (const_int 32)))] ++ "TARGET_VIS3" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_clzsi_v8plus (operands[0], operands[1])); ++ DONE; ++ } ++ else ++ { ++ operands[2] = gen_reg_rtx (DImode); ++ operands[3] = gen_reg_rtx (SImode); ++ } ++}) ++ ++(define_insn "*clzsi_sp64" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (truncate:SI ++ (clz:DI (match_operand:DI 1 "register_operand" "r"))))] ++ "TARGET_VIS3 && TARGET_ARCH64" ++ "lzd\t%1, %0" ++ [(set_attr "type" "lzd")]) ++ ++(define_insn "clzsi_v8plus" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (clz:SI (match_operand:SI 1 "register_operand" "r")))] ++ "TARGET_VIS3 && TARGET_ARCH32" ++{ ++ if (sparc_check_64 (operands[1], insn) <= 0) ++ output_asm_insn ("srl\t%1, 0, %1", operands); ++ return "lzd\t%1, %0\n\tsub\t%0, 32, %0"; ++} ++ [(set_attr "type" "multi") ++ (set_attr "length" "3")]) ++ ++ ++;; Peepholes go at the end. ++ ++;; Optimize consecutive loads or stores into ldd and std when possible. ++;; The conditions in which we do this are very restricted and are ++;; explained in the code for {registers,memory}_ok_for_ldd functions. ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "memory_operand" "") ++ (const_int 0)) ++ (set (match_operand:SI 1 "memory_operand" "") ++ (const_int 0))] ++ "TARGET_V9 ++ && mems_ok_for_ldd_peep (operands[0], operands[1], NULL_RTX)" ++ [(set (match_dup 0) (const_int 0))] ++{ ++ operands[0] = widen_mem_for_ldd_peep (operands[0], operands[1], DImode); ++}) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "memory_operand" "") ++ (const_int 0)) ++ (set (match_operand:SI 1 "memory_operand" "") ++ (const_int 0))] ++ "TARGET_V9 ++ && mems_ok_for_ldd_peep (operands[1], operands[0], NULL_RTX)" ++ [(set (match_dup 1) (const_int 0))] ++{ ++ operands[1] = widen_mem_for_ldd_peep (operands[1], operands[0], DImode); ++}) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (match_operand:SI 3 "memory_operand" ""))] ++ "registers_ok_for_ldd_peep (operands[0], operands[2]) ++ && mems_ok_for_ldd_peep (operands[1], operands[3], operands[0])" ++ [(set (match_dup 0) (match_dup 1))] ++{ ++ operands[1] = widen_mem_for_ldd_peep (operands[1], operands[3], DImode); ++ operands[0] = gen_rtx_REG (DImode, REGNO (operands[0])); ++}) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "memory_operand" "") ++ (match_operand:SI 1 "register_operand" "")) ++ (set (match_operand:SI 2 "memory_operand" "") ++ (match_operand:SI 3 "register_operand" ""))] ++ "registers_ok_for_ldd_peep (operands[1], operands[3]) ++ && mems_ok_for_ldd_peep (operands[0], operands[2], NULL_RTX)" ++ [(set (match_dup 0) (match_dup 1))] ++{ ++ operands[0] = widen_mem_for_ldd_peep (operands[0], operands[2], DImode); ++ operands[1] = gen_rtx_REG (DImode, REGNO (operands[1])); ++}) ++ ++(define_peephole2 ++ [(set (match_operand:SF 0 "register_operand" "") ++ (match_operand:SF 1 "memory_operand" "")) ++ (set (match_operand:SF 2 "register_operand" "") ++ (match_operand:SF 3 "memory_operand" ""))] ++ "registers_ok_for_ldd_peep (operands[0], operands[2]) ++ && mems_ok_for_ldd_peep (operands[1], operands[3], operands[0])" ++ [(set (match_dup 0) (match_dup 1))] ++{ ++ operands[1] = widen_mem_for_ldd_peep (operands[1], operands[3], DFmode); ++ operands[0] = gen_rtx_REG (DFmode, REGNO (operands[0])); ++}) ++ ++(define_peephole2 ++ [(set (match_operand:SF 0 "memory_operand" "") ++ (match_operand:SF 1 "register_operand" "")) ++ (set (match_operand:SF 2 "memory_operand" "") ++ (match_operand:SF 3 "register_operand" ""))] ++ "registers_ok_for_ldd_peep (operands[1], operands[3]) ++ && mems_ok_for_ldd_peep (operands[0], operands[2], NULL_RTX)" ++ [(set (match_dup 0) (match_dup 1))] ++{ ++ operands[0] = widen_mem_for_ldd_peep (operands[0], operands[2], DFmode); ++ operands[1] = gen_rtx_REG (DFmode, REGNO (operands[1])); ++}) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (match_operand:SI 3 "memory_operand" ""))] ++ "registers_ok_for_ldd_peep (operands[2], operands[0]) ++ && mems_ok_for_ldd_peep (operands[3], operands[1], operands[0])" ++ [(set (match_dup 2) (match_dup 3))] ++{ ++ operands[3] = widen_mem_for_ldd_peep (operands[3], operands[1], DImode); ++ operands[2] = gen_rtx_REG (DImode, REGNO (operands[2])); ++}) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "memory_operand" "") ++ (match_operand:SI 1 "register_operand" "")) ++ (set (match_operand:SI 2 "memory_operand" "") ++ (match_operand:SI 3 "register_operand" ""))] ++ "registers_ok_for_ldd_peep (operands[3], operands[1]) ++ && mems_ok_for_ldd_peep (operands[2], operands[0], NULL_RTX)" ++ [(set (match_dup 2) (match_dup 3))] ++{ ++ operands[2] = widen_mem_for_ldd_peep (operands[2], operands[0], DImode); ++ operands[3] = gen_rtx_REG (DImode, REGNO (operands[3])); ++}) ++ ++(define_peephole2 ++ [(set (match_operand:SF 0 "register_operand" "") ++ (match_operand:SF 1 "memory_operand" "")) ++ (set (match_operand:SF 2 "register_operand" "") ++ (match_operand:SF 3 "memory_operand" ""))] ++ "registers_ok_for_ldd_peep (operands[2], operands[0]) ++ && mems_ok_for_ldd_peep (operands[3], operands[1], operands[0])" ++ [(set (match_dup 2) (match_dup 3))] ++{ ++ operands[3] = widen_mem_for_ldd_peep (operands[3], operands[1], DFmode); ++ operands[2] = gen_rtx_REG (DFmode, REGNO (operands[2])); ++}) ++ ++(define_peephole2 ++ [(set (match_operand:SF 0 "memory_operand" "") ++ (match_operand:SF 1 "register_operand" "")) ++ (set (match_operand:SF 2 "memory_operand" "") ++ (match_operand:SF 3 "register_operand" ""))] ++ "registers_ok_for_ldd_peep (operands[3], operands[1]) ++ && mems_ok_for_ldd_peep (operands[2], operands[0], NULL_RTX)" ++ [(set (match_dup 2) (match_dup 3))] ++{ ++ operands[2] = widen_mem_for_ldd_peep (operands[2], operands[0], DFmode); ++ operands[3] = gen_rtx_REG (DFmode, REGNO (operands[3])); ++}) ++ ++;; Optimize the case of following a reg-reg move with a test ++;; of reg just moved. Don't allow floating point regs for operand 0 or 1. ++;; This can result from a float to fix conversion. ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "register_operand" "")) ++ (set (reg:CC CC_REG) ++ (compare:CC (match_operand:SI 2 "register_operand" "") ++ (const_int 0)))] ++ "(rtx_equal_p (operands[2], operands[0]) ++ || rtx_equal_p (operands[2], operands[1])) ++ && !SPARC_FP_REG_P (REGNO (operands[0])) ++ && !SPARC_FP_REG_P (REGNO (operands[1]))" ++ [(parallel [(set (match_dup 0) (match_dup 1)) ++ (set (reg:CC CC_REG) ++ (compare:CC (match_dup 1) (const_int 0)))])] ++ "") ++ ++(define_peephole2 ++ [(set (match_operand:DI 0 "register_operand" "") ++ (match_operand:DI 1 "register_operand" "")) ++ (set (reg:CCX CC_REG) ++ (compare:CCX (match_operand:DI 2 "register_operand" "") ++ (const_int 0)))] ++ "TARGET_ARCH64 ++ && (rtx_equal_p (operands[2], operands[0]) ++ || rtx_equal_p (operands[2], operands[1])) ++ && !SPARC_FP_REG_P (REGNO (operands[0])) ++ && !SPARC_FP_REG_P (REGNO (operands[1]))" ++ [(parallel [(set (match_dup 0) (match_dup 1)) ++ (set (reg:CCX CC_REG) ++ (compare:CCX (match_dup 1) (const_int 0)))])] ++ "") ++ ++ ++;; Prefetch instructions. ++ ++;; ??? UltraSPARC-III note: A memory operation loading into the floating point ++;; register file, if it hits the prefetch cache, has a chance to dual-issue ++;; with other memory operations. With DFA we might be able to model this, ++;; but it requires a lot of state. ++(define_expand "prefetch" ++ [(match_operand 0 "address_operand" "") ++ (match_operand 1 "const_int_operand" "") ++ (match_operand 2 "const_int_operand" "")] ++ "TARGET_V9" ++{ ++ if (TARGET_ARCH64) ++ emit_insn (gen_prefetch_64 (operands[0], operands[1], operands[2])); ++ else ++ emit_insn (gen_prefetch_32 (operands[0], operands[1], operands[2])); ++ DONE; ++}) ++ ++(define_insn "prefetch_64" ++ [(prefetch (match_operand:DI 0 "address_operand" "p") ++ (match_operand:DI 1 "const_int_operand" "n") ++ (match_operand:DI 2 "const_int_operand" "n"))] ++ "" ++{ ++ static const char * const prefetch_instr[2][2] = { ++ { ++ "prefetch\t[%a0], 1", /* no locality: prefetch for one read */ ++ "prefetch\t[%a0], 0", /* medium to high locality: prefetch for several reads */ ++ }, ++ { ++ "prefetch\t[%a0], 3", /* no locality: prefetch for one write */ ++ "prefetch\t[%a0], 2", /* medium to high locality: prefetch for several writes */ ++ } ++ }; ++ int read_or_write = INTVAL (operands[1]); ++ int locality = INTVAL (operands[2]); ++ ++ gcc_assert (read_or_write == 0 || read_or_write == 1); ++ gcc_assert (locality >= 0 && locality < 4); ++ return prefetch_instr [read_or_write][locality == 0 ? 0 : 1]; ++} ++ [(set_attr "type" "load") ++ (set_attr "subtype" "prefetch")]) ++ ++(define_insn "prefetch_32" ++ [(prefetch (match_operand:SI 0 "address_operand" "p") ++ (match_operand:SI 1 "const_int_operand" "n") ++ (match_operand:SI 2 "const_int_operand" "n"))] ++ "" ++{ ++ static const char * const prefetch_instr[2][2] = { ++ { ++ "prefetch\t[%a0], 1", /* no locality: prefetch for one read */ ++ "prefetch\t[%a0], 0", /* medium to high locality: prefetch for several reads */ ++ }, ++ { ++ "prefetch\t[%a0], 3", /* no locality: prefetch for one write */ ++ "prefetch\t[%a0], 2", /* medium to high locality: prefetch for several writes */ ++ } ++ }; ++ int read_or_write = INTVAL (operands[1]); ++ int locality = INTVAL (operands[2]); ++ ++ gcc_assert (read_or_write == 0 || read_or_write == 1); ++ gcc_assert (locality >= 0 && locality < 4); ++ return prefetch_instr [read_or_write][locality == 0 ? 0 : 1]; ++} ++ [(set_attr "type" "load") ++ (set_attr "subtype" "prefetch")]) ++ ++ ++;; Trap instructions. ++ ++(define_insn "trap" ++ [(trap_if (const_int 1) (const_int 5))] ++ "" ++ "ta\t5" ++ [(set_attr "type" "trap")]) ++ ++(define_expand "ctrapsi4" ++ [(trap_if (match_operator 0 "comparison_operator" ++ [(match_operand:SI 1 "compare_operand" "") ++ (match_operand:SI 2 "arith_operand" "")]) ++ (match_operand 3 "arith_operand"))] ++ "" ++{ ++ operands[1] = gen_compare_reg (operands[0]); ++ if (GET_MODE (operands[1]) != CCmode && GET_MODE (operands[1]) != CCXmode) ++ FAIL; ++ operands[2] = const0_rtx; ++}) ++ ++(define_expand "ctrapdi4" ++ [(trap_if (match_operator 0 "comparison_operator" ++ [(match_operand:DI 1 "compare_operand" "") ++ (match_operand:DI 2 "arith_operand" "")]) ++ (match_operand 3 "arith_operand"))] ++ "TARGET_ARCH64" ++{ ++ operands[1] = gen_compare_reg (operands[0]); ++ if (GET_MODE (operands[1]) != CCmode && GET_MODE (operands[1]) != CCXmode) ++ FAIL; ++ operands[2] = const0_rtx; ++}) ++ ++(define_insn "*trapsi_insn" ++ [(trap_if (match_operator 0 "icc_comparison_operator" ++ [(reg:CC CC_REG) (const_int 0)]) ++ (match_operand:SI 1 "arith_operand" "rM"))] ++ "" ++{ ++ if (TARGET_V9) ++ return "t%C0\t%%icc, %1"; ++ else ++ return "t%C0\t%1"; ++} ++ [(set_attr "type" "trap")]) ++ ++(define_insn "*trapdi_insn" ++ [(trap_if (match_operator 0 "icc_comparison_operator" ++ [(reg:CCX CC_REG) (const_int 0)]) ++ (match_operand:SI 1 "arith_operand" "rM"))] ++ "TARGET_V9" ++ "t%C0\t%%xcc, %1" ++ [(set_attr "type" "trap")]) ++ ++ ++;; TLS support instructions. ++ ++(define_insn "tgd_hi22" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (high:P (unspec:P [(match_operand 1 "tgd_symbolic_operand" "")] ++ UNSPEC_TLSGD)))] ++ "TARGET_TLS" ++ "sethi\\t%%tgd_hi22(%a1), %0") ++ ++(define_insn "tgd_lo10" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (lo_sum:P (match_operand:P 1 "register_operand" "r") ++ (unspec:P [(match_operand 2 "tgd_symbolic_operand" "")] ++ UNSPEC_TLSGD)))] ++ "TARGET_TLS" ++ "add\\t%1, %%tgd_lo10(%a2), %0") ++ ++(define_insn "tgd_add" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (plus:P (match_operand:P 1 "register_operand" "r") ++ (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tgd_symbolic_operand" "")] ++ UNSPEC_TLSGD)))] ++ "TARGET_TLS" ++ "add\\t%1, %2, %0, %%tgd_add(%a3)") ++ ++(define_insn "tgd_call" ++ [(set (match_operand 0 "register_operand" "=r") ++ (call (mem:P (unspec:P [(match_operand:P 1 "symbolic_operand" "s") ++ (match_operand 2 "tgd_symbolic_operand" "")] ++ UNSPEC_TLSGD)) ++ (match_operand 3 "" ""))) ++ (clobber (reg:P O7_REG))] ++ "TARGET_TLS" ++ "call\t%a1, %%tgd_call(%a2)%#" ++ [(set (attr "type") (if_then_else (eq_attr "tls_delay_slot" "true") ++ (const_string "call") ++ (const_string "call_no_delay_slot")))]) ++ ++(define_insn "tldm_hi22" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (high:P (unspec:P [(const_int 0)] UNSPEC_TLSLDM)))] ++ "TARGET_TLS" ++ "sethi\\t%%tldm_hi22(%&), %0") ++ ++(define_insn "tldm_lo10" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (lo_sum:P (match_operand:P 1 "register_operand" "r") ++ (unspec:P [(const_int 0)] UNSPEC_TLSLDM)))] ++ "TARGET_TLS" ++ "add\\t%1, %%tldm_lo10(%&), %0") ++ ++(define_insn "tldm_add" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (plus:P (match_operand:P 1 "register_operand" "r") ++ (unspec:P [(match_operand:P 2 "register_operand" "r")] ++ UNSPEC_TLSLDM)))] ++ "TARGET_TLS" ++ "add\\t%1, %2, %0, %%tldm_add(%&)") ++ ++(define_insn "tldm_call" ++ [(set (match_operand 0 "register_operand" "=r") ++ (call (mem:P (unspec:P [(match_operand:P 1 "symbolic_operand" "s")] ++ UNSPEC_TLSLDM)) ++ (match_operand 2 "" ""))) ++ (clobber (reg:P O7_REG))] ++ "TARGET_TLS" ++ "call\t%a1, %%tldm_call(%&)%#" ++ [(set (attr "type") (if_then_else (eq_attr "tls_delay_slot" "true") ++ (const_string "call") ++ (const_string "call_no_delay_slot")))]) ++ ++(define_insn "tldo_hix22" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (high:P (unspec:P [(match_operand 1 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO)))] ++ "TARGET_TLS" ++ "sethi\\t%%tldo_hix22(%a1), %0") ++ ++(define_insn "tldo_lox10" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (lo_sum:P (match_operand:P 1 "register_operand" "r") ++ (unspec:P [(match_operand 2 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO)))] ++ "TARGET_TLS" ++ "xor\\t%1, %%tldo_lox10(%a2), %0") ++ ++(define_insn "tldo_add" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (plus:P (match_operand:P 1 "register_operand" "r") ++ (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO)))] ++ "TARGET_TLS" ++ "add\\t%1, %2, %0, %%tldo_add(%a3)") ++ ++(define_insn "tie_hi22" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (high:P (unspec:P [(match_operand 1 "tie_symbolic_operand" "")] ++ UNSPEC_TLSIE)))] ++ "TARGET_TLS" ++ "sethi\\t%%tie_hi22(%a1), %0") ++ ++(define_insn "tie_lo10" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (lo_sum:P (match_operand:P 1 "register_operand" "r") ++ (unspec:P [(match_operand 2 "tie_symbolic_operand" "")] ++ UNSPEC_TLSIE)))] ++ "TARGET_TLS" ++ "add\\t%1, %%tie_lo10(%a2), %0") ++ ++; Note the %%tie_ld operator ++(define_insn "tie_ld32" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r") ++ (match_operand 3 "tie_symbolic_operand" "")] ++ UNSPEC_TLSIE))] ++ "TARGET_TLS && TARGET_ARCH32" ++ "ld\\t[%1 + %2], %0, %%tie_ld(%a3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular")]) ++ ++; Note the %%tie_ldx operator ++(define_insn "tie_ld64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unspec:DI [(match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "register_operand" "r") ++ (match_operand 3 "tie_symbolic_operand" "")] ++ UNSPEC_TLSIE))] ++ "TARGET_TLS && TARGET_ARCH64" ++ "ldx\\t[%1 + %2], %0, %%tie_ldx(%a3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular")]) ++ ++(define_insn "tie_add" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (plus:P (match_operand:P 1 "register_operand" "r") ++ (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tie_symbolic_operand" "")] ++ UNSPEC_TLSIE)))] ++ "TARGET_SUN_TLS" ++ "add\\t%1, %2, %0, %%tie_add(%a3)") ++ ++(define_insn "tle_hix22" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (high:P (unspec:P [(match_operand 1 "tle_symbolic_operand" "")] ++ UNSPEC_TLSLE)))] ++ "TARGET_TLS" ++ "sethi\\t%%tle_hix22(%a1), %0") ++ ++(define_insn "tle_lox10" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (lo_sum:P (match_operand:P 1 "register_operand" "r") ++ (unspec:P [(match_operand 2 "tle_symbolic_operand" "")] ++ UNSPEC_TLSLE)))] ++ "TARGET_TLS" ++ "xor\\t%1, %%tle_lox10(%a2), %0") ++ ++;; Now patterns combining tldo_add with some integer loads or stores ++(define_insn "*tldo_ldub" ++ [(set (match_operand:QI 0 "register_operand" "=r") ++ (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r"))))] ++ "TARGET_TLS" ++ "ldub\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_ldub1" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (zero_extend:HI ++ (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r")))))] ++ "TARGET_TLS" ++ "ldub\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_ldub2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI ++ (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r")))))] ++ "TARGET_TLS" ++ "ldub\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_ldsb1" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (sign_extend:HI ++ (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r")))))] ++ "TARGET_TLS" ++ "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_ldsb2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extend:SI ++ (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r")))))] ++ "TARGET_TLS" ++ "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_ldub3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI ++ (mem:QI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:DI 1 "register_operand" "r")))))] ++ "TARGET_TLS && TARGET_ARCH64" ++ "ldub\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_ldsb3_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extend:DI ++ (mem:QI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:DI 1 "register_operand" "r")))))] ++ "TARGET_TLS && TARGET_ARCH64" ++ "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_lduh" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (mem:HI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r"))))] ++ "TARGET_TLS" ++ "lduh\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_lduh1" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI ++ (mem:HI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r")))))] ++ "TARGET_TLS" ++ "lduh\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_ldsh1" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extend:SI ++ (mem:HI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r")))))] ++ "TARGET_TLS" ++ "ldsh\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_lduh2_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI ++ (mem:HI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:DI 1 "register_operand" "r")))))] ++ "TARGET_TLS && TARGET_ARCH64" ++ "lduh\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_ldsh2_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extend:DI ++ (mem:HI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:DI 1 "register_operand" "r")))))] ++ "TARGET_TLS && TARGET_ARCH64" ++ "ldsh\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_lduw" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mem:SI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r"))))] ++ "TARGET_TLS" ++ "ld\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular")]) ++ ++(define_insn "*tldo_lduw1_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI ++ (mem:SI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:DI 1 "register_operand" "r")))))] ++ "TARGET_TLS && TARGET_ARCH64" ++ "lduw\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular")]) ++ ++(define_insn "*tldo_ldsw1_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extend:DI ++ (mem:SI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:DI 1 "register_operand" "r")))))] ++ "TARGET_TLS && TARGET_ARCH64" ++ "ldsw\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "sload") ++ (set_attr "us3load_type" "3cycle")]) ++ ++(define_insn "*tldo_ldx_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mem:DI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:DI 1 "register_operand" "r"))))] ++ "TARGET_TLS && TARGET_ARCH64" ++ "ldx\t[%1 + %2], %0, %%tldo_add(%3)" ++ [(set_attr "type" "load") ++ (set_attr "subtype" "regular")]) ++ ++(define_insn "*tldo_stb" ++ [(set (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r"))) ++ (match_operand:QI 0 "register_operand" "r"))] ++ "TARGET_TLS" ++ "stb\t%0, [%1 + %2], %%tldo_add(%3)" ++ [(set_attr "type" "store")]) ++ ++(define_insn "*tldo_sth" ++ [(set (mem:HI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r"))) ++ (match_operand:HI 0 "register_operand" "r"))] ++ "TARGET_TLS" ++ "sth\t%0, [%1 + %2], %%tldo_add(%3)" ++ [(set_attr "type" "store")]) ++ ++(define_insn "*tldo_stw" ++ [(set (mem:SI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:P 1 "register_operand" "r"))) ++ (match_operand:SI 0 "register_operand" "r"))] ++ "TARGET_TLS" ++ "st\t%0, [%1 + %2], %%tldo_add(%3)" ++ [(set_attr "type" "store")]) ++ ++(define_insn "*tldo_stx_sp64" ++ [(set (mem:DI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") ++ (match_operand 3 "tld_symbolic_operand" "")] ++ UNSPEC_TLSLDO) ++ (match_operand:DI 1 "register_operand" "r"))) ++ (match_operand:DI 0 "register_operand" "r"))] ++ "TARGET_TLS && TARGET_ARCH64" ++ "stx\t%0, [%1 + %2], %%tldo_add(%3)" ++ [(set_attr "type" "store")]) ++ ++ ++;; Stack protector instructions. ++ ++(define_expand "stack_protect_set" ++ [(match_operand 0 "memory_operand" "") ++ (match_operand 1 "memory_operand" "")] ++ "" ++{ ++#ifdef TARGET_THREAD_SSP_OFFSET ++ rtx tlsreg = gen_rtx_REG (Pmode, 7); ++ rtx addr = gen_rtx_PLUS (Pmode, tlsreg, GEN_INT (TARGET_THREAD_SSP_OFFSET)); ++ operands[1] = gen_rtx_MEM (Pmode, addr); ++#endif ++ if (TARGET_ARCH64) ++ emit_insn (gen_stack_protect_setdi (operands[0], operands[1])); ++ else ++ emit_insn (gen_stack_protect_setsi (operands[0], operands[1])); ++ DONE; ++}) ++ ++(define_insn "stack_protect_setsi" ++ [(set (match_operand:SI 0 "memory_operand" "=m") ++ (unspec:SI [(match_operand:SI 1 "memory_operand" "m")] UNSPEC_SP_SET)) ++ (set (match_scratch:SI 2 "=&r") (const_int 0))] ++ "TARGET_ARCH32" ++ "ld\t%1, %2\;st\t%2, %0\;mov\t0, %2" ++ [(set_attr "type" "multi") ++ (set_attr "length" "3")]) ++ ++(define_insn "stack_protect_setdi" ++ [(set (match_operand:DI 0 "memory_operand" "=m") ++ (unspec:DI [(match_operand:DI 1 "memory_operand" "m")] UNSPEC_SP_SET)) ++ (set (match_scratch:DI 2 "=&r") (const_int 0))] ++ "TARGET_ARCH64" ++ "ldx\t%1, %2\;stx\t%2, %0\;mov\t0, %2" ++ [(set_attr "type" "multi") ++ (set_attr "length" "3")]) ++ ++(define_expand "stack_protect_test" ++ [(match_operand 0 "memory_operand" "") ++ (match_operand 1 "memory_operand" "") ++ (match_operand 2 "" "")] ++ "" ++{ ++ rtx result, test; ++#ifdef TARGET_THREAD_SSP_OFFSET ++ rtx tlsreg = gen_rtx_REG (Pmode, 7); ++ rtx addr = gen_rtx_PLUS (Pmode, tlsreg, GEN_INT (TARGET_THREAD_SSP_OFFSET)); ++ operands[1] = gen_rtx_MEM (Pmode, addr); ++#endif ++ if (TARGET_ARCH64) ++ { ++ result = gen_reg_rtx (Pmode); ++ emit_insn (gen_stack_protect_testdi (result, operands[0], operands[1])); ++ test = gen_rtx_EQ (VOIDmode, result, const0_rtx); ++ emit_jump_insn (gen_cbranchdi4 (test, result, const0_rtx, operands[2])); ++ } ++ else ++ { ++ emit_insn (gen_stack_protect_testsi (operands[0], operands[1])); ++ result = gen_rtx_REG (CCmode, SPARC_ICC_REG); ++ test = gen_rtx_EQ (VOIDmode, result, const0_rtx); ++ emit_jump_insn (gen_cbranchcc4 (test, result, const0_rtx, operands[2])); ++ } ++ DONE; ++}) ++ ++(define_insn "stack_protect_testsi" ++ [(set (reg:CC CC_REG) ++ (unspec:CC [(match_operand:SI 0 "memory_operand" "m") ++ (match_operand:SI 1 "memory_operand" "m")] ++ UNSPEC_SP_TEST)) ++ (set (match_scratch:SI 3 "=r") (const_int 0)) ++ (clobber (match_scratch:SI 2 "=&r"))] ++ "TARGET_ARCH32" ++ "ld\t%0, %2\;ld\t%1, %3\;xorcc\t%2, %3, %2\;mov\t0, %3" ++ [(set_attr "type" "multi") ++ (set_attr "length" "4")]) ++ ++(define_insn "stack_protect_testdi" ++ [(set (match_operand:DI 0 "register_operand" "=&r") ++ (unspec:DI [(match_operand:DI 1 "memory_operand" "m") ++ (match_operand:DI 2 "memory_operand" "m")] ++ UNSPEC_SP_TEST)) ++ (set (match_scratch:DI 3 "=r") (const_int 0))] ++ "TARGET_ARCH64" ++ "ldx\t%1, %0\;ldx\t%2, %3\;xor\t%0, %3, %0\;mov\t0, %3" ++ [(set_attr "type" "multi") ++ (set_attr "length" "4")]) ++ ++ ++;; Vector instructions. ++ ++(define_mode_iterator VM32 [V1SI V2HI V4QI]) ++(define_mode_iterator VM64 [V1DI V2SI V4HI V8QI]) ++(define_mode_iterator VMALL [V1SI V2HI V4QI V1DI V2SI V4HI V8QI]) ++ ++(define_mode_attr vbits [(V2SI "32") (V4HI "16") (V1SI "32s") (V2HI "16s") ++ (V8QI "8")]) ++(define_mode_attr vconstr [(V1SI "f") (V2HI "f") (V4QI "f") ++ (V1DI "e") (V2SI "e") (V4HI "e") (V8QI "e")]) ++(define_mode_attr vfptype [(V1SI "single") (V2HI "single") (V4QI "single") ++ (V1DI "double") (V2SI "double") (V4HI "double") ++ (V8QI "double")]) ++(define_mode_attr veltmode [(V1SI "si") (V2HI "hi") (V4QI "qi") (V1DI "di") ++ (V2SI "si") (V4HI "hi") (V8QI "qi")]) ++ ++(define_expand "mov" ++ [(set (match_operand:VMALL 0 "nonimmediate_operand" "") ++ (match_operand:VMALL 1 "general_operand" ""))] ++ "TARGET_VIS" ++{ ++ if (sparc_expand_move (mode, operands)) ++ DONE; ++}) ++ ++(define_insn "*mov_insn" ++ [(set (match_operand:VM32 0 "nonimmediate_operand" "=f,f,f,f,m,m,*r, m,*r,*r, f") ++ (match_operand:VM32 1 "input_operand" "Y,Z,f,m,f,Y, m,*r,*r, f,*r"))] ++ "TARGET_VIS ++ && (register_operand (operands[0], mode) ++ || register_or_zero_or_all_ones_operand (operands[1], mode))" ++ "@ ++ fzeros\t%0 ++ fones\t%0 ++ fsrc2s\t%1, %0 ++ ld\t%1, %0 ++ st\t%1, %0 ++ st\t%r1, %0 ++ ld\t%1, %0 ++ st\t%1, %0 ++ mov\t%1, %0 ++ movstouw\t%1, %0 ++ movwtos\t%1, %0" ++ [(set_attr "type" "visl,visl,vismv,fpload,fpstore,store,load,store,*,vismv,vismv") ++ (set_attr "subtype" "single,single,single,*,*,*,regular,*,*,movstouw,single") ++ (set_attr "cpu_feature" "vis,vis,vis,*,*,*,*,*,*,vis3,vis3")]) ++ ++(define_insn "*mov_insn_sp64" ++ [(set (match_operand:VM64 0 "nonimmediate_operand" "=e,e,e,e,W,m,*r, m,*r, e,*r") ++ (match_operand:VM64 1 "input_operand" "Y,Z,e,W,e,Y, m,*r, e,*r,*r"))] ++ "TARGET_VIS ++ && TARGET_ARCH64 ++ && (register_operand (operands[0], mode) ++ || register_or_zero_or_all_ones_operand (operands[1], mode))" ++ "@ ++ fzero\t%0 ++ fone\t%0 ++ fsrc2\t%1, %0 ++ ldd\t%1, %0 ++ std\t%1, %0 ++ stx\t%r1, %0 ++ ldx\t%1, %0 ++ stx\t%1, %0 ++ movdtox\t%1, %0 ++ movxtod\t%1, %0 ++ mov\t%1, %0" ++ [(set_attr "type" "visl,visl,vismv,fpload,fpstore,store,load,store,vismv,vismv,*") ++ (set_attr "subtype" "double,double,double,*,*,*,regular,*,movdtox,movxtod,*") ++ (set_attr "cpu_feature" "vis,vis,vis,*,*,*,*,*,vis3,vis3,*")]) ++ ++(define_insn "*mov_insn_sp32" ++ [(set (match_operand:VM64 0 "nonimmediate_operand" ++ "=T,o,e,e,e,*r, f,e,T,U,T,f,o,*r,*r, o") ++ (match_operand:VM64 1 "input_operand" ++ " Y,Y,Y,Z,e, f,*r,T,e,T,U,o,f,*r, o,*r"))] ++ "TARGET_VIS ++ && TARGET_ARCH32 ++ && (register_operand (operands[0], mode) ++ || register_or_zero_or_all_ones_operand (operands[1], mode))" ++ "@ ++ stx\t%r1, %0 ++ # ++ fzero\t%0 ++ fone\t%0 ++ fsrc2\t%1, %0 ++ # ++ # ++ ldd\t%1, %0 ++ std\t%1, %0 ++ ldd\t%1, %0 ++ std\t%1, %0 ++ # ++ # ++ # ++ ldd\t%1, %0 ++ std\t%1, %0" ++ [(set_attr "type" "store,*,visl,visl,vismv,*,*,fpload,fpstore,load,store,*,*,*,load,store") ++ (set_attr "subtype" "*,*,double,double,double,*,*,*,*,regular,*,*,*,*,regular,*") ++ (set_attr "length" "*,2,*,*,*,2,2,*,*,*,*,2,2,2,*,*") ++ (set_attr "cpu_feature" "*,*,vis,vis,vis,vis3,vis3,*,*,*,*,*,*,*,*,*") ++ (set_attr "lra" "*,*,*,*,*,*,*,*,*,disabled,disabled,*,*,*,*,*")]) ++ ++(define_split ++ [(set (match_operand:VM64 0 "register_operand" "") ++ (match_operand:VM64 1 "register_operand" ""))] ++ "reload_completed ++ && TARGET_VIS ++ && TARGET_ARCH32 ++ && sparc_split_reg_reg_legitimate (operands[0], operands[1])" ++ [(clobber (const_int 0))] ++{ ++ sparc_split_reg_reg (operands[0], operands[1], SImode); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:VM64 0 "register_operand" "") ++ (match_operand:VM64 1 "memory_operand" ""))] ++ "reload_completed ++ && TARGET_VIS ++ && TARGET_ARCH32 ++ && sparc_split_reg_mem_legitimate (operands[0], operands[1])" ++ [(clobber (const_int 0))] ++{ ++ sparc_split_reg_mem (operands[0], operands[1], SImode); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:VM64 0 "memory_operand" "") ++ (match_operand:VM64 1 "register_operand" ""))] ++ "reload_completed ++ && TARGET_VIS ++ && TARGET_ARCH32 ++ && sparc_split_reg_mem_legitimate (operands[1], operands[0])" ++ [(clobber (const_int 0))] ++{ ++ sparc_split_mem_reg (operands[0], operands[1], SImode); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:VM64 0 "memory_operand" "") ++ (match_operand:VM64 1 "const_zero_operand" ""))] ++ "reload_completed ++ && TARGET_VIS ++ && TARGET_ARCH32 ++ && !mem_min_alignment (operands[0], 8) ++ && offsettable_memref_p (operands[0])" ++ [(clobber (const_int 0))] ++{ ++ emit_move_insn_1 (adjust_address (operands[0], SImode, 0), const0_rtx); ++ emit_move_insn_1 (adjust_address (operands[0], SImode, 4), const0_rtx); ++ DONE; ++}) ++ ++(define_expand "vec_init" ++ [(match_operand:VMALL 0 "register_operand" "") ++ (match_operand:VMALL 1 "" "")] ++ "TARGET_VIS" ++{ ++ sparc_expand_vector_init (operands[0], operands[1]); ++ DONE; ++}) ++ ++(define_code_iterator plusminus [plus minus]) ++(define_code_attr plusminus_insn [(plus "add") (minus "sub")]) ++ ++(define_mode_iterator VADDSUB [V1SI V2SI V2HI V4HI]) ++ ++(define_insn "3" ++ [(set (match_operand:VADDSUB 0 "register_operand" "=") ++ (plusminus:VADDSUB (match_operand:VADDSUB 1 "register_operand" "") ++ (match_operand:VADDSUB 2 "register_operand" "")))] ++ "TARGET_VIS" ++ "fp\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "other") ++ (set_attr "fptype" "")]) ++ ++(define_mode_iterator VL [V1SI V2HI V4QI V1DI V2SI V4HI V8QI]) ++(define_mode_attr vlsuf [(V1SI "s") (V2HI "s") (V4QI "s") ++ (V1DI "") (V2SI "") (V4HI "") (V8QI "")]) ++(define_code_iterator vlop [ior and xor]) ++(define_code_attr vlinsn [(ior "or") (and "and") (xor "xor")]) ++(define_code_attr vlninsn [(ior "nor") (and "nand") (xor "xnor")]) ++ ++(define_insn "3" ++ [(set (match_operand:VL 0 "register_operand" "=") ++ (vlop:VL (match_operand:VL 1 "register_operand" "") ++ (match_operand:VL 2 "register_operand" "")))] ++ "TARGET_VIS" ++ "f\t%1, %2, %0" ++ [(set_attr "type" "visl") ++ (set_attr "fptype" "")]) ++ ++(define_insn "*not_3" ++ [(set (match_operand:VL 0 "register_operand" "=") ++ (not:VL (vlop:VL (match_operand:VL 1 "register_operand" "") ++ (match_operand:VL 2 "register_operand" ""))))] ++ "TARGET_VIS" ++ "f\t%1, %2, %0" ++ [(set_attr "type" "visl") ++ (set_attr "fptype" "")]) ++ ++;; (ior (not (op1)) (not (op2))) is the canonical form of NAND. ++(define_insn "*nand_vis" ++ [(set (match_operand:VL 0 "register_operand" "=") ++ (ior:VL (not:VL (match_operand:VL 1 "register_operand" "")) ++ (not:VL (match_operand:VL 2 "register_operand" ""))))] ++ "TARGET_VIS" ++ "fnand\t%1, %2, %0" ++ [(set_attr "type" "visl") ++ (set_attr "fptype" "")]) ++ ++(define_code_iterator vlnotop [ior and]) ++ ++(define_insn "*_not1_vis" ++ [(set (match_operand:VL 0 "register_operand" "=") ++ (vlnotop:VL (not:VL (match_operand:VL 1 "register_operand" "")) ++ (match_operand:VL 2 "register_operand" "")))] ++ "TARGET_VIS" ++ "fnot1\t%1, %2, %0" ++ [(set_attr "type" "visl") ++ (set_attr "fptype" "")]) ++ ++(define_insn "*_not2_vis" ++ [(set (match_operand:VL 0 "register_operand" "=") ++ (vlnotop:VL (match_operand:VL 1 "register_operand" "") ++ (not:VL (match_operand:VL 2 "register_operand" ""))))] ++ "TARGET_VIS" ++ "fnot2\t%1, %2, %0" ++ [(set_attr "type" "visl") ++ (set_attr "fptype" "")]) ++ ++(define_insn "one_cmpl2" ++ [(set (match_operand:VL 0 "register_operand" "=") ++ (not:VL (match_operand:VL 1 "register_operand" "")))] ++ "TARGET_VIS" ++ "fnot1\t%1, %0" ++ [(set_attr "type" "visl") ++ (set_attr "fptype" "")]) ++ ++;; Hard to generate VIS instructions. We have builtins for these. ++ ++(define_insn "fpack16_vis" ++ [(set (match_operand:V4QI 0 "register_operand" "=f") ++ (unspec:V4QI [(match_operand:V4HI 1 "register_operand" "e") ++ (reg:DI GSR_REG)] ++ UNSPEC_FPACK16))] ++ "TARGET_VIS" ++ "fpack16\t%1, %0" ++ [(set_attr "type" "fgm_pack") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fpackfix_vis" ++ [(set (match_operand:V2HI 0 "register_operand" "=f") ++ (unspec:V2HI [(match_operand:V2SI 1 "register_operand" "e") ++ (reg:DI GSR_REG)] ++ UNSPEC_FPACKFIX))] ++ "TARGET_VIS" ++ "fpackfix\t%1, %0" ++ [(set_attr "type" "fgm_pack") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fpack32_vis" ++ [(set (match_operand:V8QI 0 "register_operand" "=e") ++ (unspec:V8QI [(match_operand:V2SI 1 "register_operand" "e") ++ (match_operand:V8QI 2 "register_operand" "e") ++ (reg:DI GSR_REG)] ++ UNSPEC_FPACK32))] ++ "TARGET_VIS" ++ "fpack32\t%1, %2, %0" ++ [(set_attr "type" "fgm_pack") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fexpand_vis" ++ [(set (match_operand:V4HI 0 "register_operand" "=e") ++ (unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f")] ++ UNSPEC_FEXPAND))] ++ "TARGET_VIS" ++ "fexpand\t%1, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "fpu") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fpmerge_vis" ++ [(set (match_operand:V8QI 0 "register_operand" "=e") ++ (vec_select:V8QI ++ (vec_concat:V8QI (match_operand:V4QI 1 "register_operand" "f") ++ (match_operand:V4QI 2 "register_operand" "f")) ++ (parallel [(const_int 0) (const_int 4) ++ (const_int 1) (const_int 5) ++ (const_int 2) (const_int 6) ++ (const_int 3) (const_int 7)])))] ++ "TARGET_VIS" ++ "fpmerge\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "fpu") ++ (set_attr "fptype" "double")]) ++ ++;; Partitioned multiply instructions ++(define_insn "fmul8x16_vis" ++ [(set (match_operand:V4HI 0 "register_operand" "=e") ++ (unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f") ++ (match_operand:V4HI 2 "register_operand" "e")] ++ UNSPEC_MUL8))] ++ "TARGET_VIS" ++ "fmul8x16\t%1, %2, %0" ++ [(set_attr "type" "fgm_mul") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fmul8x16au_vis" ++ [(set (match_operand:V4HI 0 "register_operand" "=e") ++ (unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f") ++ (match_operand:V2HI 2 "register_operand" "f")] ++ UNSPEC_MUL16AU))] ++ "TARGET_VIS" ++ "fmul8x16au\t%1, %2, %0" ++ [(set_attr "type" "fgm_mul") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fmul8x16al_vis" ++ [(set (match_operand:V4HI 0 "register_operand" "=e") ++ (unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f") ++ (match_operand:V2HI 2 "register_operand" "f")] ++ UNSPEC_MUL16AL))] ++ "TARGET_VIS" ++ "fmul8x16al\t%1, %2, %0" ++ [(set_attr "type" "fgm_mul") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fmul8sux16_vis" ++ [(set (match_operand:V4HI 0 "register_operand" "=e") ++ (unspec:V4HI [(match_operand:V8QI 1 "register_operand" "e") ++ (match_operand:V4HI 2 "register_operand" "e")] ++ UNSPEC_MUL8SU))] ++ "TARGET_VIS" ++ "fmul8sux16\t%1, %2, %0" ++ [(set_attr "type" "fgm_mul") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fmul8ulx16_vis" ++ [(set (match_operand:V4HI 0 "register_operand" "=e") ++ (unspec:V4HI [(match_operand:V8QI 1 "register_operand" "e") ++ (match_operand:V4HI 2 "register_operand" "e")] ++ UNSPEC_MUL8UL))] ++ "TARGET_VIS" ++ "fmul8ulx16\t%1, %2, %0" ++ [(set_attr "type" "fgm_mul") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fmuld8sux16_vis" ++ [(set (match_operand:V2SI 0 "register_operand" "=e") ++ (unspec:V2SI [(match_operand:V4QI 1 "register_operand" "f") ++ (match_operand:V2HI 2 "register_operand" "f")] ++ UNSPEC_MULDSU))] ++ "TARGET_VIS" ++ "fmuld8sux16\t%1, %2, %0" ++ [(set_attr "type" "fgm_mul") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fmuld8ulx16_vis" ++ [(set (match_operand:V2SI 0 "register_operand" "=e") ++ (unspec:V2SI [(match_operand:V4QI 1 "register_operand" "f") ++ (match_operand:V2HI 2 "register_operand" "f")] ++ UNSPEC_MULDUL))] ++ "TARGET_VIS" ++ "fmuld8ulx16\t%1, %2, %0" ++ [(set_attr "type" "fgm_mul") ++ (set_attr "fptype" "double")]) ++ ++(define_expand "wrgsr_vis" ++ [(set (reg:DI GSR_REG) (match_operand:DI 0 "arith_operand" ""))] ++ "TARGET_VIS" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_wrgsr_v8plus (operands[0])); ++ DONE; ++ } ++}) ++ ++(define_insn "*wrgsr_sp64" ++ [(set (reg:DI GSR_REG) (match_operand:DI 0 "arith_operand" "rI"))] ++ "TARGET_VIS && TARGET_ARCH64" ++ "wr\t%%g0, %0, %%gsr" ++ [(set_attr "type" "gsr") ++ (set_attr "subtype" "reg")]) ++ ++(define_insn "wrgsr_v8plus" ++ [(set (reg:DI GSR_REG) (match_operand:DI 0 "arith_operand" "I,r")) ++ (clobber (match_scratch:SI 1 "=X,&h"))] ++ "TARGET_VIS && TARGET_ARCH32" ++{ ++ if (GET_CODE (operands[0]) == CONST_INT ++ || sparc_check_64 (operands[0], insn)) ++ return "wr\t%%g0, %0, %%gsr"; ++ ++ output_asm_insn("srl\t%L0, 0, %L0", operands); ++ return "sllx\t%H0, 32, %1\n\tor\t%L0, %1, %1\n\twr\t%%g0, %1, %%gsr"; ++} ++ [(set_attr "type" "multi")]) ++ ++(define_expand "rdgsr_vis" ++ [(set (match_operand:DI 0 "register_operand" "") (reg:DI GSR_REG))] ++ "TARGET_VIS" ++{ ++ if (TARGET_ARCH32) ++ { ++ emit_insn (gen_rdgsr_v8plus (operands[0])); ++ DONE; ++ } ++}) ++ ++(define_insn "*rdgsr_sp64" ++ [(set (match_operand:DI 0 "register_operand" "=r") (reg:DI GSR_REG))] ++ "TARGET_VIS && TARGET_ARCH64" ++ "rd\t%%gsr, %0" ++ [(set_attr "type" "gsr") ++ (set_attr "subtype" "reg")]) ++ ++(define_insn "rdgsr_v8plus" ++ [(set (match_operand:DI 0 "register_operand" "=r") (reg:DI GSR_REG)) ++ (clobber (match_scratch:SI 1 "=&h"))] ++ "TARGET_VIS && TARGET_ARCH32" ++{ ++ return "rd\t%%gsr, %1\n\tsrlx\t%1, 32, %H0\n\tmov %1, %L0"; ++} ++ [(set_attr "type" "multi")]) ++ ++;; Using faligndata only makes sense after an alignaddr since the choice of ++;; bytes to take out of each operand is dependent on the results of the last ++;; alignaddr. ++(define_insn "faligndata_vis" ++ [(set (match_operand:VM64 0 "register_operand" "=e") ++ (unspec:VM64 [(match_operand:VM64 1 "register_operand" "e") ++ (match_operand:VM64 2 "register_operand" "e") ++ (reg:DI GSR_REG)] ++ UNSPEC_ALIGNDATA))] ++ "TARGET_VIS" ++ "faligndata\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "other") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "alignaddrsi_vis" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") ++ (match_operand:SI 2 "register_or_zero_operand" "rJ"))) ++ (set (zero_extract:DI (reg:DI GSR_REG) (const_int 3) (const_int 0)) ++ (zero_extend:DI (plus:SI (match_dup 1) (match_dup 2))))] ++ "TARGET_VIS" ++ "alignaddr\t%r1, %r2, %0" ++ [(set_attr "type" "gsr") ++ (set_attr "subtype" "alignaddr")]) ++ ++(define_insn "alignaddrdi_vis" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (plus:DI (match_operand:DI 1 "register_or_zero_operand" "rJ") ++ (match_operand:DI 2 "register_or_zero_operand" "rJ"))) ++ (set (zero_extract:DI (reg:DI GSR_REG) (const_int 3) (const_int 0)) ++ (plus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_VIS" ++ "alignaddr\t%r1, %r2, %0" ++ [(set_attr "type" "gsr") ++ (set_attr "subtype" "alignaddr")]) ++ ++(define_insn "alignaddrlsi_vis" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") ++ (match_operand:SI 2 "register_or_zero_operand" "rJ"))) ++ (set (zero_extract:DI (reg:DI GSR_REG) (const_int 3) (const_int 0)) ++ (xor:DI (zero_extend:DI (plus:SI (match_dup 1) (match_dup 2))) ++ (const_int 7)))] ++ "TARGET_VIS" ++ "alignaddrl\t%r1, %r2, %0" ++ [(set_attr "type" "gsr") ++ (set_attr "subtype" "alignaddr")]) ++ ++(define_insn "alignaddrldi_vis" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (plus:DI (match_operand:DI 1 "register_or_zero_operand" "rJ") ++ (match_operand:DI 2 "register_or_zero_operand" "rJ"))) ++ (set (zero_extract:DI (reg:DI GSR_REG) (const_int 3) (const_int 0)) ++ (xor:DI (plus:DI (match_dup 1) (match_dup 2)) ++ (const_int 7)))] ++ "TARGET_VIS" ++ "alignaddrl\t%r1, %r2, %0" ++ [(set_attr "type" "gsr") ++ (set_attr "subtype" "alignaddr")]) ++ ++(define_insn "pdist_vis" ++ [(set (match_operand:DI 0 "register_operand" "=e") ++ (unspec:DI [(match_operand:V8QI 1 "register_operand" "e") ++ (match_operand:V8QI 2 "register_operand" "e") ++ (match_operand:DI 3 "register_operand" "0")] ++ UNSPEC_PDIST))] ++ "TARGET_VIS" ++ "pdist\t%1, %2, %0" ++ [(set_attr "type" "pdist") ++ (set_attr "fptype" "double")]) ++ ++;; Edge instructions produce condition codes equivalent to a 'subcc' ++;; with the same operands. ++(define_insn "edge8_vis" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")) ++ (const_int 0))) ++ (set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE8))] ++ "TARGET_VIS" ++ "edge8\t%r1, %r2, %0" ++ [(set_attr "type" "edge")]) ++ ++(define_insn "edge8l_vis" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")) ++ (const_int 0))) ++ (set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE8L))] ++ "TARGET_VIS" ++ "edge8l\t%r1, %r2, %0" ++ [(set_attr "type" "edge")]) ++ ++(define_insn "edge16_vis" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")) ++ (const_int 0))) ++ (set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE16))] ++ "TARGET_VIS" ++ "edge16\t%r1, %r2, %0" ++ [(set_attr "type" "edge")]) ++ ++(define_insn "edge16l_vis" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")) ++ (const_int 0))) ++ (set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE16L))] ++ "TARGET_VIS" ++ "edge16l\t%r1, %r2, %0" ++ [(set_attr "type" "edge")]) ++ ++(define_insn "edge32_vis" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")) ++ (const_int 0))) ++ (set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE32))] ++ "TARGET_VIS" ++ "edge32\t%r1, %r2, %0" ++ [(set_attr "type" "edge")]) ++ ++(define_insn "edge32l_vis" ++ [(set (reg:CCNZ CC_REG) ++ (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")) ++ (const_int 0))) ++ (set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE32L))] ++ "TARGET_VIS" ++ "edge32l\t%r1, %r2, %0" ++ [(set_attr "type" "edge")]) ++ ++(define_code_iterator gcond [le ne gt eq]) ++(define_mode_iterator GCM [V4HI V2SI]) ++(define_mode_attr gcm_name [(V4HI "16") (V2SI "32")]) ++ ++(define_insn "fcmp_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(gcond:GCM (match_operand:GCM 1 "register_operand" "e") ++ (match_operand:GCM 2 "register_operand" "e"))] ++ UNSPEC_FCMP))] ++ "TARGET_VIS" ++ "fcmp\t%1, %2, %0" ++ [(set_attr "type" "viscmp")]) ++ ++(define_insn "fpcmp8_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(gcond:V8QI (match_operand:V8QI 1 "register_operand" "e") ++ (match_operand:V8QI 2 "register_operand" "e"))] ++ UNSPEC_FCMP))] ++ "TARGET_VIS4" ++ "fpcmp8\t%1, %2, %0" ++ [(set_attr "type" "viscmp")]) ++ ++(define_expand "vcond" ++ [(match_operand:GCM 0 "register_operand" "") ++ (match_operand:GCM 1 "register_operand" "") ++ (match_operand:GCM 2 "register_operand" "") ++ (match_operator 3 "" ++ [(match_operand:GCM 4 "register_operand" "") ++ (match_operand:GCM 5 "register_operand" "")])] ++ "TARGET_VIS3" ++{ ++ sparc_expand_vcond (mode, operands, UNSPEC_CMASK, UNSPEC_FCMP); ++ DONE; ++}) ++ ++(define_expand "vconduv8qiv8qi" ++ [(match_operand:V8QI 0 "register_operand" "") ++ (match_operand:V8QI 1 "register_operand" "") ++ (match_operand:V8QI 2 "register_operand" "") ++ (match_operator 3 "" ++ [(match_operand:V8QI 4 "register_operand" "") ++ (match_operand:V8QI 5 "register_operand" "")])] ++ "TARGET_VIS3" ++{ ++ sparc_expand_vcond (V8QImode, operands, UNSPEC_CMASK8, UNSPEC_FUCMP); ++ DONE; ++}) ++ ++(define_insn "array8_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")] ++ UNSPEC_ARRAY8))] ++ "TARGET_VIS" ++ "array8\t%r1, %r2, %0" ++ [(set_attr "type" "array")]) ++ ++(define_insn "array16_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")] ++ UNSPEC_ARRAY16))] ++ "TARGET_VIS" ++ "array16\t%r1, %r2, %0" ++ [(set_attr "type" "array")]) ++ ++(define_insn "array32_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")] ++ UNSPEC_ARRAY32))] ++ "TARGET_VIS" ++ "array32\t%r1, %r2, %0" ++ [(set_attr "type" "array")]) ++ ++(define_insn "bmaskdi_vis" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (plus:DI (match_operand:DI 1 "register_or_zero_operand" "rJ") ++ (match_operand:DI 2 "register_or_zero_operand" "rJ"))) ++ (set (zero_extract:DI (reg:DI GSR_REG) (const_int 32) (const_int 32)) ++ (plus:DI (match_dup 1) (match_dup 2)))] ++ "TARGET_VIS2 && TARGET_ARCH64" ++ "bmask\t%r1, %r2, %0" ++ [(set_attr "type" "bmask")]) ++ ++(define_insn "bmasksi_vis" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") ++ (match_operand:SI 2 "register_or_zero_operand" "rJ"))) ++ (set (zero_extract:DI (reg:DI GSR_REG) (const_int 32) (const_int 32)) ++ (zero_extend:DI (plus:SI (match_dup 1) (match_dup 2))))] ++ "TARGET_VIS2" ++ "bmask\t%r1, %r2, %0" ++ [(set_attr "type" "bmask")]) ++ ++(define_insn "bshuffle_vis" ++ [(set (match_operand:VM64 0 "register_operand" "=e") ++ (unspec:VM64 [(match_operand:VM64 1 "register_operand" "e") ++ (match_operand:VM64 2 "register_operand" "e") ++ (reg:DI GSR_REG)] ++ UNSPEC_BSHUFFLE))] ++ "TARGET_VIS2" ++ "bshuffle\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "other") ++ (set_attr "fptype" "double")]) ++ ++;; Unlike constant permutation, we can vastly simplify the compression of ++;; the 64-bit selector input to the 32-bit %gsr value by knowing what the ++;; width of the input is. ++(define_expand "vec_perm" ++ [(match_operand:VM64 0 "register_operand" "") ++ (match_operand:VM64 1 "register_operand" "") ++ (match_operand:VM64 2 "register_operand" "") ++ (match_operand:VM64 3 "register_operand" "")] ++ "TARGET_VIS2" ++{ ++ sparc_expand_vec_perm_bmask (mode, operands[3]); ++ emit_insn (gen_bshuffle_vis (operands[0], operands[1], operands[2])); ++ DONE; ++}) ++ ++;; VIS 2.0 adds edge variants which do not set the condition codes ++(define_insn "edge8n_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")] ++ UNSPEC_EDGE8N))] ++ "TARGET_VIS2" ++ "edge8n\t%r1, %r2, %0" ++ [(set_attr "type" "edgen")]) ++ ++(define_insn "edge8ln_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")] ++ UNSPEC_EDGE8LN))] ++ "TARGET_VIS2" ++ "edge8ln\t%r1, %r2, %0" ++ [(set_attr "type" "edgen")]) ++ ++(define_insn "edge16n_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")] ++ UNSPEC_EDGE16N))] ++ "TARGET_VIS2" ++ "edge16n\t%r1, %r2, %0" ++ [(set_attr "type" "edgen")]) ++ ++(define_insn "edge16ln_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")] ++ UNSPEC_EDGE16LN))] ++ "TARGET_VIS2" ++ "edge16ln\t%r1, %r2, %0" ++ [(set_attr "type" "edgen")]) ++ ++(define_insn "edge32n_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")] ++ UNSPEC_EDGE32N))] ++ "TARGET_VIS2" ++ "edge32n\t%r1, %r2, %0" ++ [(set_attr "type" "edgen")]) ++ ++(define_insn "edge32ln_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") ++ (match_operand:P 2 "register_or_zero_operand" "rJ")] ++ UNSPEC_EDGE32LN))] ++ "TARGET_VIS2" ++ "edge32ln\t%r1, %r2, %0" ++ [(set_attr "type" "edge")]) ++ ++;; Conditional moves are possible via fcmpX --> cmaskX -> bshuffle ++(define_insn "cmask8_vis" ++ [(set (reg:DI GSR_REG) ++ (unspec:DI [(match_operand:P 0 "register_or_zero_operand" "rJ") ++ (reg:DI GSR_REG)] ++ UNSPEC_CMASK8))] ++ "TARGET_VIS3" ++ "cmask8\t%r0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "cmask")]) ++ ++(define_insn "cmask16_vis" ++ [(set (reg:DI GSR_REG) ++ (unspec:DI [(match_operand:P 0 "register_or_zero_operand" "rJ") ++ (reg:DI GSR_REG)] ++ UNSPEC_CMASK16))] ++ "TARGET_VIS3" ++ "cmask16\t%r0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "cmask")]) ++ ++(define_insn "cmask32_vis" ++ [(set (reg:DI GSR_REG) ++ (unspec:DI [(match_operand:P 0 "register_or_zero_operand" "rJ") ++ (reg:DI GSR_REG)] ++ UNSPEC_CMASK32))] ++ "TARGET_VIS3" ++ "cmask32\t%r0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "cmask")]) ++ ++(define_insn "fchksm16_vis" ++ [(set (match_operand:V4HI 0 "register_operand" "=e") ++ (unspec:V4HI [(match_operand:V4HI 1 "register_operand" "e") ++ (match_operand:V4HI 2 "register_operand" "e")] ++ UNSPEC_FCHKSM16))] ++ "TARGET_VIS3" ++ "fchksm16\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "fpu")]) ++ ++(define_code_iterator vis3_shift [ashift ss_ashift lshiftrt ashiftrt]) ++(define_code_attr vis3_shift_insn ++ [(ashift "fsll") (ss_ashift "fslas") (lshiftrt "fsrl") (ashiftrt "fsra")]) ++(define_code_attr vis3_shift_patname ++ [(ashift "ashl") (ss_ashift "ssashl") (lshiftrt "lshr") (ashiftrt "ashr")]) ++ ++(define_insn "v3" ++ [(set (match_operand:GCM 0 "register_operand" "=") ++ (vis3_shift:GCM (match_operand:GCM 1 "register_operand" "") ++ (match_operand:GCM 2 "register_operand" "")))] ++ "TARGET_VIS3" ++ "\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "fpu")]) ++ ++(define_insn "pdistn_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:V8QI 1 "register_operand" "e") ++ (match_operand:V8QI 2 "register_operand" "e")] ++ UNSPEC_PDISTN))] ++ "TARGET_VIS3" ++ "pdistn\t%1, %2, %0" ++ [(set_attr "type" "pdistn") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fmean16_vis" ++ [(set (match_operand:V4HI 0 "register_operand" "=e") ++ (truncate:V4HI ++ (lshiftrt:V4SI ++ (plus:V4SI ++ (plus:V4SI ++ (zero_extend:V4SI ++ (match_operand:V4HI 1 "register_operand" "e")) ++ (zero_extend:V4SI ++ (match_operand:V4HI 2 "register_operand" "e"))) ++ (const_vector:V4SI [(const_int 1) (const_int 1) ++ (const_int 1) (const_int 1)])) ++ (const_int 1))))] ++ "TARGET_VIS3" ++ "fmean16\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "fpu")]) ++ ++(define_insn "fp64_vis" ++ [(set (match_operand:V1DI 0 "register_operand" "=e") ++ (plusminus:V1DI (match_operand:V1DI 1 "register_operand" "e") ++ (match_operand:V1DI 2 "register_operand" "e")))] ++ "TARGET_VIS3" ++ "fp64\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "addsub64")]) ++ ++(define_insn "v8qi3" ++ [(set (match_operand:V8QI 0 "register_operand" "=e") ++ (plusminus:V8QI (match_operand:V8QI 1 "register_operand" "e") ++ (match_operand:V8QI 2 "register_operand" "e")))] ++ "TARGET_VIS4" ++ "fp8\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "other")]) ++ ++(define_mode_iterator VASS [V4HI V2SI V2HI V1SI]) ++(define_code_iterator vis3_addsub_ss [ss_plus ss_minus]) ++(define_code_attr vis3_addsub_ss_insn ++ [(ss_plus "fpadds") (ss_minus "fpsubs")]) ++(define_code_attr vis3_addsub_ss_patname ++ [(ss_plus "ssadd") (ss_minus "sssub")]) ++ ++(define_insn "3" ++ [(set (match_operand:VASS 0 "register_operand" "=") ++ (vis3_addsub_ss:VASS (match_operand:VASS 1 "register_operand" "") ++ (match_operand:VASS 2 "register_operand" "")))] ++ "TARGET_VIS3" ++ "\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "other")]) ++ ++(define_mode_iterator VMMAX [V8QI V4HI V2SI]) ++(define_code_iterator vis4_minmax [smin smax]) ++(define_code_attr vis4_minmax_insn ++ [(smin "fpmin") (smax "fpmax")]) ++(define_code_attr vis4_minmax_patname ++ [(smin "min") (smax "max")]) ++ ++(define_insn "3" ++ [(set (match_operand:VMMAX 0 "register_operand" "=") ++ (vis4_minmax:VMMAX (match_operand:VMMAX 1 "register_operand" "") ++ (match_operand:VMMAX 2 "register_operand" "")))] ++ "TARGET_VIS4" ++ "\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "maxmin")]) ++ ++(define_code_iterator vis4_uminmax [umin umax]) ++(define_code_attr vis4_uminmax_insn ++ [(umin "fpminu") (umax "fpmaxu")]) ++(define_code_attr vis4_uminmax_patname ++ [(umin "minu") (umax "maxu")]) ++ ++(define_insn "3" ++ [(set (match_operand:VMMAX 0 "register_operand" "=") ++ (vis4_uminmax:VMMAX (match_operand:VMMAX 1 "register_operand" "") ++ (match_operand:VMMAX 2 "register_operand" "")))] ++ "TARGET_VIS4" ++ "\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "maxmin")]) ++ ++;; The use of vis3_addsub_ss_patname in the VIS4 instruction below is ++;; intended. ++(define_insn "v8qi3" ++ [(set (match_operand:V8QI 0 "register_operand" "=e") ++ (vis3_addsub_ss:V8QI (match_operand:V8QI 1 "register_operand" "e") ++ (match_operand:V8QI 2 "register_operand" "e")))] ++ "TARGET_VIS4" ++ "8\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "other")]) ++ ++(define_mode_iterator VAUS [V4HI V8QI]) ++(define_code_iterator vis4_addsub_us [us_plus us_minus]) ++(define_code_attr vis4_addsub_us_insn ++ [(us_plus "fpaddus") (us_minus "fpsubus")]) ++(define_code_attr vis4_addsub_us_patname ++ [(us_plus "usadd") (us_minus "ussub")]) ++ ++(define_insn "3" ++ [(set (match_operand:VAUS 0 "register_operand" "=") ++ (vis4_addsub_us:VAUS (match_operand:VAUS 1 "register_operand" "") ++ (match_operand:VAUS 2 "register_operand" "")))] ++ "TARGET_VIS4" ++ "\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "other")]) ++ ++(define_insn "fucmp8_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(gcond:V8QI (match_operand:V8QI 1 "register_operand" "e") ++ (match_operand:V8QI 2 "register_operand" "e"))] ++ UNSPEC_FUCMP))] ++ "TARGET_VIS3" ++ "fucmp8\t%1, %2, %0" ++ [(set_attr "type" "viscmp")]) ++ ++(define_insn "fpcmpu_vis" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(gcond:GCM (match_operand:GCM 1 "register_operand" "e") ++ (match_operand:GCM 2 "register_operand" "e"))] ++ UNSPEC_FUCMP))] ++ "TARGET_VIS4" ++ "fpcmpu\t%1, %2, %0" ++ [(set_attr "type" "viscmp")]) ++ ++(define_insn "*naddsf3" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (neg:SF (plus:SF (match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f"))))] ++ "TARGET_VIS3" ++ "fnadds\t%1, %2, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_insn "*nadddf3" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (neg:DF (plus:DF (match_operand:DF 1 "register_operand" "e") ++ (match_operand:DF 2 "register_operand" "e"))))] ++ "TARGET_VIS3" ++ "fnaddd\t%1, %2, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "*nmulsf3" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (mult:SF (neg:SF (match_operand:SF 1 "register_operand" "f")) ++ (match_operand:SF 2 "register_operand" "f")))] ++ "TARGET_VIS3" ++ "fnmuls\t%1, %2, %0" ++ [(set_attr "type" "fpmul")]) ++ ++(define_insn "*nmuldf3" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (mult:DF (neg:DF (match_operand:DF 1 "register_operand" "e")) ++ (match_operand:DF 2 "register_operand" "e")))] ++ "TARGET_VIS3" ++ "fnmuld\t%1, %2, %0" ++ [(set_attr "type" "fpmul") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "*nmuldf3_extend" ++ [(set (match_operand:DF 0 "register_operand" "=e") ++ (mult:DF (neg:DF (float_extend:DF ++ (match_operand:SF 1 "register_operand" "f"))) ++ (float_extend:DF ++ (match_operand:SF 2 "register_operand" "f"))))] ++ "TARGET_VIS3" ++ "fnsmuld\t%1, %2, %0" ++ [(set_attr "type" "fpmul") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fhaddsf_vis" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (unspec:SF [(match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f")] ++ UNSPEC_FHADD))] ++ "TARGET_VIS3" ++ "fhadds\t%1, %2, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_insn "fhadddf_vis" ++ [(set (match_operand:DF 0 "register_operand" "=f") ++ (unspec:DF [(match_operand:DF 1 "register_operand" "f") ++ (match_operand:DF 2 "register_operand" "f")] ++ UNSPEC_FHADD))] ++ "TARGET_VIS3" ++ "fhaddd\t%1, %2, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fhsubsf_vis" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (unspec:SF [(match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f")] ++ UNSPEC_FHSUB))] ++ "TARGET_VIS3" ++ "fhsubs\t%1, %2, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_insn "fhsubdf_vis" ++ [(set (match_operand:DF 0 "register_operand" "=f") ++ (unspec:DF [(match_operand:DF 1 "register_operand" "f") ++ (match_operand:DF 2 "register_operand" "f")] ++ UNSPEC_FHSUB))] ++ "TARGET_VIS3" ++ "fhsubd\t%1, %2, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++(define_insn "fnhaddsf_vis" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (neg:SF (unspec:SF [(match_operand:SF 1 "register_operand" "f") ++ (match_operand:SF 2 "register_operand" "f")] ++ UNSPEC_FHADD)))] ++ "TARGET_VIS3" ++ "fnhadds\t%1, %2, %0" ++ [(set_attr "type" "fp")]) ++ ++(define_insn "fnhadddf_vis" ++ [(set (match_operand:DF 0 "register_operand" "=f") ++ (neg:DF (unspec:DF [(match_operand:DF 1 "register_operand" "f") ++ (match_operand:DF 2 "register_operand" "f")] ++ UNSPEC_FHADD)))] ++ "TARGET_VIS3" ++ "fnhaddd\t%1, %2, %0" ++ [(set_attr "type" "fp") ++ (set_attr "fptype" "double")]) ++ ++;; VIS4B instructions. ++ ++(define_mode_iterator DUMODE [V2SI V4HI V8QI]) ++ ++(define_insn "dictunpack" ++ [(set (match_operand:DUMODE 0 "register_operand" "=e") ++ (unspec:DUMODE [(match_operand:DF 1 "register_operand" "e") ++ (match_operand:SI 2 "imm5_operand_dictunpack" "t")] ++ UNSPEC_DICTUNPACK))] ++ "TARGET_VIS4B" ++ "dictunpack\t%1, %2, %0" ++ [(set_attr "type" "fga") ++ (set_attr "subtype" "other")]) ++ ++(define_mode_iterator FPCSMODE [V2SI V4HI V8QI]) ++(define_code_iterator fpcscond [le gt eq ne]) ++(define_code_iterator fpcsucond [le gt]) ++ ++(define_insn "fpcmpshl" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(fpcscond:FPCSMODE (match_operand:FPCSMODE 1 "register_operand" "e") ++ (match_operand:FPCSMODE 2 "register_operand" "e")) ++ (match_operand:SI 3 "imm2_operand" "q")] ++ UNSPEC_FPCMPSHL))] ++ "TARGET_VIS4B" ++ "fpcmpshl\t%1, %2, %3, %0" ++ [(set_attr "type" "viscmp")]) ++ ++(define_insn "fpcmpushl" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(fpcsucond:FPCSMODE (match_operand:FPCSMODE 1 "register_operand" "e") ++ (match_operand:FPCSMODE 2 "register_operand" "e")) ++ (match_operand:SI 3 "imm2_operand" "q")] ++ UNSPEC_FPUCMPSHL))] ++ "TARGET_VIS4B" ++ "fpcmpushl\t%1, %2, %3, %0" ++ [(set_attr "type" "viscmp")]) ++ ++(define_insn "fpcmpdeshl" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:FPCSMODE 1 "register_operand" "e") ++ (match_operand:FPCSMODE 2 "register_operand" "e") ++ (match_operand:SI 3 "imm2_operand" "q")] ++ UNSPEC_FPCMPDESHL))] ++ "TARGET_VIS4B" ++ "fpcmpdeshl\t%1, %2, %3, %0" ++ [(set_attr "type" "viscmp")]) ++ ++(define_insn "fpcmpurshl" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:FPCSMODE 1 "register_operand" "e") ++ (match_operand:FPCSMODE 2 "register_operand" "e") ++ (match_operand:SI 3 "imm2_operand" "q")] ++ UNSPEC_FPCMPURSHL))] ++ "TARGET_VIS4B" ++ "fpcmpurshl\t%1, %2, %3, %0" ++ [(set_attr "type" "viscmp")]) ++ ++(include "sync.md") +diff -Nur gcc-10.3.0.orig/gcc/config/sparc/sparc-protos.h gcc-10.3.0/gcc/config/sparc/sparc-protos.h +--- gcc-10.3.0.orig/gcc/config/sparc/sparc-protos.h 2021-04-08 13:56:28.201742273 +0200 ++++ gcc-10.3.0/gcc/config/sparc/sparc-protos.h 2021-04-09 07:51:37.812496739 +0200 +@@ -69,7 +69,6 @@ + extern void sparc_split_mem_reg (rtx, rtx, machine_mode); + extern int sparc_split_reg_reg_legitimate (rtx, rtx); + extern void sparc_split_reg_reg (rtx, rtx, machine_mode); +-extern const char *output_load_pcrel_sym (rtx *); + extern const char *output_ubranch (rtx, rtx_insn *); + extern const char *output_cbranch (rtx, rtx, int, int, int, rtx_insn *); + extern const char *output_return (rtx_insn *); +diff -Nur gcc-10.3.0.orig/gcc/testsuite/gcc.c-torture/compile/20191108-1.c gcc-10.3.0/gcc/testsuite/gcc.c-torture/compile/20191108-1.c +--- gcc-10.3.0.orig/gcc/testsuite/gcc.c-torture/compile/20191108-1.c 2021-04-08 13:56:28.929751064 +0200 ++++ gcc-10.3.0/gcc/testsuite/gcc.c-torture/compile/20191108-1.c 1970-01-01 01:00:00.000000000 +0100 +@@ -1,14 +0,0 @@ +-/* PR target/92095 */ +-/* Testcase by Sergei Trofimovich */ +- +-typedef union { +- double a; +- int b[2]; +-} c; +- +-double d(int e) +-{ +- c f; +- (&f)->b[0] = 15728640; +- return e ? -(&f)->a : (&f)->a; +-} +diff -Nur gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-3.c gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-3.c +--- gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-3.c 2021-04-08 13:56:29.453757389 +0200 ++++ gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-3.c 2021-04-09 07:51:37.988507907 +0200 +@@ -1,6 +1,6 @@ + /* { dg-do compile } */ + /* { dg-require-effective-target lp64 } */ +-/* { dg-options "-O -fno-pie" } */ ++/* { dg-options "-O" } */ + + #include + #include +diff -Nur gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-4.c gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-4.c +--- gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-4.c 2021-04-08 13:56:29.453757389 +0200 ++++ gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-4.c 2021-04-09 07:51:37.988507907 +0200 +@@ -1,6 +1,6 @@ + /* { dg-do compile } */ + /* { dg-require-effective-target lp64 } */ +-/* { dg-options "-O -fno-pie -mno-vis3 -mno-vis4" } */ ++/* { dg-options "-O -mno-vis3 -mno-vis4" } */ + + #include + #include +diff -Nur gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-5.c gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-5.c +--- gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-5.c 2021-04-08 13:56:29.453757389 +0200 ++++ gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-5.c 2021-04-09 07:51:37.992508161 +0200 +@@ -1,6 +1,6 @@ + /* { dg-do compile } */ + /* { dg-require-effective-target lp64 } */ +-/* { dg-options "-O -fno-pie -mvis3" } */ ++/* { dg-options "-O -mvis3" } */ + + #include + #include -- cgit v1.2.3